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Abstract

Restricted Boltzmann Machines (RBMs) are a class of generative neural network that are
typically trained to maximize a log-likelihood objective function. We argue that likelihood-
based training strategies may fail because the objective does not sufficiently penalize models
that place a high probability in regions where the training data distribution has low proba-
bility. To overcome this problem, we introduce Boltzmann Encoded Adversarial Machines
(BEAMs). A BEAM is an RBM trained against an adversary that uses the hidden layer
activations of the RBM to discriminate between the training data and the probability dis-
tribution generated by the model. We present experiments demonstrating that BEAMs
outperform RBMs and GANs on multiple benchmarks.

Keywords: Generative Adversarial Networks, Restricted Boltzmann Machines

1. Introduction

A machine learning model is generative if it learns to draw new samples from an unknown
probability distribution. Generative models have two important applications. First, genera-
tive models enable simulations of systems with unknown, or very complicated, mechanistic
laws. For example, generative models can be used to design molecular compounds with
desired properties Kadurin et al. (2017). Second, in the process of learning to generate
samples from a distribution a generative model must learn a useful representation of the
data. Therefore, generative models enable unsupervised learning with unlabeled data (Hin-
ton and Sejnowski (1999)).

The last decade has produced revolutionary advances in machine learning, largely due
to progress in training neural networks. Much of this progress has been on discriminative
models rather than generative models. Still, neural generative models such as Restricted
Boltzmann Machines (RBMs) (Hinton and Salakhutdinov (2006); Salakhutdinov and Hin-
ton (2009)), Variational Autoencoders (VAEs) (Kingma and Welling (2013); Rolfe (2016);
Kuleshov and Ermon (2017)), and Generative Adversarial Networks (GANs) (Goodfellow
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(a) Generative Adversarial Network (b) Boltzmann Encoded Adversarial Machine

Figure 1: Architecture of a BEAM. (a) The generator of a GAN is a feed-forward neural
network that transforms random noise into an image, and the adversary is a feed-forward
neural network classifies the input image. (b) A BEAM uses an RBM generator trained to
minimize an objective function that combines the negative log-likelihood and an adversarial
loss. The adversarial loss is computed by a critic trained on the activations of the hidden
units of the generator.

et al. (2014)) have demonstrated promising results on a number of problems. GANs, in
particular, are generally regarded as the current state-of-the-art (Karras et al. (2017)).

Unlike most other generative models, GANs are trained to minimize a distance between
the data and model distributions rather than to maximize the likelihood of the data un-
der the model (Arjovsky and Bottou (2017); Nowozin et al. (2016)). As a result of the
form of this distance function, and because they are built on feedforward neural networks,
typical formulations of GANs can be trained using standard backpropogation (Rumelhart
et al. (1986)). However, GANs have their drawbacks. GAN training can be difficult and
unstable (Arjovsky and Bottou (2017); Arjovsky et al. (2017a)). Moreover, although one
of the main advantages of GANs is that they can be trained end-to-end using backpro-
pogation, recent state-of-the-art approaches have used a layerwise training strategy (Karras
et al. (2017)) reminiscent of methods used to train Deep Boltzmann Machines (Hinton and
Salakhutdinov (2012)).

The popularity of RBM-based generative models, including Deep Belief Networks and
Deep Boltzmann Machines, has faded in recent years. The charge is that other approaches,
especially GANs, simply work better in practice. However, RBM based architectures do
have some advantages. For example, RBMs can be easily adapted for use on multimodal
data sets (Srivastava and Salakhutdinov (2012)) and on time series (Taylor et al. (2007);
Taylor and Hinton (2009); Sutskever et al. (2009)) without major modifications, and RBMs
allow one to perform both generation and inference with a single model. Given that RBMs
and derived models generally have sufficient representational power to learn essentially any
distribution (Le Roux and Bengio (2008)), the difficulties must arise during training.

In this work, we take inspiration from GANs to propose a new method for training
RBMs. We call the resulting model a Boltzmann Encoded Adversarial Machine (BEAM;
see Figure 1). While the adversarial concept used in BEAMs is similar to GANs, there
are some distinct features. The primary one is that the adversary operates on the hidden
layer activations of the RBM. Because the latent variable representation from the RBM is a
consolidated representation of the visible units, simple adversaries – even ones that do not
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need to be trained – are often sufficient to obtain good results. This makes training simple
and stable. Furthermore, we obtain our best results by optimizing a convex combination
of the log-likelihood and adversarial objectives. The component of the objective from the
log-likelihood allows the training data to play an active role in determining the gradient
(while it only plays a passive role as part of the discriminator in the adversarial gradient,
as it also does in GANs).

BEAMs achieve excellent results on a variety of applications, from low dimensional
benchmark datasets to higher dimensional applications such as image generation, outper-
forming GANs of similar or higher complexity. These results indicate that BEAMs provide
a powerful approach to unsupervised learning.

This paper is structured as follows. We begin with a brief review of RBMs, then discuss
some problems with maximum likelihood training of RBMs and go on to define and describe
BEAMs. Finally, we present the results of experiments comparing RBMs, GANs, and
BEAMs and discuss.

2. Theory and Methods

2.1 Restricted Boltzmann Machines

An RBM is an energy based model with two layers of neurons. The visible units v describe
the data and the hidden units h capture interactions between the visible units. The joint
probability distribution p(v,h) = Z−1e−E(v,h) is defined by an energy function:

E(v,h) = −
∑
i

ai(vi)−
∑
µ

bµ(hµ)−
∑
iµ

Wiµ
vi
σ2i

hµ
ε2µ

(1)

with a partition function Z =
∫

dvdh exp
(
−E(v,h)

)
. This formulation, where ai(·) and

bµ(·) are generic functions and σi and εi are scale parameters, is a flexible way of writing
a generic RBM that encompasses common models such as Bernoulli RBMs and Gaussian
RBMs. The key feature of an RBM is the conditional independence of the layers, i.e.
p(v|h) =

∏
i pi(vi|h) and p(h|v) =

∏
µ pµ(hµ|v), which allows one to sample from the

distribution using block Gibbs sampling.
RBMs are typically trained to maximize the log-likelihood L = 〈log

∫
dh p(v,h)〉data

using algorithms such as Persistent Contrastive Divergence (PCD) (Tieleman (2008); Hinton
(2006)). The derivative of the log-likelihood with respect to a model parameter θ takes the
form (Ackley et al. (1985)):

∂θL = 〈−∂θE(v,h)〉data − 〈−∂θE(v,h)〉model . (2)

The two averages are computed using samples from the data set and samples drawn from
the model by Gibbs sampling, respectively. We refer the reader to foundational works such
as Hinton (2010) for more detail.

2.2 The Problem with Maximum Likelihood

A generative model defined by parameters θ describes the probability of observing a visible
state v. Therefore, training a generative model involves minimizing a distance between

3



Fisher, Smith, and Walsh

Figure 2: Comparison of distances between distributions. We consider the distance
between p(v), a mixture of two Gaussian distributions separated by a distance ∆, and q(v),
a single Gaussian distribution with the same mean and standard deviation as p(v). The
forward KL divergence DKL(p ‖ q) increases slowly as ∆ increases, while the reverse KL
divergence DKL(q ‖ p) and discriminator divergence DD(p ‖ q) increase rapidly.

the distribution of the data, pd(v), and the distribution defined by the model, pθ(v). The
traditional algorithms for training RBMs maximize the log-likelihood, which is equivalent
to minimizing the forward Kullback-Liebler (KL) divergence (Kullback and Leibler (1951)):

DKL(pd ‖ pθ) =

∫
dv pd(v) log

(
pd(v)

pθ(v)

)
. (3)

To illustrate some problems with maximum likelihood, we will compare the forward KL
divergence to the reverse KL divergence,

DKL(pθ ‖ pd) =

∫
dv pθ(v) log

(
pθ(v)

pd(v)

)
. (4)

The forward KL divergence, DKL(pd ‖ pθ), accumulates differences between the data and
model distributions weighted by the probability under the data distribution. The reverse KL
divergence, DKL(pθ ‖ pd), accumulates differences between the data and model distributions
weighted by the probability under the model distribution. As a result, the forward KL di-
vergence strongly punishes models that underestimate the probability of the data, whereas
the reverse KL divergence strongly punishes models that overestimate the probability of
the data. Figure 2 illustrates the difference between the metrics on a simple mixture of two
Gaussians.

There are a variety of sources of stochasticity that enter into the training of an RBM.
Mandt et al. (2017) showed that stochastic gradient descent with a constant stepsize samples
from an Ornstein-Uhlenbeck process that approximates the posterior distribution of the
model parameters. Moreover, the moments used to compute the model gradients have
to be estimated using random sampling by Markov Chain Monte Carlo methods. The
stochasticity implies that different models may become statistically indistinguishable if the
differences in their log-likelihoods are smaller than the errors in estimating them. This
creates an entropic force because there will be many more models with a small DKL(pd ‖ pθ)
than there are models with both a small DKL(pd ‖ pθ) and DKL(pθ ‖ pd). As a result, training
an RBM using a standard approach with PCD decreases DKL(pd ‖ pθ) (as it should) but
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tends to increase DKL(pθ ‖ pd). This leads to distributions with spurious modes and/or to
distributions that are oversmoothed.

2.3 Advantages of Adversarial Training

One can imagine overcoming the limitations of maximum likelihood training of RBMs by
minimizing a combination of the forward and reverse KL divergences. Unfortunately, com-
puting the reverse KL divergence requires knowledge of pd, which is unknown. Therefore,
we introduce a new type of f-divergence that we call a discriminator divergence

DD(pd ‖ pθ) ..= −
∫

dv pθ(v) log

(
2pd(v)

pd(v) + pθ(v)

)
, (5)

Notice that the optimal discriminator between pd and pθ will assign a posterior probability

p(data|v) =
pd(v)

pd(v) + pθ(v)
(6)

that the sample v was drawn from the data distribution. Therefore, we can write the
discriminator divergence as

DD(pd ‖ pθ) = − log 2−
∫

dv pθ(v) log (p(data|v)) (7)

to show that it measures the probability that the optimal discriminator will incorrectly
classify a sample drawn from the model distribution as coming from the data distribution.

The discriminator divergence belongs to the class of f-divergences defined as Df (p||q) ..=∫
dxq(x)f(p(x)/q(x)). The function that defines the discriminator divergence is

f(t) = log

(
t+ 1

2t

)
(8)

which is convex with f(1) = 0 as required. It is easy to show that the discriminator
divergence upper bounds the reverse KL divergence:

log 2 +DD(pd ‖ pθ) =

∫
dv pθ(v) log

(
1 +

pθ(v)

pd(v)

)
≥ DKL(pθ ‖ pd) .

We introduce this relationship because we usually do not have access to pd(v) directly
and cannot compute the reverse KL divergence. However, we can train a discriminator to
approximate Equation 6 and, therefore, can approximate the discriminator divergence.

A generator that is able to trick the discriminator so that p(data|v) ≈ 1 for all samples
drawn from pθ will have a low discriminator divergence. The discriminator divergence
closely mirrors the reverse KL divergence and strongly punishes models that overestimate
the probability of the data (Figure 2). Therefore, as with GANs, we hypothesized that
it may be possible to improve the training of RBMs using an adversary. Some previous
research in this direction includes the Wasserstein RBM (Montavon et al. (2016)) and
Associate Adversarial Networks (Arici and Celikyilmaz (2016)).
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2.4 Boltzmann Encoded Adversarial Machines (BEAMs)

We introduce a method – called a Boltzmann Encoded Adversarial Machine (BEAM) – for
training an RBM against an adversary. A BEAM minimizes a loss function that is a com-
bination of the negative log-likelihood and an adversarial loss. The adversarial component
ensures that BEAM training performs a simultaneous minimization of both the forward and
reverse KL divergences, which prevents the oversmoothing problem observed with regular
RBMs.

The architecture of a BEAM is very simple, and is illustrated in Figure 1. The RBM
(the generative model) is trained with an objective,

C = −γL − (1− γ)A , (9)

that includes a contribution from an adversarial term, A. In theory, the adversary could be
any model that can be trained to approximate the optimal discriminator.

We take inspiration from GANs and train the RBM against a critic function. However,
we use a critic function T (h) that acts on the hidden unit activations rather than the visible
units. That is, the adversary uses same architecture and weights as the RBM, and encodes
visible units into hidden unit activations. These hidden unit activations, computed for both
the data and fantasy particles sampled from the RBM, are used by a critic to estimate the
distance between the data and model distributions. Thus, the BEAM adversarial term is

A ..=

∫
dh pθ(h)T (h) . (10)

This term has a straightforward interpretation: for any sensible critic, it is minimizing the
distance between the marginal distributions of the hidden units under the data and model
distributions.

Maximizing the accuracy of the discriminator between the data and model distributions
(on the hidden units) would lead to the optimal discriminator:

p(data|h) =
pd(h)

pd(h) + pθ(h)
(11)

where pd(h) ..=
∫
dvpθ(h|v)pd(v). Therefore, we could directly minimize the discriminator

divergence by defining the critic as T̃ (h) = log 2 + log(p(data|h)). In practice, however, we
found that we obtain better results with a linear critic:

T (h) = 2 p(data|h)− 1 . (12)

Therefore, all experiments that follow use a linear critic. We use the 2p − 1 form so that
the sign of the critic indicates the best guess of the optimal discriminator, but this choice
is not important since it only ends up scaling the derivative by a factor of two.

In practice, of course, we don’t have access to the optimal discriminator. The usual
remedy for GANs is to co-train a neural network to approximate it. That is, the min-max
game between the generator and discriminator can be recast as minimizing a bound on a
particular f-divergence (Nowozin et al. (2016)). In our case, we hypothesized that a simple
approximation to the optimal discriminator will be sufficient because are working with the
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hidden unit activities of the RBM generator rather than the visible units. Therefore, we
simply approximate the optimal critic using nearest neighbor methods. In our examples,
we simply store the data and fantasy particles from the previous minibatch and use a
distance-weighted nearest neighbor approximation.

A BEAM can be trained using stochastic gradient descent by computing model averages
from persistent fantasy particles in the same way as with maximum likelihood training of
an RBM. The derivative of the adversarial term with respect to a model parameter θ is

∂θA = Covθ[T (h),−∂θE(v,h)] , (13)

where the covariance is computed with respect to the model distribution pθ. A derivation of
this result is presented in the Supplementary Material. It is also possible to define a critic
on the visible units directly, or to use some other method other than a nearest neighbor
approximation. We present some comparisons of BEAMs with other critics in Appendix 4.

In the context of most formulations of GANs – which use feed-forward neural networks
for both the generator and the discriminator – one could say that BEAMs use the RBM as
both the generator and as a feature extractor for the adversary. This double-usage allows
us to reuse a single set of fantasy particles for multiple steps of the training algorithm.
Specifically, we maintain a single set of M persistent fantasy particles that are updated k
times per gradient evaluation. The same set of fantasy particles are used to compute the
log-likelihood derivative (Equation 2) and the adversarial derivative (Equation 13). Then,
these fantasy particles replace the fantasy particles from the previous gradient evaluation
in the nearest neighbor estimates of the critic value. Reusing the fantasy particles for each
step means that BEAM training has roughly the same computational cost as training an
RBM with PCD.

2.5 Nearest Neighbor Critics

Suppose X = {x1, . . . , xN} are i.i.d. samples from an unknown probability distribution
with density function p(x) in Rn. One simple way to estimate p(x) at an arbitrary point
x is to make use of a k-nearest-neighbor estimate. Specifically: fix some positive integer k
and compute the k nearest neighbors to x in X. Define dk to be the distance between x
and the furthest of the nearest-neighbors. Then estimate the density p(x) to be the density
of the uniform distribution on a ball of radius dk. That is,

p(x) = k
( π

n
2

Γ(n2 + 1)
dnk

)−1
. (14)

Now denote by pθ(x) and pd(x) the unknown densities of the model and data distribu-
tions respectively. Suppose X = {x1, . . . , x2N} is a collection of i.i.d. samples exactly half
of which are drawn from pθ and half from pd. We can use the same idea to estimate the
ratio pd

pd+pθ
(x). Fix some k and compute the k nearest neighbors in X, denoting by dk the

distance to the furthest. Then we estimate the denominator as in (14). Let j be the num-
ber of nearest neighbors that come from pd as opposed to pθ. The numerator then can be
estimated as uniform on the same size ball with only j/k of the density of the denominator.
As a result the desired estimate is simply the ratio j/k.
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We put this concept in action by defining the nearest-neighbor critic. Suppose that
we have cached a minibatch of samples from the model and a minibatch of samples from
the training dataset. For any new sample x we can compute the k-nearest neighbors from
the joined minibatches for some fixed k – we generally use k = 5 in examples. Then the
nearest-neighbor critic is defined as the function that assigns to x the ratio j/k, where j
is the number of nearest neighbors originating from the data minibatch as opposed to the
model minibatch.

TNN (x) ..= 2
j

k
− 1 . (15)

The distance-weighted nearest-neighbor critic is a generalization that attempts to add
some continuity to the nearest-neighbor critic by applying an inverse distance weighting to
the ratio count. Specifically, let {d0, . . . , dk} be the distances of the k-nearest neighbors
in X to some x, with {d0, . . . , dj} the distances for the neighbors originating from the
data samples and {dj+1, . . . , dk} the distances for the neighbors originating from the model
samples. Then distance-weighted nearest-neighbor critic is defined as:

TDNN (x) ..= 2

∑j
i=1

1
di+ε∑k

i=1
1

di+ε

− 1 , (16)

where ε regularizes the inverse distance.

2.6 Temperature Driven Sampling

Finally, we use a simple trick to improve the mixing of the RBM while sampling the fantasy
particles. We assign each fantasy particle an independently sampled inverse temperature
β and define the probability as p(v,h) = Z−1e−βE(v,h). The inverse temperature is drawn
from an autoregressive Gamma process (Gouriéroux and Jasiak (2006)) with mean 1, stan-
dard deviation < 1, and autocorrelation > 0. For applications in this paper, we set the
standard deviation to around 0.9 and the autocorrelation coefficient to 0.9, though specific
values are noted in the Appendix. The intuition behind this algorithm is similar to parallel
tempering (Swendsen and Wang (1986); Geyer (1991); Desjardins et al. (2010b); Brakel
et al. (2012); Desjardins et al. (2010a, 2014)). When β is small, the fantasy particles will
be able to explore the space quickly. Setting the mean to β = 1 ensures that the sampled
distribution stays close to the true distribution, while setting the autocorrelation close to 1
ensures that the inverse temperatures evolve slowly relative to the fantasy particles, which
can remain in quasi-equilibrium. Unlike parallel tempering, this driven sampling algorithm
does not sample from the exact distribution of the RBM. Instead, the driven sampling al-
gorithm samples from a similar distribution that has fatter tails (see Figure 3). However,
it adds little computational overhead and generally improves training outcomes.

2.7 Using KL Divergences to Monitor Training

We monitor both the forward and reverse KL divergences during training. Following Wang
et al. (2009), let {Xi}ni=1 and {Yi}mi=1 be samples drawn from densities p and q. Let ρn(i)
be the distance from Xi to its nearest neighbor in {Xj}j 6=i, and νm(i) be the distance from
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Figure 3: Sampling with a driven sampler. Comparison of temperature driven sampling
(TDS) to regular Gibbs sampling. The RBMs have a single Gaussian visible layer and a
softmax hidden layer with 3 hidden units that encode the modes of a mixture of 3 Gaussians.
The standard deviation of the inverse temperature was set to 0.9 for the driven sampler.

Xi to its nearest neighbor in {Yi}. Then,

DKL(p||q) ≈ d

n

n∑
i=1

νm(i)

ρn(i)
+ log

m

n− 1
(17)

where d is the dimension of the space (i.e., the number of visible units). The reverse
KL divergence can be computed by reversing the identities of X and Y . In practice, we
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Figure 4: Comparison of generative models on mixtures of Gaussians. Three
datasets constructed from mixtures of Gaussians: a 1-D mixture of two Gaussians, a 2-D
mixture of eight Gaussians arranged in a circle, and a 2-D mixture of Gaussians arranged
on a 5x5 grid. Distributions of fantasy particles from a standard RBM, a vanilla GAN,
and a Wasserstein GAN (WGAN) are compared to distributions of fantasy particles from
a RBM trained with a driven sampler and to a BEAM.

monitor the KL divergences using a held-out validation set consisting of 10% of the data.
For computational reasons, we compute the KL divergences on minibatches of the validation
set and then average the values.

3. Results

We present empirical results on BEAMs using some datasets that are commonly used to
test generative models. We aim to demonstrate four key results:

1. RBMs produce poor results because the reverse KL divergence increases during train-
ing even though the forward KL divergence decreases.

2. BEAMs trained with a driven sampler minimize both the forward and reverse KL
divergences, leading to better results than RBMs trained by standard methods.

3. BEAMs produce results that are comparable to, or better than, GANs on multiple
benchmarks.

4. The simplicity of the adversary ensures that BEAM training is stable.

3.1 Mixture Models

Our first set of experiments are on a series of 1 and 2-dimensional Mixtures of Gaussians
(MoGs) similar to those used in the Wasserstein GAN paper (Arjovsky et al. (2017b)). We
compare the results from five different generative models. Models from the literature include
a vanilla GAN (Goodfellow et al. (2014); greydanus (2017)), a Wasserstein GAN (Arjovsky
et al. (2017a,b); Arjovsky (2017)), and a Gaussian-Bernoulli RBM (Cho et al. (2013)). Our
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Figure 5: Training a BEAM on a 2-D Mixture of Gaussians (MoGs) arranged in a
5x5 grid. Top panel shows estimates of the forward KL divergence, DKL(pd ‖ pθ), and the
reverse KL divergence, DKL(pθ ‖ pd), per training epoch. Right panels show distributions
of fantasy particles at various epochs during training.

models include a Gaussian-Bernoulli RBM trained with the driven sampler and a Gaussian-
Bernoulli BEAM with equally weighted likelihood and adversarial losses. All of the RBM
based models have the exact same architecture. Details on the model architectures and
training parameters are given in the Appendix.

Figure 4 shows a comparison of fantasy particles from each of the generative models
along with the corresponding data distributions. A standard RBM trained using persistent
contrastive divergence with 100 update steps per gradient evaluation fails to learn that
the data distribution has multiple modes. Instead, it spreads the model density across
the support of the data distribution. The vanilla GAN and the WGAN are both able
to learn the 1-D mixture of two Gaussians and the 2-D mixture of eight Gaussians, but
fail on the 2-D MoGs arranged in a 5x5 grid. Surprisingly, our results with the vanilla
GAN are significantly better than those reported in the literature Arjovsky et al. (2017b)
and are comparable in quality to the results with WGAN. Training the Gaussian-Bernoulli
RBM using the driven sampler leads to improvements over the standard RBM. Notably,
the BEAM is the only model that learns all three datasets.

Training an RBM as a BEAM decreases both the forward and reverse KL divergences,
as shown in Figure 5 for the MoGs arranged in a 5x5 grid. In the early stages of training,
the BEAM fantasy particles are spread out across the support of the data distribution –
capturing the modes near the edge of the grid. These early epochs resemble the distributions
obtained with GANs, which also concentrate density in the modes near the edge of the grid.
As training progresses, the BEAM progressively learns to capture the modes near the center
of the grid.

11
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3.2 MNIST

The MNIST dataset of handwritten images (LeCun and Cortes (2010)) is one of the most
widely used benchmarks in machine learning. We present results on MNIST with binary
(black and white) images and with continuous (grayscale) images.

3.2.1 Binary MNIST

Most work on RBMs has focused on learning distributions of binary data using Bernoulli
visible layers. Therefore, we present our results on binary MNIST before moving on to
continuous MNIST. We compare three different generative models on binary MNIST: a
Bernoulli-Bernoulli RBM, a Bernoulli-Bernoulli RBM trained using temperature driven
sampling, and a Bernoulli-Bernoulli BEAM. Details of the architectures and training hy-
perparameters are provided in the Appendix.

One thing of note is that we train the BEAM in two phases. The critic in a BEAM
uses the hidden unit activities as features, but these features are not useful during the
early stages of training when there is little mutual information between the visible and
hidden units of the generator. Therefore, we use regular maximum likelihood training
with persistent contrastive divergence and driven sampling for the first 25 epochs. After
25 epochs, we change the relative weights of the likelihood and the adversary in the loss
function to γ = 0.1 so that the adversarial term dominates the gradient and train for an
additional 30 epochs.

Our Bernoulli-Bernoulli RBM generates reasonable looking fantasy particles for the
binary MNIST dataset (Figure 6), in agreement with previous work by Tieleman (2008).
Still, the Bernoulli-Bernoulli BEAM generates better and more diverse fantasy particles.
This is because the RBM and BEAM achieve roughly the same forward KL divergence,
but the BEAM has a much lower reverse KL divergence (Table 1). Morever, comparing
the results to the driven RBM shows that this is clearly not only due to the use of the
temperature driven sampler.

Figure 6: Comparison of binary MNIST fantasy particles. Sixteen particles sampled
at random from each of the generators. The RBM fantasy particles were randomly initialized
and sampled for 100 MCMC steps; the figure shows 〈v〉pθ(v|h) computed from the last
iteration.
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Model Forward KL Reverse KL

Bernoulli RBM 67.47 168.37
Driven Bernoulli RBM 96.84 192.68
Bernoulli BEAM 70.48 63.58

Table 1: Performance on binary MNIST at the end of training.

Figure 7: Training metrics on continous MNIST. The forward KL divergence,
DKL(pd ‖ pθ), and the reverse KL divergence, DKL(pθ ‖ pd) divergence during training on
MNIST. Adversarial training for the BEAM begins after epoch 25 (vertical dashed line).

We do not show any GANs for the binary MNIST problem. In general, it is difficult to
train GANs on discrete data due to the inability to backprop through a discrete variable
(though, there are ways around this problem as in Yu et al. (2017)). Thus, one advantage
of a BEAM is that it is much easier to train on discrete data than a GAN and much easier
to train on continous data than a standard RBM.

3.2.2 Continuous MNIST

Compared to binary MNIST, continous MNIST is a much more difficult problem for an
RBM (Yamashita et al. (2014)) but it is an easier problem for a GAN. Here, we compare
three different RBM based models: a Gaussian-Bernoulli RBM, a Gaussian-Bernoulli RBM

Figure 8: Comparison of continuous MNIST fantasy particles. Sixteen particles
sampled at random from each of the generators. The RBM fantasy particles were randomly
initialized and sampled for 100 MCMC steps; the figure shows 〈v〉pθ(v|h) computed from the
last iteration.
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Model Forward KL Reverse KL

GAN 43.40 1.93
WGAN 36.17 -2.65
Gaussian RBM 60.09 126.52
Driven Gaussian RBM 19.05 347.67
Gaussian BEAM 42.10 6.70

Table 2: Performance on continuous MNIST at the end of training.

with a temperature driven sampler, and a Gaussian-Bernoulli BEAM. We also compare to
a fully connected GAN and a fully connected WGAN.

It is important to note that none of these models is designed to produce state-of-the-
art results on MNIST; for example, you can get better results using convolutional, rather
than fully-connected, networks (Figure 13). However, restricting the analyses to the chosen
architectures provides a cleaner comparison of the different training approaches.

RBM based architectures trained by maximum likelihood will decrease the forward KL
divergence. This is shown clearly in Figure 7 – the forward KL divergence decreases dur-
ing training of the Gaussian-Bernoulli RBM, the Gaussian-Bernoulli RBM with a driven
sampler, and the Gaussian-Bernoulli BEAM. However, the figure also clearly shows that
the reverse KL divergence increases during training. The training metrics for the BEAM
rapidly diverge from the RBMs once the adversary is turned on after epoch 25. The reverse
KL divergence of the BEAM quickly drops towards zero while the reverse KL divergence
of the RBMs continue to rise. By the end of training, the BEAM obtains comparable, or
better, metrics than all other architectures (Table 2).

Fantasy particles for continuous MNIST are shown in the top row of Figure 8. The non-
convolutional GAN, non-convolutional WGAN, and the BEAM have similar metrics at the
end of training. The errors that they make, however, are qualitatively different. The GANs
produce sharp images that are a bit blotchy, whereas the BEAM produces smooth images
that are a bit blurry. The regular Gaussian-Bernoulli RBM fails to produce reasonable
digits at all, whereas the Gaussian-Bernoulli RBM trained with the driven sampler is a bit
better.

Figure 9: Comparing a BEAM with the critic on the hidden layer to one with
the critic on the visible layer. The KL divergences of two BEAMs trained on MNIST
differing only in whether or not the critic acts on the encoded data or directly on the visible
data. Adversarial training begins after 25 epochs.
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Figure 10: Architectures used in the CelebA experiment. The autoencoder is purely
convolutional, with the encoder (decoder) shown by the stacks of convolutional (deconvo-
lutional) layers. The BEAM uses the flattened encoded features as the visible units. The
GAN/WGAN uses the same encoder (decoder) architectures for the discriminator (gener-
ator), with added single fully connected layers. The autoencoder, BEAM, and GANs are
each trained fully independently. Table 5 lays out the parameters of the models. Example
reconstructions from the autoencoder are shown in the last row.

Throughout, we have presented BEAMs as an adversarial approach to training RBMs
where the hidden unit activities of the RBM are used as features for the critic. We claim
that this allows us to use a simple classifier to approximate the optimal critic. However, it
is possible to train an RBM against an adversary that uses the visible units directly (as in
a GAN). Empirically, we have found that applying the critic to the hidden unit activities
works better; see Figure 9.

3.3 Celebrity Faces

Natural images present a more complex dataset for which model performance can be easily
determined. We use the CelebA dataset, consisting of 64 × 64 × 3 pictures of celebrities’
faces, to demonstrate that BEAMs scale to more complex problems. This dataset requires
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convolutional architectures to obtain good performance. Because exploring convolutional
RBMs is orthogonal to the purpose of this work, we use a separately trained convolutional
autoencoder to extract features from the images (Figure 10). These features are used as the
visible input to the BEAM. The autoencoder is trained with sufficient depth and number
of features to provide high-quality reconstructions of the data (Figure 10).

As with the MNIST examples, we train the CelebA BEAM in two phases. For the
first 15 epochs, we use the log-likelihood objective function with persistent contrastive
divergence and driven sampling. After this phase we train for an additional 50 epochs using
the combined log-likelihood-adversarial objective function in Equation 9 with γ = 0.1.

For comparison, we train a DCGAN and DCWGAN using the same convolutional archi-
tecture as the autoencoder that was used to extract features for BEAM training. That is,
the DCGAN/DCWGAN generator uses an initial fully connected layer followed by the same
architecture as the decoder of the autoencoder and the DCGAN/DCWGAN critic uses the
same architecture as the encoder of the autoencoder followed by a fully connected layer
to a single unit. The DCGAN/DCWGAN share many of architectural features with the
autoencoder, but do not share any parameters. Instead, the DCGAN and the DCWGAN
were trained end-to-end on CelebA.

Images are generated from the BEAM by sampling fantasy particles and passing them
through the decoder. Example generated images from the BEAM, DCGAN, and DCWGAN
are shown in Figure 11. It is clear that the BEAM images are internally consistent with
clear features across each face. However, the images are a bit blurry – especially towards
the corners of the image in the backgrounds. The images produced by the DCGAN and
DCWGAN have sharper local features, but notably poorer global correlations. Although
the images produced by the GANs are not particuarly high-quality, they are qualitatively
similar to results appearing in the literature. To illustrate this, we have directly reproduced
fantasy images from a DCWGAN that were published in Li et al. (2017) (see Figure 11d).

(a) BEAM + Decoder (b) DCGAN (c) DCWGAN (d) DCWGAN Li et al.
(2017)

Figure 11: Comparison of CelebA fantasy particles. 36 fantasy images sampled from
the (a) BEAM with the decoder network, (b) a deep convolutional GAN, and (c) a deep
convolutional WGAN. Our implementations were chosen so that each model has very similar
architectures. These architectures and training parameters are provided in the Appendix.
For comparision, we directly reproduce the CelebA results of a deep convolutional WGAN
as reported by Li et al. (2017).
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We note that it is possible to obtain sharper features from the BEAM at the expense
of less consistent images by optimizing training to lower the forward KL divergence at the
expense of an increased reverse KL divergence. Furthermore, additional approaches such
as centering layers and using deep models produce notably better images; see Figure 14 for
an example using centered layers.

4. Discussion

We have introduced a novel formulation of RBMs, called BEAMs, that uses an adver-
sary acting on the hidden unit activations from the RBM to supplement the traditional
likelihood-based training. The additional adversarial loss term ensures that training mini-
mizes both the forward and reverse KL divergences, allowing the model to accurately learn
distributions with multiple modes. We have shown that BEAMs excel at a variety of appli-
cations, outperforming GANs that use significantly larger computational budgets.

As the machine learning community increasingly turns its attention to unsupervised
learning problems, it is valuable to place this work into a larger context. The deep learning
revolution has driven tremendous advances on supervised learning problems, and a primary
outcome is that feed-forward neural networks have become a powerful tool. GANs and
variational autoencoders can be thought of as a natural extension of the broad learning
capacity of neural networks and the flexibility of backpropagation, and are tools of choice
in many applications. This is further supported by the software ecosystem for machine
learning, which makes many sophisticated tools easily accessible.

RBMs played an active role in kicking off the deep learning revolution (Hinton and
Salakhutdinov (2006)), but their development slowed with the increased focus on super-
vised learning and a general attitude that they were unsuited to more complex problems.
However, there are reasons to believe that RBMs will be fundamental in advancing unsu-
pervised learning:

• Novel training algorithms and novel model architectures can dramatically improve
performance.

• RBMs have several analytic handles to understand models and develop training strate-
gies.

• Increased capacity to handle complex datasets can be developed through a progressive
set of challenging applications.

We hope this work reinforces the promise of RBMs.
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Appendix A.

In a general adversarial approach to learning, we train a Boltzmann machine, pθ(v,h), to
minimize a compound objective function C = −γL + (1 − γ)A. The compound objective
function represents a tradeoff between maximum likelihood learning (γ = 1) and adversarial
learning (γ = 0). Just as with maximum likelihood, the compound objective function can
be optimized using stochastic gradient descent. Using a compound objective function helps
to mitigate some of the instability problems that plague traditional GANs. For example,
the gradient does not vanish even if the discriminator is completely untrained because there
is always the term from the likelihood.

We need to compute the derivatives of the compound objective function in order to
minimize it. The differential operator is linear, so we can distribute it across the two terms:

∂θC = γ∂θL − (1− γ)∂θA . (18)

The first term can be computed from Equation 2 (Main Text). So, all we need to do is
compute the second term. It turns out that derivatives of this form can be computed using
a simple formula when the model is a Boltzmann machine.

Let T (v,h) be a critic function and

A ..=

∫
dvdh p(v,h)T (v,h) (19)

be the associated adversarial loss. This formulation reduces to the adversarial loss for a
BEAM when T (v,h) = T (h) is independent of the visible units, but we derive the general
case. We need to compute ∂θEpθ(v,h)[T (v,h)]. First, we use the stochastic derivative trick:

∂θA =
∂

∂θ

∫
dvdh p(v,h)T (v,h)

=

∫
dv dhT (v,h)

∂

∂θ
p(v,h)

=

∫
dv dhT (v,h)

p(v,h)

p(v,h)

∂

∂θ
p(v,h)

=

∫
dv dhT (v,h)p(v,h)∂θ log p(v,h)

= 〈T (v,h)∂θ log p(v,h)〉p(v,h) (20)

We can write the model distribution of a Boltzmann machine as pθ(v,h) = Z−1θ e−Eθ(v,h)

so that log pθ(v,h) = −Eθ(v,h) − logZθ, with Zθ =
∫

dvdh e−Eθ(v,h). Then, we have
∂θ log pθ(v,h) = −〈−∂θEθ(v,h)〉pθ(v,h) − ∂θEθ(v,h). Plugging this in, we find:

∂θA = −〈T (v,h)〉pθ(v,h)〈−∂θEθ(v,h)〉pθ(v,h) + 〈T (v,h)(−∂θEθ(v,h))〉pθ(v,h) (21)

= Covpθ(v,h)[T (v,h),−∂θEθ(v,h)] . (22)

Appendix B.

Our approach to accelerated sampling, which we call Temperature Driven Sampling (TDS),
greatly improves the ability to train Boltzmann machines without incurring significant addi-
tional computational cost. The algorithm is a variant of a sequential Monte Carlo sampler.
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A collection of m samples are evolved independently using Gibbs sampling updates from
the model. Note that this is not the same as running multiple chains for a parallel temper-
ing algorithm because each of the m samples in the sequential Monte Carlo sampler will
be used compute statistics, as opposed to just the samples from the β = 1 chain during
parallel tempering. Each of these samples has an inverse temperature that is drawn from a
distribution with mean E[β] = 1 and variance Var[β] < 1. The inverse temperatures of each
sample are independently updated once for every Gibbs sampling iteration of the model;
however, the updates are autocorrelated across time so that the inverse temperatures are
slowly varying. As a result, the collection of samples are drawn from a distribution that is
close to the model distribution, but with fatter tails. This allows for much faster mixing,
while ensuring that the model averages (computed over the collection of m samples) remain
close approximations to averages computed from the model with β = 1.

Input:
Autocorrelation coefficient 0 ≤ φ < 1.
Variance of the distribution Var[β] < 1.
Current value of β.
Set: ν = 1/Var[β] and c = (1− φ)Var[β].
Draw z ∼ Poisson(β ∗ φ/c).
Draw β′ ∼ Gamma(ν + z, c).
return β′

Algorithm 1: Sampling from an autocorrelated Gamma distribution.

Details of the TDS algorithm are provided in Algorithms 1 and 2. Note that this
algorithm includes a standard Gibbs sampling based sequential Monte Carlo sampler in
the limit that Var[β] → 0. The samples drawn with the TDS algorithm are not samples
from the equilibrium distribution of the Boltzmann machine. In principle, it is possible to
reweight these samples to correct for the bias due to the varying temperature. In practice,
we have not found that reweighting is necessary.

Input:
Number of samples m.
Number of update steps k.
Autocorrelation coefficient for the inverse temperature 0 ≤ φ < 1.
Variance of the inverse temperature Var[β] < 1.
Initialize:
Randomly initialize m samples {(vi,hi)}mi=1.
Randomly initialize m inverse temperatures βi ∼ Gamma(1/Var[β],Var[β]).
for t = 1, . . . , k do

for i = 1, . . . , m do
Update βi using Algorithm 1.
Update (vi,hi) using Gibbs sampling.

end

end
Algorithm 2: Temperature Driven Sampling.
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Appendix C.

This section provides some additional experimental details and results.

Gaussian Mixtures

Table 3 lays out the parameters of the Gaussian mixture comparison examples. It is inter-
esting to note just how few parameters are required by the BEAM to model this data.

MNIST

Table 4 lays out the parameters of the models for the MNIST examples.

Figure 12: Gaussian-Bernoulli BEAMs trained on continuous MNIST with dif-
ferent critics.

Figure 13: Comparison of a non-convolutional GAN to a DCGAN on continuous
MNIST.
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Celebrity Faces

There is plenty of room to improve the quality of generated faces by employing more ad-
vanced RBM training techniques. For example, centering the RBMs tends to improve the
variance in the generated faces and increases the definition of the hair and face edges.

Figure 14: BEAM vs. centered BEAM fantasy particles Example fantasy particles
generated by a BEAM using centered visible layer.

21



Fisher, Smith, and Walsh

Bimodal Gaussian 104 samples, batch size 100

GAN/WGAN fully-connected with ReLU activations, WGAN weight clamping .1

generator dimensions critic dimensions epochs lr

1− 32 1− 32− 1 100 0.002

RBM/BEAM distance-weighted nearest-neighbor critic k = 5, λ = 0.5 for BEAM

dims MCMC steps epochs lr

1− 10 100 10 .1

Radial Gaussian 104 samples, batch size 100

GAN/WGAN fully-connected with ReLU activations, WGAN weight clamping .1

generator dimensions critic dimensions epochs lr

2− 64− 64 2− 64− 64− 1 300 0.001

RBM/BEAM distance-weighted nearest-neighbor critic k = 5, λ = 0.5 for BEAM

dims MCMC steps epochs lr

1− 10 100 30 .15

Grid Gaussian 105 samples, batch size 1000

GAN/WGAN fully-connected with ReLU activations, WGAN weight clamping .1

generator dimensions critic dimensions epochs lr

2− 128− 128− 128 2− 128− 128− 128− 1 300 .00001

RBM/BEAM distance-weighted nearest-neighbor critic k = 5, λ = 0.5 for BEAM

dims MCMC steps epochs lr

1− 20 100 200 .2

Table 3: Gaussian mixture architectures and hyperparameters All GAN/WGAN
models use ReLU activations between fully-connected layers. Network weights are initialized
with normal distributions of standard deviation 0.2, with biases zero-initialized. The beta
standard deviation for the driven sampler is set to 0 for RBM, .9 for driven RBM and
BEAMs. The RBMs’ learning rates decrease according to a power-law decay, and all training
uses ADAM optimization with beta = (0.5, 0.9).
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MNIST 6 · 105 samples, batch size 100

GAN/WGAN fully-connected with ReLU activations, sigmoid on generator, WGAN weight clamping .01

generator dimensions critic dimensions epochs lr

100− 164− 164 784− 164− 164− 1 55 .001

RBM/BEAM distance-weighted nearest-neighbor critic k = 2, λ = 0.1 for BEAM

dims MCMC steps epochs lr

784− 200 5 25 ML, 30 adv. .001 ML, .0001 adv.

Table 4: Gaussian mixture architectures and hyperparameters All GAN/WGAN models use ReLU activations between
fully-connected layers. Generator and discriminator weights are initialized with normal distributions of standard deviation 0.1 and
0.02 resp., with biases zero-initialized. All training uses ADAM optimization with beta = (0.5, 0.9) for the GANs and (0.9, 0.999)
for the BEAM. For the BEAM, the beta standard deviation for the driven sampler is set to .95. The RBMs’ learning rates
decrease according to a power-law decay.
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CelebA 202599 samples, batch size 128

GAN/WGAN conv. with batch-norm and ReLU activations, WGAN weight clamping .01
generator dimensions critic dimensions epochs lr

64 × 42 − 64 × 8264 × 162 − 32 × 322 − 3 × 642 3 × 642 − 32 × 322 − 64 × 162 − 64 × 82 − 64 × 42 10 .0002
BEAM distance-weighted nearest-neighbor critic k = 5, λ = 0.1 for BEAM

dims MCMC steps epochs lr
1024− 512 100 10 ML, 40 adv. 10−3 ML, 10−4 adv.

Table 5: CelebA architectures and hyperparameters All GAN/WGAN models use ReLU activations between fully-connected
layers. Generator and discriminator weights are initialized with normal distributions of standard deviation 0.02, with biases zero-
initialized. The beta standard deviation for the driven sampler is set to 0 for RBM, .95 for the BEAM. All training uses ADAM
optimization with beta = (0.5, 0.9) for the GANs and (0.9, 0.999) for the BEAM. The RBMs’ learning rates decrease according
to a power-law decay.
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