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PY 895 Homework 3. Fall 2024 Due: Tuesday November 5th

1. Practice with scaling

Consider a free energy for a complex scalar field ψ coupled to a gauge field Ai,

F (ψ,Ai) =

∫
dxd

1

4
FijF

ij + |∂iψ − ieAiψ|2 + µ2|ψ|2 (1)

with Fij = ∂iAj − ∂jAi.

(a) What is the critical dimension dc such that the coupling between the scalar and gauge field is relevant for d < dc
and irrelevant for d > dc? Speculate on what you think happens when d = dc.

(b) If one were to add a coupling g|ψ|4 to this free energy, explain how the coupling g scales and when it is relevant
and irrelevant?

2. Practice with RG using epsilon expansion I. Derive the RG equation to first order in ε = d− 4 for the On
vector model (which generalizes the Ising model so that there are now n scalar fields). The free energy for this model
is given by

F =

∫
dx

[∑

i

r

2
φ2i +

1

2
(∇φi)2

]
+ u(

∑

i

φ2i )
2, (2)

where i = 1, . . . , n.
(a) Show that the RG equations take the form

dr

dl
= 2r + 4Kd(n+ 2) u

1+r

du

dl
= εu− 4Kd(n+ 8) u2

(1+r)2 , (3)

where Kd angular integral in spherical coordinated in d-dimensions.
(b) Show that uthe there are two fixed points, the Gaussian fixed point with r = u = 0 and a new Wilson-Fisher fixed
point with

u∗ = ε
4(n+8)Kd

+O(ε2)

r∗ = − 1
2
n+2
n+8ε+O(ε2) (4)

and show that the scaling dimensions of the two relevant fields are

λt = 2− n+ 2

n+ 8
ε

λu = −ε (5)

(c) Draw a digram of the RG flows for this system.

(d) Calculate the critical exponents for this system.

3. Effect on anisotropy
Consider a system describe by two coupled Ising order parameters with the Landau free energy

f =
1

2
r(φ21 + φ22)− 1

2
g(φ21 − φ22) + u(φ21 + φ22)2. (6)

Notice that g 6= 0 corresponds to field that breaks vector symmetry of φ = (φ1, φ2).
(a) Argue that for small u, the Mean Field phase diagram for this system in the r, g plane takes the form shown in
the Figure below There is a first order line along g = 0, r < 0 separating the phase with φ1 6= 0 and φ2 = 0 from the
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FIG. 1: Mean-field phase diagram

phase where φ1 = 0 and φ2 6= 0. These two distinct second order phase transitions meet at the point r = 0 and g = 0
which is the bicritical point.
(b) Now consider the generalized free energy

F =

∫
dx

[
2∑

i=1

ri
2
φ2i +

1

2
(∇φi)2

]
+ u(

2∑

i=1

φ2i )
2, (7)

where r1 = r+ g and r2 = r− g. Show that to leading order in ε that one can write the RG equations for the r1 and
r2 as

dr1
dl

= 2r1 + 4Kdu

(
3

(1 + r1)
+

1

(1 + r2)

)

dr2
dl

= 2r2 + 4Kdu

(
3

(1 + r2)
+

1

(1 + r1)

)
(8)

(c) Argue (without calculating) that we still expect there be a non-trivial Wilson-Fisher fixed point with r1 = r∗1 ,
r2 = r∗2 and u = u∗ where r∗1 , r

∗
2 , andu

∗ are all order ε.

(d) Let us linearize the equations above around this fixed point, so that r1 = r∗1 + δr1, r2 = r∗2 + δr2, and u = u∗+ δu.
Show that if we define δr = δr1 + δr2 and δg = δr1− δr2 that linearized RG equations (ignoring terms O(ε2)) become

dδr

dl
= [2− 16Kdu

∗]δr

dδQ

dl
= [2− 4Kdu

∗]δQ (9)

(e) Use the equation above to calculate scaling exponent for the anisotropy coupling g.

4. Tensor network renormalization. [Optional]

Consider the nearest-neighbor Ising model on the triangular lattice. The reference for the strategy we will
follow here is by Levin and Nave (PRL 2007). Please look and read this The goal is to work through the arguments
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in this paper.

(a) Show that the partition function may be written as the contraction of a tensor network:

Z = Tre−βH = trTTTTTTT · · · =
∑

ijklmno···

TijkTklmTmno · · · (10)

where the tensors Tijk are 3-index objects (tensors) which depend on the couplings, and which are associated with
sites of the dual honeycomb lattice. They have one index for each of the incident edges of the honeycomb lattice.
Find a set of Tijk, ijk · · · = 0, 1 which makes this equation true, for h = 0.

(b) [slightly harder] Find a set of T s which works for nonzero h.

(c) [slightly harder still] Once we’ve written Z in this form, we can do a coarse- graining procedure in two steps. First
consider a pair of neighboring honeycomb lattice sites, associated with two tensors

∑
e TabeTecd. Regard this object

as a D2 ×D2 matrix with block indices ac and bd. By doing a singular-value decomposition of this matrix, rewrite
the product as:

∑

e

TabeTecd ≡
∑

f

SacfSfbd (11)

In diagrams, this looks like:

where the tensors Tijk are 3-index objects (tensors) which depend on the couplings,

and which are associated with sites of the dual honeycomb lattice. They have one

index for each of the incident edges of the honeycomb lattice. Find a set of Tijk,

ijk · · · = 0, 1 which makes this equation true, for h = 0.

(b) [slightly harder] Find a set of T s which works for nonzero h.

(c) [slightly harder still] Once we’ve written Z in this form, we can do a coarse-

graining procedure in two steps. First consider a pair of neighboring honeycomb

lattice sites, associated with two tensors
P

e TabeTecd. Regard this object as a D2⇥
D2 matrix with block indices ac and bd. By doing a singular-value decomposition

of this matrix, rewrite the product as:
X

e

TabeTecd ⌘
X

f

SacfSfbd.

In diagrams, this looks like:

=

Doing this for a suitable collection of links
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FIG. 2: Tensor RG scheme



4

We are left with triangles of Ss. The second step of the coarse-graining scheme is to define a new T by

∑

abc

SkacSjcbSiab = T ′kij (12)

or in pictures by: This gives back an Ising model on the triangular lattice with a larger lattice spacing.

we are left with triangles of Ss. The second step of the coarse-graining scheme is

to define a new T by X

a,b,c

SkacSjcbSiab = T 0
kij

or in pictures by:

=

This gives back an Ising model on the triangular lattice with a larger lattice

spacing.

Implement this RG scheme numerically. Notice that the approximation comes in

when we throw away singular values in step 1 (if we do not, the range of indices

of the tensors (called the bond dimension) must grow with the number of steps).

Compute the magnetization as a function of temperature.
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(d) [Optional] Implement this RG scheme numerically. Notice that the approximation comes in when we throw away
singular values in step 1 (if we do not, the range of indices of the tensors (called the bond dimension) must grow with
the number of steps). Compute the magnetization as a function of temperature.


