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A specific form is proposed for the equation of state of a fluid near its critical point. A function if>(x, y) 
is introduced, with x a measure of the temperature and y of the density. Fluids obeying an equation of state of 
van der Waals type ("classical" fluids) are characterized by if> being a constant. It is suggested that in a 
real fluid if>(x, y) is a homogeneous function of x and y, with a positive degree of homogeneity (Sec. 2). 
This leads to a nonclassical compressibility, the behavior of which is determined by the degree of homo-
geneity of if> (Sec. 3). A previously derived relation connecting the degree of the critical isotherm, the degree 
of the coexistence curve, and the compressibility index, again follows, this time without the restrictive 
assumption of effective isochore linearity (Sec. 4). The locus in the temperature-density plane of the points 
of inflection in the pressure-density isotherms, as determined experimentally by Habgood and Schneider, is 
accounted for (Sec. 5). It is shown that if a certain combination of the compressibility and coexistence 
curve indices is an integer, then the constant-volume specific heat on the critical isochore has a logarithmic 
singularity at the critical temperature with, in general, a superimposed finite discontinuity (Sec. 6). 

1. INTRODUCTION 

I T is generally recognized that a fluid in the neighbor-
hood of its critical point differs in many important 

respects from the "classical" fluid which obeys an 
equation of state of van der Waals type. Near the 
critical point of a real fluid, the densities of the co-
existing phases, the shape of the critical isotherm, the 
rate of divergence of the compressibility, and the nature 
of the singularity in the constant-volume specific heat, 
are all nonclassical. 

The purpose of the present work is to suggest a 
specific form that the equation of state might have, 
consistent with the full range of nonclassical behavior 
as now known. A function <I> is introduced which is a 
function of two variables, one a measure of the density 
of the system and the other a measure of the tempera-
ture. The classical theory is characterized by <I> being 
a constant. It is suggested that, by contrast, a real fluid 
of finite dimensionality is characterized by <I> being a 
homogeneous function of its variables, with a positive 
degree of homogeneity. It is just this assumption which 
leads to the nonclassical compressibility and specific 
heat. 

Two of the most interesting results of the theory 
are: (i) If a certain combination of the exponents which 
determine the behavior of the compressibility and the 
coexistence curve, happens to be an integer, then the 
constant-volume specific heat along the critical isochore 
has a logarithmic singularity at the critical point with, 
in general, a superimposed finite discontinuity. (ii) A 
puzzling and hitherto unexplained experimental result 
obtained by Habgood and Schneider, l concerning the 
locus of the points of inflection in the pressure-density 
isotherms, is now accounted for. 

1 H. W. Habgood and W. G. Schneider, Can. J. Chern. 32, 
98 (1954). 

2. PROPOSED EQUATION OF STATE 

Let p.(p, T) be the chemical potential (Gibbs func-
tion per unit mass), as a function of the mass density 
p and temperature T, in a one-component fluid; and 
let Pc, Tc be the density and temperature at the critical 
point. Let M (T) be the chemical potential along the 

T(Pl T 

FIG. 1. The critical isochore 
(Pc) and a general isochore (p) 
in the /l, T plane. They intersect 
at the temperature T (p). The circle 
marks the critical point. 

critical isochore, p= Pc, so that 

p.(Pc, T) =M(T). 

The critical isochore M (T) in the p., T plane, and one 
general isochore, are shown schematically in Fig. 1. 
The general isochore corresponding to density p inter-
sects the critical isochore at the temperature r(p), 
where 

T=r(p) 

is the equation of the coexistence curve in the T, p 
plane shown in Fig. 2. 

All the classical theories, of van der Waals type, 
agree that in a homogeneous fluid phase in the immediate 
neighborhood of the critical point p. is given as a function 
of P and T by 

p.(p, T) -M( T) = (p-Pc) [T-r(p) ]<1>, (1) 
3898 
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with cJI a constant. They agree, further, that the coexist-
ence curve is parabolic, that is, that T(p) is given near 
the critical point by 

Tc-T(p) =a I p_p.ld, (2) 

with a a constant, and with d= 2. 
It is a consequence of Eq. (1) that J.L reduces to 

M (T) both when p= pc, that is, on the critical isochore, 
and when T=T(p), that is, at the coexistence curve. 
These are necessary features of any correct equation 
of state, and simply express in analytical form the con-
tent of Fig. 1. That <P is asymptotically constant as 
the critical point is approached is, however, a feature 
of the classical theories alone, and is not a necessary 
property of the equation of state. It is the constancy 
of cJI which yields the classical compressibility, quite 
independently of whether the coexistence curve is 
classical, with d= 2 in Eq. (2), or nonclassical, with 

for it follows from Eqs. (1) and (2) that if <P 
is constant, then 

Because 

(iJJ.L/iJp)T= (T- Tc)<p, 

(iJJ.L/iJp)T= (Tc- T)<pd, 

at p=pc, 

atT=T(p). 

FIG. 3. The critical iso-
chore, critical isotherm, and 
coexistence "curve" in the 
x, y plane. The two-phase 
region is shaded. The criti-
cal point is at the origin, 
marked by a circle. 

y 

Eq. (2), with a constant, but they are of algebraic 
degree d greater than 2. 

It is convenient to measure the temperature T 
the variable 

x=T-T. 

and the density p by the variable 

y= T.-T(p), 

(4) 

(5) 

(3) and then to suppose that <P is a function of x and y, 

with p the pressure and K the isothermal compressibility, 
the preceding relations imply that K becomes infinite 
proportionally to I T- T.I-l as the critical point is 
approached either along the critical isochore, with T 
approaching Tc from above, or along the coexistence 
curve, with T approaching Tc from below. But in 
reality the compressibility behaves nonclassically2 and 
becomes infinite proportionally to I T - Tc I-I, with!> 1. 

Thus, in constructing a more general equation of 
state, the form of Eq. (1) is to be retained, but <P may 
not be assumed constant. Likewise, the form of Eq. (2) 
is to be retained, but d may not be assumed equal to 2. 
As the critical point is approached, coexistence curves 
do in reality have the asymptotic form implied by 

FIG. 2. The coexistence 
curve T=r(p) in the T, 
p plane. The two-phase re-
gion is shaded. The dashed 
lines are the critical isochore 
(vertical) and the critical 
isotherm (horizontal). The 
circle marks the critical 
point. 

T 

Te 

Pc p 

2 J. W. Essam and M. E. Fisher, J. Chern. Phys. 38, 802 
(1963). 

<P=<P(x, y). 

To be sure, because of Eq. (2), the variable y does 
not define the density uniquely, but is instead an even 
function of p- pc, so that the density is a two-valued 
function of y. But from Eqs. (1), (4) and (5), the 
equation of state in the one-phase region near the 
critical point becomes 

J.L(p, T) -M(T) = (p-P.) (x+y) <p(x, y). (6) 

Then y being an even function of p-P. implies that at 
fixed temperature J.L(p, T) - M (T) is an odd function 
of P-Pc' In the lattice gas model of a fluid,3 J.L(p, T)-
M (T) for fixed T is indeed an odd function of p- Pc 
everywhere; and it is virtually certain that this sym-
metry property is also characteristic of a real fluid near 
its critical point. Thus, it is in any case necessary to 
suppose that <P is an even function of p- pc, so there is 
no loss of generality in taking it to be a function of y. 

The ranges of the variables x and yare shown in 
Fig. 3. The critical point is at the origin, x=y=O. 
Because the coexistence curve in Fig. 2 has its maximum 
at T= Tc it follows that y, as defined in Eq. (5), is 
always positive. The two-phase region in Fig. 2 is 
defined by T<T(p), that is, by x+y<O in the x, y 
plane, and is the shaded region in Fig. 3. The whole 
of Fig. 3 represents a transformation of Fig. 2, obtained 
by folding the T, p plane in half along the critical 

3 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952). 
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isochore, translating the critical point to the ongm, 
and then redefining the density variable so that the 
coexistence curve becomes the straight line x+y=O. 
The critical isochore remains a vertical straight line, 
coinciding with the x axis (y=O) in the x, y plane; 
while the critical isotherm remains a horizontal straight 
line, coinciding with the positive y axis (x=O). 

It is now suggested that the behavior of a fluid in 
the neighborhood of its critical point may be compre-
hen4ed in the single statement that cI> is a homogeneous 
function of its variables. The remaining sections of this 
paper are concerned with the systematic derivation of 
the consequences of this conjecture.4 

If the supposed degree of homogeneity is calledf-1, 
then what is being conjectured is that 

ell(x, y) =yl-1ell(x/y, 1) 

=xf-Iell(1, y/x) if x>O 

=(-x)f-Iell(-1,y/-x) ifx<O. (7) 

Though the homogeneity of cI> is only asserted to hold 
asymptotically as the critical point is approached, and 
though the entire theory is limited to the immediate 
neighborhood of the critical point, it is clear from Eqs. 
(7) that infinite ranges of the arguments of ell are 
nevertheless relevant, and that the behavior of ell may 
be quite different according as the critical point is 
approached with x/y,,-,-1, 00, or a finite number 
greater than -1. This complexity is not present in the 
classical case, where ell is a constant. 

The one-phase region, where Eq. (6) applies, is the 
portion left unshaded in Figs. 2 and 3. At any point 
in the interior of this region J.I. (p, T) - M (T) is assumed 
to be a regular function of both p and T. A typical 
point in the interior of the one-phase region is the point 
X= 0, y= 1 on the critical isotherm. The function 
ell (x, 1) is therefore assumed to be regular in x and to 
admit a power series expansion 

ell (x, 1) =cf>O+cf>lX+1>2X2+cf>ax3+···. (8) 

Another point in the interior of the one-phase region 
is the point X= 1, y=O on the critical isochore. The 
function (1+y)ell(1, y) is therefore assumed to be regu-
lar in i 1d and to admit a power series expansion5 

(1 +y) ell (1, y) = co+clYld+C2y4ld+. • • . (9) 

At the boundary of the one-phase region, that is, 
at the coexistence curve, J.I.(p, T) -M(T) may indeed 

4 After this article was submitted it was called to the author's 
attention that E. Helfand, in a paper presented at the March, 
1965 meeting of the American Physical Society at Kansas City, 
proposed particular cases of Eq. (6) to account for nonclassical 
behavior near the critical point; and that R. B. Griffiths sub-
sequently showed that Helfand's equation of state implied a 
logarithmic specific heat singularity, as is found in Sec. 6 of the 
present paper. 

6 This formulation of the behavior of <I> at the critical isochore 
arose from remarks made by R. B. Griffiths (private communi-
cation) and by the referee of this paper, to both of whom the 
author is indebted. 

be singular, but there is no question about the existence 
there of ell and of its derivatives of low order. Let the 
subscript 1 on ell indicate differentiation with respect 
to its first argument. Then, in fact, the strongest 
assumptions it is later found necessary to make about 
the behavior of ell on the coexistence curve are that 
ell ( -1, 1) exists, and that 

lim (x+y)ell1(x/y, 1) =0, 
"+11-+0 

which says that, should the derivative of ell(x, y) with 
respect to x fail to exist at the coexistence curve, that 
derivative at least does not approach infinity as 
rapidly as x+y approaches zero, as the coexistence 
curve is approached. 

No regularity assumption of any kind is made about 
the behavior of ell (x, y) at the origin, that is, at the 
critical point itself. 

Finally, it is to be understood that what is meant by 
ell is the function in Eq. (6) that determines the be-
havior of J.I. in the one-phase region. This function may 
or may not have a meaningful analytic extension into 
the two-phase region, depending on whether it is 
analytic at the typical point -1, 1 on the coexistence 
curve in the x, y plane. In the classical case, where it 
is a constant, ell does of course have such a continuation, 
and then Eq. (6) is taken to be not only the equation 
of state in the region of single-phase stability but also 
the equation of state of a homogeneous metastable 
phase with x+y<O. In both classical and real fluids, 
however, the stable states of the system are described by 

where 

J.I.(p, T) -M(T) = (p-Pc) (x+y)'l'(x, y), 

'l'(x, y) = ell (x, y), 

'l'(x, y) =0, 

x+y>O, 

x+y<O. (10) 

The point here, though, is that it is not ell, but 'l', 
which is undefined at the coexistence curve; ell ( -1, 1) 
has a perfectly definite value. 

3. COMPRESSIBILITY 

The coexistence curve is assumed to be given by 
Eq. (2) and the equation of state by Eq. (6), with 
ell (x, y) homogeneous of degree j-1. Then it follows 
that 

(i) on the critical isochore (y= 0, x>O), 

(aJ.l./aph=ell(1,0)x' ; (11) 

(ii) on the critical isotherm (x= 0), 

(aJ.l./ap)T= (1+jd) ell (0, 1)y/; ( 12) 
(iii) at the coexistence curve (x+y=O), 

(aJ.l./aph=dell(-1, 1)yI=dell(-1, 1)(-x)l. (13) 

From Eq. (3), and the definition of x in Eq. (4), it 
is seen that the compressibility becomes infinite pro-
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portionally to \ T- Tc I-I as the critical point is 
approached along either the critical isochore or the 
coexistence curve. With 1> 1, that is, with the degree 
of homogeneity 1-1 assumed positive, this is just the 
nonclassical behavior of the compressibility which is 
found in systems of finite dimensionality.2 In a classical 
fluid 4> is a constant, so that 1 = 1; while the coexistence 
curve is parabolic, with d=2; then Eqs. (11), (12), 
(13) reduce to (ap./aph=4>x, 34>y, 24>y= -24>x, respec-
tively, which are the correct results in that case. 

It as a necessary consequence of the assumed homo-
geneity of 4> that the same exponent 1 appears in both 
Eqs. (11) and (13), that is, that the compressibility 
diverges equally rapidly above and below the critical 
point. This is in accord with the known behavior of 
the compressibility in the two-dimensional lattice gas2 
as well as in classical fluids, but it may not be generally 
correct. There is some evidence that in the three-
dimensional lattice gas the 1 which characterizes the 
compressibility along the critical isochore, and the 1 
which characterizes the compressibility at the coexist-
ence curve, are slightly different, being very close to 
5/4 in the first case and perhaps as large as 21/16 in 
the second.2.6 The homogeneity hypothesis could be 
easily altered to accommodate unequal1's, but then 
4> would have to be known fairly explicitly before the 
consequences of Eq. (6) could be derived. The point 
of the present work is that many of the properties of 
a fluid may be derived explicitly without a knowledge 
of 4>, provided only that it is a homogeneous function, 
so this hypothesis is retained throughout. 

4. CRITICAL ISOTHERM 

From Eq. (6), and the assumed homogeneity of 4>, 
the equation of the critical isotherm (x=O) in the p., p 
plane is 

(14) 

where p.c= M (Tc) is the chemical potential at the 
critical point, and where y is expressible in terms of 
P-Pc through Eqs. (2) and (5). Equation (14) is the 
integrated form of the result already obtained in Eq. 
(12). Because the coexistence curve is itself of degree 
d, it follows that the algebraic degree g of the critical 
isotherm is7 

g=1+1d. (15) 

Because of Eq. (3), this is also the degree of the pres-
sure-density critical isotherm at the critical point. 

The relation in Eq. (15) was previously derived8 

under an assumption of effective isochore linearity in 
the p, T plane. The analog of that assumption in the 
p., T plane, from which Eq. (15) is again derivable, is 

6 D. S. Gaunt, M. E. Fisher, M. F. Sykes, and J. W. Essarn, 
Phys. Rev. Letters 13,713 (1964). 

7 In the widely used notation of Fisher, g, j, d are called Il, 
"t', 1/{J, respectively. 

8 B. Widom, J. Chern. Phys. 41, 1633 (1964). 

that close to the critical point, 

(ap./aT),-dMjdT 

at any given density has the same value at the coexist-
ence curve as it does at the critical isotherm. If, near 
the critical point, the p., T isochores were effectively 
linear in the temperature interval T(p)::; T::; To then, 
indeed, (ap./ aT) p and dM / dT, and therefore also the 
difference between them, would be constant, so the 
earlier argument8 could be applied and would provide 
an alternative derivation of Eq. (15). 

However, if the homogeneity of 4> is granted, then 
the hypothesis of isochore linearity may be tested. One 
finds that at the coexistence curve, 

(ap./aT) p-dM/dT= 4>( -1, 1) (p-Po)y'-1, 

while at the critical isotherm, 

But, in general, 

so the hypothesis of isochore linearity is false. The 
earlier theory8 of the critical isotherm is, therefore, 
unnecessarily restrictive, and while it gives the correct 
degree g, it leads to the wrong coefficient in Eq. (14). 
In classical fluids 4> is constant, so the derivative 4>1 
vanishes and 4>( -1, 1) == 4>(0, 1). In that case, then, 
the earlier theory is fully correct. 

5. LOCUS (a 2p/ap2h=o IN THE T, p PLANE 

From their experimentally determined pep, T) for 
xenon, Habgood and Schneider1 located the points of 
inflection in a number of the p, p isotherms. They 
plotted the density and temperature at which these 
points of inflection occur, and obtained thereby a num-
ber of experimentally determined points on the locus 
(a2p/ap2h=0 in the T, p plane. These data are repro-
duced in Fig. 4. Because of the flatness that charac-
terizes a point of inflection, the density at which the 
isotherm has its inflection is very difficult to determine 
accurately, and this accounts for the substantial scatter 
of the plotted data. The straight line in Fig. 4 is the 
rectilinear diameter of the coexistence curve, which was 
also shown by Habgood and Schneider, and they 
pointed out that the experimentally determined locus 
(a2p/ap2)T=0 is clearly not a smooth extension of the 
rectilinear diameter. It is equally obvious that this 
locus is not asymptotic to the critical isochore at the 
critical point; yet one or the other of these two lines 
might reasonably have been expected to coincide with 
the locus in question, at least asymptotically at the 
critical point. The point of the present analysis, how-
ever, is to show that the locus is not linear at the critical 
point, but rather that it has vanishing slope there, 
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FIG. 4. locus (iJ:PliJp2h=0 in the T, p plane of xenon. 
The open Circles are pomts on the locus which were determined 
experimentally by Habgood and Schneider. The dashed curve 
has vanishipg slope at the critical point (filled circle), and is 
drawn to glve a reasonable fit to the data. The present theory 
requires the locus to be such a curve, confined to the quadrant 
p-;;i,Pe, T"2. Te. The solid line is the coexistence curve's rectilinear 
diameter, as drawn by Habgood and Schneider. 

like the dashed curve in Fig. 4, which obviously accounts 
for the data. 

Because of Eq. (3), the locus (02p/op2h=0 is the 
same as the locus 

p(02J.L/op2h+(OJ.L/oph=0. (16) 

However, (oJ.L/oph is always positive, so the locus in 
question must be con:fined to a region in which (02J.L/op2)T 
is negative. In the neighborhood of the critical point, 
as was already mentioned, J.L(p, T) - M (T) is an odd 
function of P- pc, so that (02J.L/op2h vanishes on the 
critical isochore; and it is also known that this is a 
local minimum, and not a maximum, in (op./oph. Thus 
(02p./op2) T is positive when p> Pc and negative 
P<Pe' Therefore, the locus sought is con:fined entirely 
to PSPe, which accounts for the first obvious property 
of the data in Fig. 4. 

As the critical point is approached, the locus defined 
byEq. (16) may be found from Eqs. (2), (6), and (9), 
and the assumed homogeneity of <1>, to be asymptotic 
to the curve 

x= (6Cl/Co)d/2(1-P/Pe)-d/2y. (17) 

the definitions of x and y in Eqs. (4) and (5), 
It follows that this curve is of algebraic degree d/2 in 
the T, P plane, so with the coexistence curve known to 
be approximately cubic, the locus of (02P/Op2h=0 is 
approximately of degree !, as shown schematically by 
the dashed curve in Fig. 4. Only in a classical fluid, 
where the coexistence curve is parabolic, would the 
locus in question be linear. 

It also follows from Eq. (6), and from the homo-
geneity of <1>, that as the critical point is approached 

along the locus defined by Eq. (17), 

(oJ.L/op)TI"J<I>(1, 0) xl. 

Comparing this with Eq. (11), one sees that the com-
pressibility along the locus (02p/Op2)T=0 is asymp-
totically the same as the compressibility along the 
critical isochore. Thus, a p, P isotherm is so flat near 
the critical point that it has essentially the same slope 
at its point of inflection as it does at p= pc, even though 
the density at the point of inflection is substantially 
displaced from the critical density, by an amount pro-
portional to (T - Te) 21d. 

6. PRESSURE, AND CONSTANT-VOLUME 
SPECIFIC HEAT, ON THE CRITICAL ISOCHORE 

From Eqs. (6) and (8), and the assumed homogenei ty 
of <1>, 

n=O 

where the constant coefficients cp" are derivatives of <I> 
with respect to the temperature at the critical isotherm, 

CPo = <1>(0, 1), 

CPl = <1>1(0, 1), 

cfJ2=i<l>l1(O, 1), etc. (19) 

According to Eq. (18), at any fixed density p.(p, T)-
M (T) is regular at T= Te, which is the assumption that 
led to Eq. (8) in the first place. The coefficient of x" 
in Eq. (18) is not itself a regular function of the density 
at P = Pc, so there is no suggestion that p. (p, T) - M (T) 
is regular at the critical point, but only at the critical 
isotherm away from the critical point. Such points on 
the critical isotherm, of which x=O, y= 1 is representa-
tive, lie in the interior of the one-phase region, where 
p,(p, T) is surely free of singularities. Therefore, with 
p, (p, T) - M (T) assumed nonsingular, and p. (p, T) 
surely nonsingular, at T= Te for any fixed it 
follows that "fy[ (T) is being assumed nonsingular at 
T=Te. 

That the chemical potential along the critical isochore, 
M ( T), has no singularity at T = Te, is in accord with 
the known behavior of the lattice gas model.3·9 Nothing 
is independently known, either theoretically or experi-
mentally, about the analytic nature of M (T) at T= Te 
in a real continuum fluid. Should it ever be discovered 
that M is singular at the critical temperature, then the 
hypothesis that <I>(x, 1) is regular at x=O, from which 
Eq. (8) follows, would have to be abandoned in treating 
a real continuum fluid, and the theory presented in the 
remainder of this section would then apply to the lattice 
gas models alone. 

Suppose now that 71"( T) is the pressure along the 
critical isochore, 

P(Pe, T) =7r(T). 
9 C. N. Yang and C. P. Yang, Phys. Rev. Letters 13, 303 (1964). 
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Below the critical temperature 11"( T) is the equilibrium 
vapor pressure, so it is also the pressure at the coexist-
ence curve at the temperature T, just as M (T), in 
addition to being the chemical potential on the critical 
isochore, is also the chemical potential at the coexistence 
curve. But, whereas M (T) is presumed regular at 
T= Te, the function 11"( T) is known to be singular at 
the critical temperature.9 Both 11" and d1l"/dT exist and 
are continuous at T= Te, but iJ211"/dJ'2 is discontinuous 
at T= Te in a classical fluid, has a symmetricalloga-
rithmic infinity there in the two-dimensional lattice 
gas,10 and also has infinite singularities there, the 
precise natures of which have not yet been fully ascer-
tained, in the three-dimensional lattice gas and in a 
real continuum fluid. ll Because 

dp.= -udT+p-1dp, 

where u is the entropy per unit mass, it follows that 

d2M/dJ'2= (-s/T) + (Pe-1d21r/dJ'2) , 

where s is the constant-volume specific heat (heat 
capacity per unit mass) on the critical isochore.9 Then 
with M(T) entirely free of singularities, whatever 
singularity is present in d211"/dJ'2 is simultaneously pres-
ent in the specific heat, and vice versa. 

Define a new thermodynamic function Y by 

Yep, T)=p[p.(p, T)-M(T)]-[P(p, T)-1I"(T)], 

(20) 

and note that Y vanishes both on the CrItical isochore 
and at the coexistence curve, that is, along the entire 
boundary of the unshaded region in Fig. 3. Also, be-
cause of Eq. (3), 

(aY /aph=p.(p, T) -M(T), 

so from Eqs. (2) and (4)-(6) the function Yep, T) 
is given everywhere in the one-phase region x+y>O by 

da2/d y=1" 'I12/d- 1(X+'I1) <I> (x, 'I1)d'l1, (21) 
-xl(-x) 

where 1 is the unit step function, equal to 0 when its 
argument is negative and 1 when its argument is posi-
tive. The path of integration is a line of constant x in 
the x, y plane, with '11 the varying value of Yj it starts 
at the boundary of the unshaded region, that is, at 
the critical isochore (y=O) when x>O but at the co-
existence curve (y= -x) when x<Oj and it extends 
to a general value of y in the one-phase region. The 
constant factor da2/d is made up of the two parameters 
a, d that characterize the coexistence curve according 
to Eq. (2), while the degree d of the coexistence curve 
appears again in the integrand, in the exponent of '11. 

10L. Onsager, Phys. Rev. 65,117 (1944). 
11 M. E. Fisher, Phys. Rev. 136, A1599 (1964). 

Thus, the function Y defined in Eq. (20) is, through 
Eq. (21), derivable from the basic homogeneous func-
tion <I> in the equation of state. If the right-hand side 
of Eq. (21) is now expanded about x=o for any fixed, 
positive y, one expects terms of two distinct types. 
Firstly, there would be a power series in x, with coeffi-
cients that are functions of y singular at y=Oj this being 
an expansion like that on the right-hand side of Eq. 
(18), and arising from that part of Y which, for given 
p, is nonsingular at T= Te. The function -pep, T), 
like p.(p, T), is surely regular in the one-phase region, 
and would be contained in its entirety in this series. 
Secondly, there would be one or more terms, independ-
ent of y, which are singular at x=Oj these arising from 
the singularity in 11"( T), and being such that their 
second derivatives are discontinuous, or infinite, or 
both, at x=O. 

The expansion just described may be found explicitly. 
The assumed homogeneity of <I> makes the integral in 
Eq. (21) a generalized hypergeometric function with 
analytical properties very similar to that of an ordinary 
hypergeometric function. The detailed form of the 
expansion depends on whether f+2/d is, or is not, 
exactly equal to an integer. In the present physical 
context,2.12.13 

1 <f+2/d::;2j 

so that, iff+2/d equals an integer at all, then the integer 
is 2, as in a classical fluid and in a two-dimensional 
lattice gas. 

i. f+2/d=2 

The expansion in this case is 

da2/d Y = E* cf>n-1+cf>"y2-nxn 
n=O 2-n 

where the asterisk on the summation sign means that 
the term n= 2 is omitted, and where cf>-1=0, all the 
other constant cf>n being as defined in Eqs. (8) and (19). 
The quantity Q:±: is one constant, Q+, when x>O, and 
a different constant, Q_, when x<O, these 
being given by 

Q+= -!cf>o-cf>1+ LXl {('11+1) [ <1>(17-1, 1) -cf>o- :1]_ :2}d'l1 

+ [(17+1)<1>(17-1, 1)d'l1, (23) 
o 

Q-=!cf>0+cf>1 

+ [Xl {(17- 1>[ <1>( -'11-1, 1) - cf>o+ (24) 

All the integrals are convergent. 

12B. Widorn, J. Chern. Phys. 37,2703 (1962). 
13 G. S. Rushbrooke, J. Chern. Phys. 39, 842 (1963). 
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The power series in the first line on the right-hand 
side of Eq. (22), and the term (q>l+ch)x2Iny in the 
second line, are to be ascribed to those part of Y that 
are regular at x=O for fixed, positive y. The remaining 
terms in the second line, 

[Q:I:- (c/>J.+ch) In I x IJr, 
are independent of the density, and are to be ascribed 
to the singular part of 11"( T). Their second derivative 
yields the singularity in the constant· volume specific 
heat on the critical isochore. This singularity is seen to 
be a symmetrical logarithmic infinity, with a superim-
posed finite discontinuity. 

The only known examples in which it is certain that 
f+ 2/ d = 2 are the classical fluid and the two-dimensional 
lattice gas. In the classical fluid cf> is a constant, so 
¢1 = ¢2= 0; that is, the coefficient of the singular In I x I 
term vanishes, and only the finite discontinuity remains 
as the &pecific-heat singularity. That the specific-heat 
singularity in that case is just a finite discontinuity, 
is well known. 

In the two-dimensional lattice gas the singularity is 
known10 to be just the symmetrical logarithmic infinity, 
without the superimposed finite discontinuity. In that 
case, therefore, it is quite certain that the basic (but 
unknown) homogeneous function cf> in the equation of 
state satisfies a special symmetry condition leading to 
the equality of Q+, given by Eq. (23), and Q_, given 
by Eq. (24). The condition which cf> must satisfy for 
this to be the case is most simply expressed, not in 
terms of cf> itself, but in terms of the related function 
'lr defined in Eq. (10). The condition for Q+=Q_ is then 

/"'[(1+71)'lr(-I1-1, 1) +(1-71)'lr( -1]-1, 1) 
o 

The integral is convergent. The integrand is an even 
function of 71, so the integral may be extended from 
-00 to 00. Thefunction'l1(x, y) is undefined at x+y=O, 
but at just such a point in the range of integration, the 
factor by which 'lr is multiplied vanishes. 

From the present point of view, the fact that the 
singularity in the specific heat is a symmetrical loga-
rithmic infinity with a superimposed finite discontinuity, 
is a universally occurring consequence of f+2/d= 2. 
The logarithmic term is missing in a classical fluid only 
because of the "accidental" vanishing of its coefficient, 
while the finite discontinuity is missing in the two-
dimensional lattice gas only because of an "accidental" 
symmetry in the function cf>. This leads one to conjecture 
that the symmetrical logarithmic infinity with super-
imposed finite discontinuity that characterizes the 
specific heat of helium at its lambda point,l4 may have 
something equivalent to Eq. (21) as its mathematical 
origin. 

14 W. M. Fairbank, M. J. Buckingham, and C. F. Kellers, Bull. 
Am. Phys. Soc. (II) 2, 183 (1957). 

ii. 1<f+2/d<2 
The expansion in this case is 

where again ¢-I=O. The quantity R:I: is one constant, 
when X>O, and a different constant, R_, when x<o, 

these constants being given by 

R __ cf>o + cf>1 cf>1+cf>2 
+- f+2/d f+2/d-1 f+ 2/d-2 

-I- (71+1)[ cf>(7)-I, 1) -cf>o-:IJ- :2}d7) 

+ /\J+2ld- 2(71+ 1) cf>(71-1, 1)d71, (26) 
o 

L __ ¢O+¢1 cf>1 +¢2 
- f+2/d+ f+2/d-1 f+ 2/d-2 

+ ["71J+2Id-2{(71-1>[ cf>(-1]-r, 

(27) 
All the integrals are convergent. 

The power series in Eq. (25) is to be ascribed to those 
parts of Y that are regular at x= ° for fixed, positive y. 
The remaining term, 

is independent of the density, and is to be ascribed to 
the singular part of 11"( T). Its second derivative yields 
the singularity in the constant-volume specific heat on 
the critical isochore. This singularity is seen to be an 
unsymmetrical inverse-power infinity, the power in ques-
tion being 2- (f+ 2/ d). It may happen that the singu-
larity in the specific heat is accidentally symmetrical 
about the critical temperature, that is, that cf> is such as 
to make in Eq. (26) equal to R;- in Eq. (27). 

If a is the power of I x 1-1 with which the specific 
heat on the critical isochore diverges at x=O, and if 
one agrees formally to let a=O correspond to the case 
of a logarithmic infinity, or finite discontinuity, or both, 
then the results of both Cases (i) and (ii) may be 
summarized by 

f+ 2/d+a=2. (28) 

One also, in this theory, necessarily finds the same a 
characterizing the specific heat singularity above the 
critical temperature as below it. 

If Cv is the constant-volume heat capacity and !lC. 
is the discontinuity in Cv that accompanies the crossing 
of the coexistence curve, at the temperature T, from 
the one-phase region to the two-phase region; and if 
a* is the power of (T.- T)-1 with which !lC. diverges 
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as T approaches Tc; then, necessarily,t2 

f+2/d+a*= 2. 
Therefore, from Eq. (28), a=a*, that is, in the present 
theory the specific heat on the critical isochore, and 

are characterized by the same divergence index. 
Equation (28) is also characteristic of Fisher's model,2 
and it corresponds to the Rushbrooke inequaIity!3 
holding as an equality. From Eqs. (15) and (28) it 
follows that in the present theory the Griffiths in-
equality!6 also holds as an equality. 

That it is the same a which determines the divergence 
of the specific heat both above and below the critical 
temperature, is a necessary consequence of the assumed 
homogeneity of <P. This is similar to the circumstance 
observed in Sec. 3, where the homogeneity of <P required 
that the compressibility index f be the same above and 
below the critical temperature. Just as there is some 

15 R. B. Griffiths, Phys. Rev. Letters 14,623 (1965). 

evidence2.6 that the two 1's may, in reality, differ 
slightly in three-dimensional systems, so also there is 
some evidencell that in three· dimensional systems the 
two a's may differ slightly. However, there is no sugges-
tion that either a is far from 0; so Case (i), with its 
logarithmic singularity and superimposed discontinuity 
probably alway!:> provides an adequate description of 
the behavior of the specific heat at the critical point. 
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The molecular alignment has been studied for anisal-p-aminoazobenzene in the presence of external 
magnetic and ac electric fields. Measurements of the dielectric loss at a microwave frequency of 24 kMc/sec 
were used to indicate the extent of the molecular alignment. For the external fields parallel to each other, 
the degree of molecular alignment which could be obtained for a 370 kc/sec electric field was the same 
as that which could be produced by a magnetic field. For the magnetic and electric fields perpendiCUlar 
to each other, the ratio of E/H corresponding to a random orientation of the molecules in the plane of E 
and H was obtained. As the magnetic field was changed from 500 to 3000 G the ratio of E/H remained 
constant within the limits of experimental error. The value obtained for E/H could not be explained by 
assuming that the processes responsible for the molecular alignment were associated with only the anisotropy 
in the dielectric constant and the permeability. 

INTRODUCTION 

PREVIOUS work! has indicated that the degree of 
molecular alignment which could be produced by 

an electric field in a liquid crystal with positive di-
electric anisotropy was comparable to that produced 
by a magnetic field. The primary object of this work is 
to make a more accurate comparison between electric 
and magnetic fields for producing molecular alignment 
and to investigate the molecular alignment when the 
magnetic and electric fields are at right angles to each 

* This work was supported by the U.S. Air Force Office of 
Scientific Research Grant AF-AFOSR 605-64. 

1 E. F. Carr, J. Chern. Phys. 42,738 (1965). 

other. Previous work! on anisal-p-aminoazobenzene in-
volved coaxial and ordinary waveguide cells so that 
external magnetic and electric fields could not act 
simultaneously. 

Freedericksz and Zwetkoff2 investigated some liquid 
crystals in the presence of external magnetic and electric 
fields acting simultaneously. They studied p-azoxy-
anisole, p-acetoxybenzalazin, dibenzalbenzedin, and 
anisilidenbenzidin. Using optical techniques they were 
able to compare the effectiveness of electric and mag-
netic fields in producing molecular alignment. 

2 V. Freedericksz and V. Zwetkoff, Acta Physicochim. URSS 
3, 895 (1935). 
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