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Abstract

Motivation: Feature selection, identifying a subset of variables that are relevant for predicting a re-

sponse, is an important and challenging component of many methods in statistics and machine

learning. Feature selection is especially difficult and computationally intensive when the number of

variables approaches or exceeds the number of samples, as is often the case for many genomic

datasets.

Results: Here, we introduce a new approach—the Bayesian Ising Approximation (BIA)—to rapidly

calculate posterior probabilities for feature relevance in L2 penalized linear regression. In the re-

gime where the regression problem is strongly regularized by the prior, we show that computing

the marginal posterior probabilities for features is equivalent to computing the magnetizations of

an Ising model with weak couplings. Using a mean field approximation, we show it is possible to

rapidly compute the feature selection path described by the posterior probabilities as a function of

the L2 penalty. We present simulations and analytical results illustrating the accuracy of the BIA on

some simple regression problems. Finally, we demonstrate the applicability of the BIA to high-di-

mensional regression by analyzing a gene expression dataset with nearly 30 000 features. These re-

sults also highlight the impact of correlations between features on Bayesian feature selection.

Availability and implementation: An implementation of the BIA in Cþþ, along with data for repro-

ducing our gene expression analyses, are freely available at http://physics.bu.edu/�pankajm/

BIACode.

Contact: charleskennethfisher@gmail.com or ckfisher@bu.edu or pankajm@bu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Linear regression is one of the most broadly and frequently used

statistical tools. Despite hundreds of years of research on the subject

(Legendre, 1805), modern applications of linear regression to large

datasets present a number of new challenges. Modern applications

of linear regression, such as Genome Wide Association Studies

(GWAS), often consider datasets that have at least as many potential

variables (or features) as there are data points (McCarthy et al.,

2008). Applying linear regression to high-dimensional datasets often

involves selecting a subset of relevant features, a problem known as

feature selection in the literature on statistics and machine learning

(Guyon and Elisseeff, 2003). Even for classical least-squares linear

regression, it turns out that the associated feature selection problem

is quite difficult (Huo and Ni, 2007).

The difficulties associated with feature selection are especially

pronounced in genomics and GWAS. In general, the goal of many

genomics studies is to identify a relationship between a small num-

ber of genes and a phenotype of interest, such as height or body
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mass index (Burton et al., 2007; McCarthy et al., 2008; Peng et al.,

2010; Subramanian et al., 2005; Wu et al., 2009). For example,

many GWAS seek to identify specific genetic mutations (called sin-

gle nucleotide polymorphisms—SNPs) that best explain the vari-

ation of a quantitative trait, such as height or body mass index, in a

population (Yang et al., 2012). Using various techniques, the trait is

regressed against binary variables representing the presence or ab-

sence of the SNPs in order to find a subset of SNPs that are highly

explanatory for the trait (Peng et al., 2010; Wu et al., 2009).

Although the number of individuals genotyped in such a study may

be in the thousands or even tens of thousands, this pales in compar-

ison to the number of potential SNPs which can be in the millions

(McCarthy et al., 2008). Moreover, the presence or absence of vari-

ous SNPs tends to be correlated due to chromosome structure and

genetic processes that induce the so-called linkage disequilibrium

(Yang et al., 2012). As a result, selecting the best subset of SNPs for

the regression involves a search for the global minimum of a land-

scape that is both high dimensional (due to the large number of

SNPs) and rugged (due to correlations between SNPs).

The obstacles that make feature selection difficult in GWAS also

occur in many other applications of linear regression to big datasets.

In fact, the task of finding the optimal subset of features is proven,

in general, to be NP-hard (Huo and Ni, 2007). Therefore, it is usu-

ally computationally prohibitive to search over all possible subsets

of features and one has to resort to other methods of feature selec-

tion. For example, forward (or backward) selection adds (or elimin-

ates) one feature at a time to the regression in a greedy manner

(Guyon and Elisseeff, 2003). Alternatively, one may use heuristic

methods such as Sure Independence Screening (SIS) (Fan and Lv,

2008), which selects features independently based on their correl-

ation with the response, or Minimum Redundancy Maximum

Relevance (Ding and Peng, 2005), which penalizes features that are

correlated with each other. The most popular approaches to feature

selection for linear regression, however, are penalized least-squares

methods (Candes and Tao, 2007; Hoerl and Kennard, 1970;

Tibshirani, 1996; Zou and Hastie, 2005) that introduce a function

that penalizes large regression coefficients. Common choices for the

penalty function include an L2 penalty, called ‘Ridge’ regression

(Hoerl and Kennard, 1970), and an L1 penalty, commonly referred

to as LASSO regression (Tibshirani, 1996).

Penalized methods for linear regression typically have natural in-

terpretations as Bayesian approaches with appropriately chosen prior

distributions. For example, L2 penalized regression can be derived by

maximizing the posterior distribution obtained with a Gaussian prior

on the regression coefficients. Similarly, L1 penalized regression can

be derived by maximizing the posterior distribution obtained with a

Laplace (i.e. double-exponential) prior on the regression coefficients.

While penalized regression methods essentially aim to find the features

that maximize a posterior distribution they do not allow one to actu-

ally compute posterior probabilities, which provide information about

confidence in a Bayesian framework. Calculating these posterior prob-

abilities generally requires Monte Carlo methods, which can be very

computationally demanding in high dimensions (George and

McCulloch, 1993; Guan et al., 2011; Li and Zhang, 2010). Thus, in

order to apply Bayesian approaches to feature selection to high-

dimensional problems it is necessary to develop approximate methods

for computing posterior probabilities that bypass the need for exten-

sive sampling from the posterior distribution.

Inspired by the success of statistical physics approaches to hard

problems in computer science (Mézard et al., 2002; Monasson et al.,

1999) and statistics (Balasubramanian, 1997; Malzahn and Opper,

2005; Nemenman and Bialek, 2002), we study high-dimensional

regression with ‘strongly regularizing’ prior distributions. A strongly

regularizing prior distribution is one that exerts a significant influ-

ence on the posterior distribution even when the sample size goes to

infinity. The definition will be made more precise later. In this

strongly regularized regime, we show that the marginal posterior

probabilities of feature relevance for L2 penalized regression are

well-approximated by the magnetizations of an appropriately

chosen Ising model—a widely studied model from physics used to

describe magnetic materials (Opper and Winther, 2001). For this

reason, we call our approach the Bayesian Ising Approximation

(BIA) of the posterior distribution. Using the BIA, the posterior

probabilities can be computed without resorting to Monte Carlo

simulation using an efficient mean field approximation that facili-

tates the analysis of very high-dimensional datasets. We envision the

BIA as part of a two-stage procedure where the BIA is applied to

rapidly screen irrelevant variables, i.e. those that have low rank in

posterior probability, before applying a more computationally inten-

sive cross-validation procedure to infer the regression coefficients

for the reduced feature set. This study is especially well suited to

modern feature selection problems where the number of features, p,

is often larger than the sample size, n.

Our approach differs significantly from previous methods for

feature selection. Traditionally, penalized regression and related

Bayesian approaches have focused on the ‘weakly regularized re-

gime’ where the effect of the prior is assumed to be negligible as the

sample size tends to infinity. The underlying intuition for consider-

ing the weak-regularization regime is that as long as the prior (i.e.

the penalty parameter) is strong enough to regularize the inference

problem, a less influential prior distribution should be better suited

for feature selection and prediction tasks because it ‘allows the data

to speak for themselves’ (Gelman et al., 2013). In the machine learn-

ing literature, the penalty parameter is usually chosen using cross

validation to maximize out-of-sample predictive ability (Tibshirani,

1996; Zou and Hastie, 2005). A similar esthetic is also reflected in

the abundant literature on ‘objective’ priors for Bayesian inference

(Ghosh et al., 2011). As expected, these weakly regularizing

approaches perform well when the sample size exceeds the number

of features ðn� pÞ. However, very strong priors may be required

for high-dimensional inference where the number of features can

greatly exceed the sample size ðp� nÞ. Our BIA approach exploits

the large penalty parameter in this strongly regularized regime to ef-

ficiently calculate marginal posterior probabilities using methods

from statistical physics.

The article is organized as follows: in Section 2.1, we review

Bayesian linear regression; in Section 2.2, we derive the BIA using a

series expansion of the posterior distribution and describe the associ-

ated algorithm for variable selection; and in Section 3.1, we present

analytical results and simulations on the performance of the BIA

using features with a constant correlation, in Section 3.2 we analyze

a real dataset for predicting bodyfat percentage from 12 different

body measurements and in Section 3.3 we analyze a real dataset for

predicting a quantitative phenotypic trait from data on the expres-

sion of 28 395 genes in soybeans.

2 Methods

2.1 Bayesian linear regression
In this section, we briefly review the necessary aspects of Bayesian

linear regression. This entire section follows standard arguments,

the details of which can be found in many textbooks on Bayesian

statistics (see e.g. O’Hagan et al., 2004). The goal of linear regres-

sion is to infer the set of coefficients bj for j ¼ 1; . . . ; p that describe

High-dimensional linear regression via the BIA 1755

 at B
oston U

niversity L
ibraries on A

ugust 12, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

.(
);
.(
);Burton etal.(2007);
.(
);
.(
)).
 or 
.(
)).
Wu etal.(2009);
.(
)).
i
.(
)).
.(
)).
(
)).
(
)).
(
)),
MRMR) (
(
)),
(
);
(
);
(
);Candes and Tao(2007))
a
(
)),
a
(
)). 
(
);
(
);Guan etal.(2011)).
Monasson etal.(1999);
.(
))
Nemenman and Bialek(2002);
(
);
(
)),
``
-
''
-
-
 &ndash; 
(
)).
Our work
``
-
''
``
''
.(
)).
(
);
(
)).
a
.(
)).
().
().
paper
 (A)
(B)
,
(C)
,
Linear Regression
(
.(
)).
http://bioinformatics.oxfordjournals.org/


the relationship y ¼ xTbþ g from n observations ðyi; xiÞ for

i ¼ 1; . . . ; n. Here, x is a (p� 1Þ vector of features and g � Nð0; r2Þ
is a Gaussian distributed random variable with unknown variance

r2. Without loss of generality, we will assume throughout this art-

icle that the data are standardized withX
i
yi ¼ 0;

X
i
y2

i ¼ n;
X

i
ðxiÞj ¼ 0 and

X
i
ðxiÞ2j ¼ n so that it is

not necessary to include an intercept term in the regression.

Penalized least-squares methods estimate the regression coefficients

by minimizing a convex objective function in the form of:

UðbÞ ¼
X

i

ðyi � xT
i bÞ2 þ kf ðbÞ; (1)

where f ðbÞ is a function that penalizes large regression coefficients

and k is the strength of the penalty. Common choices for the penalty

function include f ðbÞ ¼
X

j
b2

j for L2 penalized or ‘Ridge’ regression

(Hoerl and Kennard, 1970), and f ðbÞ ¼
X

j
jbjj for L1 penalized or

LASSO regression (Tibshirani, 1996). The standard least-squares

(and maximum likelihood) estimate b̂ ¼ ðXTXÞ�1XTy is recovered

by setting k ¼ 0, where X is the ðn� pÞ design matrix with columns

xi. Adding a penalty to the least-squares objective function mitigates

instability that results from computing the inverse of the XTX ma-

trix. In the case of the L1 penalty, many of the regression coefficients

end up being shrunk exactly to 0 resulting in a type of automatic fea-

ture selection (Candes and Tao, 2007; Tibshirani, 1996; Zou and

Hastie, 2005).

Bayesian methods combine the information from the data,

described by the likelihood function, with a priori knowledge,

described by a prior distribution, to construct a posterior distribu-

tion that describes one’s knowledge about the parameters after

observing the data. In the case of linear regression, the likelihood

function is a Gaussian

Pðyjb; r2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p
� �n

exp �ðy�XbÞTðy�XbÞ
2r2

 !
:

In this work, we will use standard conjugate prior distributions for b
and r2 given byPðb; r2jsÞ ¼ Pðr2ÞPðbjr2; sÞwhere

Pðr2Þ / ðr2Þ�ða0þ1Þexp ð�b0=r2Þ

Pðbjr2; sÞ /
Y

j

ð1� sjÞdðbjÞ þ ð1þ sjÞ
ffiffiffiffiffiffiffiffiffiffiffi

k
2pr2

r
exp �

kb2
j

2r2

 !" #
:

These distributions were chosen because they ensure that the poster-

ior distribution can be obtained in closed-form (O’Hagan et al.,

2004). Here, we have introduced a vector (s) of indicator variables

so that bj ¼ 0 if sj ¼ �1 and bj 6¼ 0 if sj ¼ þ1. We also have to spe-

cify a prior for the indicator variables, which we will set to a flat

prior PðsÞ / 1 for simplicity. In principle, a0, b0 and the penalty par-

ameter on the regression coefficients, k, are free parameters that

must be specified ahead of time to reflect our prior knowledge. We

will discuss these parameters in the following section.

We have set up the problem so that identifying which features

are relevant is equivalent to identifying those features for which

sj ¼ þ1. Therefore, we need to compute the posterior distribution

for s, which can be determined from Bayes’ theorem:

log PkðsjyÞ þC ¼ log

ð
dbdr2Pðyjb;r2ÞPðb;r2jsÞPðsÞ

¼ 1

2
lnjkIj � 1

2
lnjkI þXT

s Xsj � a0 þ
n

2

� �
ln b0 þ

1

2
EsðkÞ

� �
;

(2)

where C is a constant and EsðkÞ is the sum of the squared residual

errors. In this expression, q ¼
X

j
ð1þ sjÞ=2 is the number

of variables with sj ¼ þ1, I is the ðq� qÞ identity matrix and Xs is a

ðn� qÞ restricted design matrix which only contains columns corres-

ponding to features where sj ¼ þ1. The sum of the squared residual

errors is given by EsðkÞ ¼ yTy� yTXsbsðkÞ, where

bsðkÞ ¼ ðkI þXT
s XsÞ�1XT

s y is the Bayesian estimate for the regres-

sion coefficients corresponding to those variables for which sj ¼ þ1.

2.2 The Ising approximation
2.2.1 Strongly regularized expansion

In principle, one can directly use Equation (2) to estimate the rele-

vance of each feature using two different approaches. First, we could

find the s that maximizes the posterior probability distribution.

Alternatively, we could compute the marginal probabilities of fea-

ture relevance, Pkðsj ¼ þ1jyÞ ¼ ð1þ hsjiÞ=2, where hsji is the expect-

ation value of sj with respect to the posterior distribution, and select

the features with the largest Pkðsj ¼ þ1jyÞ. In the Bayesian setting,

these two point estimates result from the use of different utility func-

tions (Berger, 1985). Here, we will focus on computing the latter,

i.e., the expected value of s. The expectation values cannot be eval-

uated analytically due to the cumbersome restriction of the design

matrix to those variables for which sj ¼ þ1. Moreover, although the

computation of the expectation values can be performed using

Monte Carlo methods (George and McCulloch, 1993; Li and

Zhang, 2010), the numerical calculations often take a long time to

converge for high-dimensional inference problems.

Our main result—which we call the BIA of the posterior distribu-

tion for feature selection—is that a second-order series expansion of

Equation (2) in k�1 corresponds to an Ising model described by

logPkðsjyÞ ’
n2

4k

X
i

hiðkÞsi þ
1

2

X
i;j;i6¼j

JijðkÞsisj

 !
(3)

with an error that is O
�
k�3Tr½ðXT

s XsÞ3�
�

where Tr½�� is the matrix

trace operator and the external fields and couplings are defined as

hiðkÞ ¼ r2ðy; xiÞ �
1

n
þ
X

j

JijðkÞ (4)

JijðkÞ ¼ k�1r2ðxi;xjÞ

�n

k
rðxi;xjÞrðy; xiÞrðy; xjÞ �

1

2
r2ðy; xiÞr2ðy; xjÞ

� �
:

(5)

Here, rðz1; z2Þ is the Pearson correlation coefficient between vari-

ables z1 and z2. In writing this expression, we have assumed that the

hyperparameters a0 and b0 are small enough to neglect, though this

assumption is not necessary. A detailed derivation of this result is

presented in the Supporting Information.

The series expansion converges as long as kk > Tr½ðXT
s XsÞk� for

all s and integer powers k�1, which defines the regime that we call

‘strongly regularized’. Since Xs is the restricted design matrix for

standardized data, we can relate Tr½ðXT
s XsÞk� to the covariances be-

tween xj’s. In particular, Gershgorin’s Circle Theorem (Varga, 2010)

implies that the series will converge as long as k > nð1þ pr~Þ where r~

¼ 1
p inf i

X
j6¼i
jrðXi;XjÞj (see Supporting Information). For large p, we

can replace r~by the root-mean-squared correlation between features,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1ðp� 1Þ�1

X
i6¼j

r2ðXi;XjÞ
s

. This defines a natural scale

k	 ¼ nð1þ prÞ: (6)

for the penalty parameter at which the BIA is expected to break-

down. We expect the BIA to be accurate when k� k	 and to break-

down when k
 k	.
Because higher-order terms in the series can be neglected, the

strongly regularized expansion allows us to remove any references

1756 C.K.Fisher and P.Mehta
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to the restricted design matrix, and maps the posterior distribution

to the Ising model, which has been studied extensively in the physics

literature. Moreover, the magnitude of the couplings (Jij) scales as

k�1, ensuring that the couplings are weak, which will allow us to

compute posterior probabilities analytically. To perform feature se-

lection, we are interested in computing marginal probabilities

Pkðsj ¼ 1jyÞ ’ ð1þmjðkÞÞ=2, where we have defined the magnetiza-

tions mjðkÞ ¼ hsji. While there are many techniques for calculating

the magnetizations of an Ising model, we focus on the mean field ap-

proximation which leads to a self-consistent equation (Opper and

Winther, 2001):

miðkÞ ¼ tanh
n2

4k
hiðkÞ þ

1

2

X
j6¼i

JijðkÞmjðkÞ
 !" #

: (7)

This mean field approximation provides a computationally efficient

tool that approximates Bayesian feature selection for linear regres-

sion, requiring only the calculation of the Pearson correlations and

solution of Equation (7).

2.2.2 Computing the feature selection path

As with other approaches to penalized regression, our expressions

depend on a free parameter (k) that determines the strength of the

prior distribution. As it is usually difficult, in practice, to choose a

specific value of k ahead of time it is often helpful to compute the

feature selection path; i.e. to compute mjðkÞ over a wide range of

k’s. Indeed, computing the variable selection path is a common prac-

tice when applying other feature selection techniques such as

LASSO regression. To obtain the mean field variable selection path

as a function of � ¼ 1=k, we notice that lim �!0 mjð�Þ ¼ 0 and so de-

fine the recursive formula

mið�þ d�Þ � tanh
ð�þ d�Þn2

4
hið�þ d�Þ þ 1

2

X
j 6¼i

Jijð�þ d�Þmjð�Þ
 !" #

with a small step size d�
 1=k	 ¼ n�1ð1þ prÞ�1. We have set d�
¼ 0:05=k	 in all of the examples presented below. We note that our

implementation of the BIA is an example of homotopy algorithm

and could potentially be improved by applying more advanced

methods (Allgower and Georg, 2003).

2.2.3 Remarks

The BIA provides a computationally efficient framework to calcu-

late posterior probabilities of feature relevance as a function of k
without Monte Carlo simulations. We have used a simple, unopti-

mized Cþþ implementation of the BIA method. Using this code,

computing the entire feature selection path for a genomics dataset

with almost 30 000 features took �15 min on a desktop computer

with 24 GB of RAM and two 2.4 GHz 6-core Intel Xeon processors.

The bulk of the computational effort—in terms of both processing

power and memory usage—is expended computing the ðp� pÞ cor-

relation matrix. For example, computing the feature selection path

for the genomics dataset with our naive implementation required

�15 GB of RAM. However, any method designed for efficiently

computing large correlation matrices could be applied to improve

the computational performance of the BIA. For example, adaptive

thresholding estimators could be used to obtain a sparse correlation

matrix that requires less memory (Cai and Liu, 2011). In any case,

we have left the optimization of the code for future research.

To first order in � ¼ k�1, the posterior distribution corresponds

to an Ising model with fields and couplings given by hi ¼ r2ðy; xiÞ

�1=n and Jij¼0. That is, the indicator variables representing feature

relevance are independent, and the probability that a feature is rele-

vant is only a function of its squared correlation with the response.

Specifically, mjðkÞ�0 if jrðy; xjÞj > 1=
ffiffiffi
n
p

and mjðkÞ�0 if

jrðy;xjÞj < 1=
ffiffiffi
n
p

. Therefore, the BIA demonstrates that methods

that rank features by their squared correlation with the response,

such as SIS (Fan and Lv, 2008), are actually performing a first-order

approximation to Bayesian feature selection in the strongly regular-

ized limit.

The couplings between the spin variables representing feature

relevance enter into the BIA with the second-order term in � ¼ k�1.

A positive coupling between spins i and j favors models that include

both features i and j, whereas a negative coupling favors models that

include one feature or the other, but not both. In general, the cou-

pling terms are negative for highly correlated variables which min-

imizes the redundancy of the feature set.

3 Examples

We have chosen three examples to illustrate different characteristics

of the BIA for Bayesian feature selection. (A) First, we consider re-

gression problems with p features that have a constant correlation r.

We present some simple analytic expressions in the large p limit that

illustrates how different aspects of the problem affect feature selec-

tion performance, and study some simulated data. (B) Next, we ana-

lyze a dataset on the prediction of bodyfat percentage from various

body measurements. The number of features (p¼12) is small

enough that we can compute the exact posterior probabilities and,

therefore, directly assess the accuracy of the BIA for these data. (C)

Finally, we demonstrate the applicability of the BIA for feature se-

lection on high-dimensional regression problems by examining a

dataset relating the expression of p¼28 395 genes to the susceptibil-

ity of soybean plants to a pathogen.

3.1 Features with a constant correlation
Correlations between features are detrimental to feature selection. For

example, suppose that we observe a response variable y given by

y ¼ bx1 þ g. A second feature x2 that is strongly correlated with x1

will also be correlated with y. Thus, identifying which feature, x1 or

x2, is the relevant one is not an easy task. Of course, the reasoning be-

comes more complicated in high dimensions, but similar effects are

observed in high-dimensional regression with the LASSO (Tibshirani,

1996; Zou and Hastie, 2005). Given these observations, we use this

section to analyze a simple model of BIA feature selection that allows

us to examine many of the characteristics that influence feature selec-

tion performance. Specifically, we consider a simple, analytically

tractable, model in which we are given p features that are correlated

with each other with a constant Pearson correlation coefficient, r. The

response, y~, is a linear function of the first p~�p variables, which have

equal true regression coefficients bj ¼ b for j�p~. That is, y~¼ bXj¼p~

j¼1
xjþg~ where g~� Nð0; r~2Þ is a Gaussian noise. We are inter-

ested in studying the behavior of this model when the number of fea-

tures is large (p� 1). To simplify analytic expressions, it is helpful to

define the number of samples as n ¼ hp, and the number of relevant

features as p~¼ /p. Furthermore, we assume that the correlation be-

tween features scales as r ¼ ap�1 so that the correlation between y

and xj stays constant in the large p limit.

Figure 1a presents an example feature selection path computed

using the BIA for a simulation of this model. This variable selection

path was generated for data simulated from a linear model using

High-dimensional linear regression via the BIA 1757
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p¼200 features with a constant correlation r ¼ 2=p, n¼100,

p~¼ 10 and x2 ¼ r~2=b2 ¼ 1. Figure 1a demonstrates that all but

one of the relevant features (red) have higher posterior probabilities

than the irrelevant features (black) as long as k > k	. In fact, there is

a clear gap in posterior probability separating the relevant and ir-

relevant features, and the correct features can be easily selected by

visible inspection of the feature selection path in Fig. 1a. The BIA

breaks down beyond the threshold of the penalty parameter and the

feature selection performance of the BIA deteriorates, as demon-

strated by the mixing of the probabilities for the relevant (red lines)

and irrelevant (black lines) features in Fig. 1a.

The indicator variables characterizing the feature selection prob-

lem can be divided into two groups: relevant features with j�p~and

magnetization mðþÞ, and irrelevant features with j > p~ and magnet-

ization mð�Þ. Note that an algorithm that performs perfect variable

selection will have mðþÞ ¼ þ1 and mð�Þ ¼ �1. The Pearson correl-

ation coefficient of a relevant feature (j�p~) with the standardized re-

sponse y ¼ y~=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðy~Þ

p
is given by

rðy;xj¼1 ... p~Þ 
 rðþÞ ¼
1þ rðp~� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ p~ðrp~þ 1� rÞ
p ;

where x2 ¼ r~2=b2 � Oð1Þ is an inverse signal-to-noise ratio.

Similarly, the Pearson correlation coefficient of an irrelevant vari-

able (j > p~) with the standardized response is

rðy; xj¼p~þ1; ... ;pÞ 
 rð�Þ ¼
rp~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ p~ðrp~þ 1� rÞ
p :

Note that correlations make this problem incredibly difficult when

the number of true features is large, i.e. rð�Þ=rðþÞ ! 1 as p~!1 for

r>0. If we choose k ¼ hp2 to ensure that the problem is always in

the strongly regularized regime, the magnetizations can be computed

explicitly to order 1=p giving

mðþÞ �
h� /ð1� ahÞ

4/
1

p
þO

1

p2

� �
;

mð�Þ � �
1þ a/� a2/h

4ð1þ a/Þ
1

p
þO

1

p2

� �
:

In general, we say that feature selection performance is good, on

average, as long as mð�Þ < 0 < mðþÞ, because relevant features have

Pðsj ¼ þ1jyÞ > 1=2 and irrelevant features have

Pðsj ¼ þ1jyÞ < 1=2. Figure 1b shows that the average feature selec-

tion performance is good in this sense within a large volume of the

phase space. Specifically, mð�Þ < 0 < mðþÞ when

1

1þ a/
<

h
/
<

1þ a/

ð/aÞ2
:

However, mð�Þ < mðþÞ even if the stronger statement mð�Þ < 0

< mðþÞ is not satisfied. As a result, there is always a gap between the

posterior probabilities of the relevant and irrelevant features.

Nevertheless, the gap between the relevant and irrelevant features

shrinks with increasing correlations, suggesting that feature selection

performance will be strongly affected by sample-to-sample fluctu-

ations, which we have neglected here.

3.2 Bodyfat percentage
Bodyfat percentage is an important indicator of health, but obtain-

ing accurate estimates of bodyfat percentage is challenging. For ex-

ample, underwater weighing is one of the most accurate methods for

measuring bodyfat percentage but it requires special equipment, e.g.

a pool. Here, we analyze a well-known dataset obtained from

StatLib (http://lib.stat.cmu.edu/datasets/) on the relationship be-

tween bodyfat percentage and various body measurements from

n¼252 men (Penrose et al., 1985). The p¼12 features included in

our regression are age and body mass index (height=mass2), as well

as circumference measurements of the neck, chest, waist, hip, thigh,

knee, ankle, upper arm, forearm and wrist. All of the data were

standardized to have mean 0 and variance 1. Therefore, there are

212 ¼ 4096 potential combinations of features.

For our purposes, the most interesting part about the bodyfat

dataset is that the number of features is small enough to compute

the posterior probabilities exactly using Equation (2) by enumerat-

ing all of the 4096 feature combinations. The exact posterior proba-

bilities as a function of k�1 are shown in Fig. 2a.The posterior

probabilities computed from recursive solution of the BIA are shown

in Fig. 2b. Comparing Fig. 2a with Fig. 2b demonstrates that the

posterior probabilities computed from the BIA are very accurate for

k� k	, with k	 ¼ nð1þ prÞ and r the root-mean-squared correl-

ation between features. However, the approximation breaks down

for k
 k	 as expected. Figure 2c provides another representation of

the breakdown of the BIA upon approaching the breakdown

point of the penalty (k	). The root-mean-squared error given by

RMSE ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1
X

j

ðPexact
k ðsj ¼ 1jyÞ � PBIA

k ðsj ¼ 1jyÞÞ2
s

is sig-

moidal, with an inflection point close to k	.
In the strongly regularized regime with k� k	, the exact

Bayesian probabilities and those computed using the BIA both rank

waist and chest circumference as the most relevant features. Below

the breakdown point of the penalty parameter, however, the BIA

suggests solutions that are too sparse. That is, it underestimates

many of the posterior probabilities describing whether or not the

features are relevant. Far below the breakdown point of the penalty

parameter (beyond the range of the graph in Fig. 2), the BIA ranks

age and body mass index as the most relevant variables even though

Fig. 1. Performance of BIA feature selection. (a) An example variable selection

path as a function of decreasing regularization. The relevant variables are

red, and the irrelevant variables are black. The dashed vertical line is at

k ¼ k	 ¼ nð1þ rpÞ, which is the estimated breakdown point of the approxima-

tion. Simulations were performed with p¼200, n¼100, � p� ¼ 10; r ¼ 2=p

and x2 ¼ 1. (b) A phase diagram illustrating the regions of parameter space

where mð�Þ < 0 < mðþÞ computed with k ¼ hp2
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these have some of the smallest correlations with the response.

Age and body mass index also become increasingly important for

small k’s in the exact calculation; though, they are never ranked as

the most relevant variables. The change in the rankings of the fea-

tures as a function of k highlights the importance of the coupling

terms (JijðkÞ) that punish correlated features.

3.3 Gene expression
In 2010, the Dialogue for Reverse Engineering Assessments and

Methods (DREAM) (Prill et al., 2010) initiative issued a challenge

to predict the response of soybean plants to a pathogen from data

on gene expression (Zhou et al., 2009). These DREAM5 training

data consist of a response of n¼200 different soybean plants to a

pathogen (specifically, the response is a measure of the amount of

pathogen in an infected tissue sample) along with the expressions of

p¼28 395 genes. The team (Loh et al., 2011) that achieved the

highest rank correlation on a blind test set of 30 other soybean

plants trained their model using elastic net regression to predict the

ranks of the responses in the training set. The ranks were used rather

than the actual values of the responses to mitigate the effects of out-

liers, and the value of the penalty parameter was chosen using cross

validation. Loh et al. (2011) found that their cross-validation pro-

cedure for elastic net regression favored sparse models with only a

few features, and they highlighted 12 of these features that were fre-

quently chosen by their procedure. However, even the best teams

achieved only modest performance on the test data (Loh et al.,

2011). Nevertheless, the soybean gene expression dataset presents a

good benchmark to compare Bayesian feature selection with the BIA

to feature selection using cross-validated penalized regression for a

very high-dimensional inference problem.

We used the BIA to compute the posterior probabilities for all

p¼28 395 features as a function of k�1 using the ranks of the re-

sponses of the soybean plants to the pathogen as our y variable. As

before, all of the data were standardized to have mean 0 and vari-

ance 1. Figure 3a compares the posterior probabilities of the 12 fea-

tures highlighted by Loh et al. (2011) (red lines) to the distribution

of posterior probabilities for all of the features (gray area). Visual

inspection of Fig. 3a suggests that the 12 features identified by Loh

et al. (2011) have some of the highest posterior probabilities among

all 28 395 features. Similarly, Fig. 3b shows that only a small per-

centage of features have higher posterior probabilities than those

identified by Loh et al. (2011), demonstrating that there is generally

a pretty good agreement between features that are predictive (i.e.

those that perform well in cross validation) and those with high pos-

terior probabilities computed with the BIA.

Although our analyses of the soybean gene expression data iden-

tify similar features as cross-validated elastic net regression, the pos-

terior probabilities all fall in the range PkðsjjyÞ ¼ 1=260:001. The

small range of posterior probabilities around the value representing

random chance (PkðsjjyÞ ¼ 1=2) is consistent with the highly vari-

able out-of-sample performance discussed by Loh et al. (2011). One

reason for the generally poor performance of feature selection on

these data, aside from the underdetermined nature of the problem, is

that the expressions of the genes are significantly correlated

(r � 0:29). To demonstrate this, we constructed synthetic datasets

with varying numbers of relevant and irrelevant genes and computed

the rate at which true features were identified by the BIA (Fig. 4 and

Supporting Information). Like the original data, these synthetic

datasets each contained n¼200 distinct samples. The true positive

rate (or sensitivity) was defined as the fraction of true features

among the q features with the highest BIA posterior probabilities at

k ¼ 0:5k	. Comparing the true positive rates of BIA feature selection

on synthetic data using genes with a strong correlation (r � 0:28,

Fig. 4a) and synthetic data with a weak correlation obtained by ran-

domly shuffling the genes (r � 0:07, Fig. 4b) clearly demonstrates

the dramatic effect that interfeature correlations have on feature se-

lection performance. This highlights the importance of strong

Fig. 2. Comparison of exact Bayesian marginal probabilities to the BIA for the

bodyfat data. (a) Exact Bayesian marginal probabilities for decreasing regu-

larization. (b) BIA approximations of the marginal probabilities for decreasing

regularization. (c) RMSE between the exact and BIA probabilities as a function

of decreasing regularization. The dashed vertical line is at k ¼ k	 ¼ nð1þ rpÞ,
which is the estimated breakdown point of the approximation. The variables

have been color coded (blue to red) by increasing squared Pearson correl-

ation coefficient with the response (bodyfat percentage)

Fig. 3. Feature selection path for the gene expression data. The problem is se-

verely under-determined, involving the prediction of a quantitative pheno-

type from the expressions of p¼28 395 genes given a sample size of n¼ 200

and, therefore, the posterior probabilities remain close to Pkðsj ¼ 1jyÞ ¼ 1=2.

(a) Features selected in a previous study (red lines) by cross validation with

the elastic net have high ranking posterior probabilities. Gray area represents

the 1–99% quantiles, and the black area represents the 25–75% quantiles. (b)

The median (solid black line) and mean (dashed red line) percentage of fea-

tures with higher posterior probabilities than those identified by Loh et al.

(2011). The vertical axis is a logarithmic scale. The dashed vertical line is at

the breakdown point k ¼ k	 ¼ nð1þ rpÞ
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regularization procedures that specifically account for correlation

between genes in high-dimensional genomic studies.

4 Discussion

To summarize, we have shown that Bayesian feature selection for

L2 penalized regression, in the strongly regularized regime, corres-

ponds to an Ising model, which we call the BIA. Mapping the poster-

ior distribution to an Ising model that has simple expressions for the

local fields and couplings using a controlled approximation opens

the door to analytical studies of Bayesian feature selection using the

vast number of techniques developed in physics for studying the

Ising model. It will be interesting to see if our analyses can be gener-

alized to study Bayesian feature selection for many statistical tech-

niques other than linear regression, as well as other prior

distributions. From a practical standpoint, the BIA provides an algo-

rithm to efficiently compute Bayesian feature selection paths for L2

penalized regression. Using our approach, it is possible to compute

posterior probabilities of feature relevance for very high-dimen-

sional datasets such as those typically found in genomic studies.

Unlike most previous work of feature selection, the BIA is ideally

suited for large genomic datasets where the number of features can

be much greater than the sample size, p� n. The underlying reason

for this is that we work in strongly regularized regime where the

prior always has a large influence on the posterior probabilities.

This is in contrast to previous works on penalized regression and

related Bayesian approaches that have focused on the ‘weakly regu-

larized regime’ where the effect of the prior is assumed to be small.

Moreover, we have identified a sharp threshold for the regulariza-

tion parameter k	 ¼ nð1þ prÞ where the BIA is expected to break

down. This threshold depends on the sample size, n, number of fea-

tures, p, and root-mean-squared correlation between features, r. The

threshold at which the BIA breaks down occurs precisely at the tran-

sition from the strongly regularized to the weakly regularized re-

gimes where the prior and the likelihood have a comparable

influence on the posterior distribution.

This study also highlights the importance of accounting for cor-

relations between features when assessing statistical significance in

large datasets. When the number of features is large, even small cor-

relations can cause a huge reduction in the posterior probabilities of

features. For example, our analysis of a dataset including the expres-

sion of 28 395 genes demonstrates that the resulting posterior proba-

bilities of gene relevance may be very close to value representing

random chance PkðsjjyÞ ¼ 1=2 when p� n and the genes are moder-

ately correlated, e.g. r � 0:29. This is likely to have important

implications for assessing the results of GWAS studies where such

correlations are often ignored.

Moreover, we suggest that it is generally not reasonable to

choose a posterior probability threshold for judging significance on

very high-dimensional problems. Instead, the BIA can be used as

part of a two-stage procedure, where the BIA is applied to rapidly

screen irrelevant variables, i.e. those that have low rank in posterior

probability, before applying a more computationally intensive cross-

validation procedure to infer the regression coefficients. The compu-

tational efficiency of the BIA and the existence of a natural threshold

for the penalty parameter where the BIA works make this procedure

ideally suited for such two-stage procedures.
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