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ABSTRACT

The energy landscape theory of protein folding is a statistical description of a
protein’s potential surface. It assumes that folding occurs through organizing an
ensemble of structures rather than through only a few uniquely defined structural
intermediates. It suggests that the most realistic model of a protein is a minimally
frustrated heteropolymer with a rugged funnel-like landscape biased toward the
native structure. This statistical description has been developed using tools from
the statistical mechanics of disordered systems, polymers, and phase transitions of
finite systems. We review here its analytical background and contrast the phenom-
ena in homopolymers, random heteropolymers, and protein-like heteropolymers
that are kinetically and thermodynamically capable of folding. The connection
between these statistical concepts and the results of minimalist models used in
computer simulations is discussed. The review concludes with a brief discus-
sion of how the theory helps in the interpretation of results from fast folding
experiments and in the practical task of protein structure prediction.

INTRODUCTION

Ever since the birth of molecular biology it has been recognized that understand-
ing fundamental biological processes requires insights from physical chemistry.
The prediction of the global structure of nucleic acids by Watson & Crick (1),
with its consequences for understanding the mechanism of heredity, and the
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local structures of proteins by Pauling et al (2) were firmly buttressed by the
then contemporary understanding of molecular forces. Conversely, the eluci-
dation of these structures inspired considerable study by physical chemists of
the thermodynamics and kinetics of the processes by which these biomolec-
ular structures were attained in nature. Anfinsen and coworkers showed that
not only the local structure but also the global three-dimensional structure of
protein could be reached reliably by the protein molecule acting alone through
purely physicochemical processes without any special biological machinery,
using only the information in the proteins amino acid sequence (3, 4). This
process seemed especially remarkable when X-ray diffraction revealed that
proteins were apparently not simple repetitive structures like DNA but were
compact objects with complex folds whose structure was hard to predict a pri-
ori. Understanding the way in which the one-dimensional protein sequence
guides the molecule to a particular three-dimensional fold fascinated genera-
tions of molecular biologists and physical chemists, as well as physicists and
mathematicians, as the protein folding problem. Progress was rapid at first,
with the realization by Kauzmann of the powerful role of hydrophobic forces in
folding (5) and the analysis of secondary structure formation by many workers
(e.g. 6). The tremendous amount of experimentation since that time yielded a
bewildering complexity of thermodynamic and kinetic results from a stunning
variety of probes. In general the complex behaviors were hard to relate to any
theoretical understanding of protein structure and energetics. In an attempt to
organize these results scientists embraced the idea that there must be a pathway
for folding (7–9), whose details must be ferreted out in all their diversity. An al-
ternative viewpoint began to emerge in the late 1980s (10, 11). This viewpoint
holds that what is most important for understanding the folding process is a
global overview of the protein’s energy surface. This global view will be most
helpful if folding occurs through organizing an ensemble of structures rather
than through only a few uniquely defined structural intermediates. If this is the
case, a statistical description of the protein energy landscape can be used. Such
a description can be built with tools from the statistical mechanics of disor-
dered systems, polymers, and phase transitions in finite systems. This article
reviews the progress toward a physical chemical understanding of protein fold-
ing achieved by taking this new viewpoint. Other reviews aimed at audiences
of physicists (12–14) or physically oriented biochemists (15–21) cover similar
or related topics and should be read for their different emphasis.

The main idea that emerges from the statistical energy landscape theory is that
globally the folding landscape resembles a funnel but is to some extent rugged,
i.e. riddled with traps in which the protein can transiently reside (15, 22, 23). In
the early stages of folding the funnel guides the protein through many different
sequences of traps toward the low-energy folded (native) structure. Here there
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is no pathway but a multiplicity of folding routes. For small proteins, discrete
pathways emerge only late in the folding process when much of the protein
has already achieved a correct configuration. The late discrete pathway arises
from trapping and in a sense reflects the possible pathology of protein folding.
Much like the phenomenon of hemoglobin sickling, these late events are quite
sensitive to details of protein structure and sequence, explaining a large part
of the bewildering complexity seen by the early experimentalists. The simple
parts of the folding process, where most of the real molecular organization is
going on, occur in the early events of folding and can be described using a few
parameters statistically characterizing the protein folding funnel. Until recently
these events were largely unstudied in the laboratory. Fast folding is starting
to be studied using NMR dynamic spectroscopy (24–34), protein engineering
(35, 36), laser initiated folding (37–42), and ultrafast mixing experiments (43).
A few tantalizing hints from these experiments confirming the basic validity of
the funnel and statistical energy landscape notions are also reviewed here, but
we cannot do justice to the experimental field in this article focusing on theory.

The organization of this review is as follows. We first review the analytical
background of the statistical energy landscape theory, discussing also the rele-
vant polymer physics. We contrast the phenomena in homopolymers, random
heteropolymers, and protein-like heteropolymers that are kinetically and ther-
modynamically capable of folding. We then discuss the connection of these
ideas with the results of minimalist models used in computer simulations.

We touch upon the connection of these results with real proteins and the
interpretation of kinetic folding experiments, but we also discuss lessons from
the theory that help in the practical tasks of protein structure prediction and
de novo protein design. In fact, development of practical prediction technology
and fundamental theories of folding dynamics have been mutually supportive
when the landscape perspective is used.

THE PROTEIN FOLDING ENERGY LANDSCAPE

The energy landscape is described using statistical ideas. Are proteins random
objects? Sequences of the protein adenylate kinase from the archaeal genus
Methanococcusand the pig are shown in Figure 1, and even though the pro-
tein has essentially the same structure and function in all species, the sequence
identity of the archaeal bacterium protein compared to the protein in the pig
is relatively low. Sections of the archaeal proteins are only 20% identical with
the pig, sequentially. Two English texts with only 20% identity would appear
totally unrelated strictly orthographically but could have the same meaning.
Likewise, proteins with structural homologs having such low sequence identi-
ties are not uncommon. In addition, while their sequences may appear random,
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MVO
MTH
MIG
MJA

-----MKNKV VVVTGVPGVG STTSSQLAMD NLRKEGVNYK MVSFGSVMFE
-----MKNKL VVVTGVPGVG GTTITQKAME KLSEEGINYK MVNFGTVMFE
-----MKNKV VVVTGVPGVG GTTLTQKTIE KLKEEGIEYK MVNFGTVMFE

-----MKNKV VVIVGVPGVG GTTVTNKAIE ELKEEGIEYK IVNFGTVMFE
MEEKLKKSKI IFVVGGPGSG KGTQCEKIVQ K-----YGYT HLSTGDLLRA

MVO
MTH
MIG
MJA

VAK-----EE NLVSDRDQMR KMDPETQKRI QKMAGRKIAE MAKESPVAVD
VAQ-----EE NLVEDRDQMR KLDPDTQKRI QKLAGRKIAE MVKESPVVVD
VAK-----EE GLVEDRDQMR KLDPDTQKRI QKLAGRKIAE MAKESNVIVD
IAK-----EE GLVEHRDQLR KLPPEEQKRI QKLAGKKIAE MAKEFNIVVD
EVSSGSARGK MLSEIMEKGQ LVP--LETVL DMLRDAMVAK VDTSKGFLID

MVO
MTH
MIG
MJA

THSTVSTPKG YLPGLPSWVL NELNPDLIIV VETT---GDE ILMRRMSDET
THSTIKTPKG YLPGLPVWVL NELNPDIIIV VETS---GDE ILIRRLNDET
THSTVKTPKG YLAGLPIWVL EELNPDIIVI VETS---SDE ILMRRLGDAT
THSTIKTPKG YLPGLPAWVL EELNPDIIVL VEAE---NDE ILMRRLKDET
---GYPREVK QGEEFERKIG QPT---LLLY VDAGPETMTK RLLKRGETSG

MVO
MTH
MIG
MJA

RVRDLDTAST IEQHQFMNRC AAMSYGVLTG ATVKIVQNRN G--LLDQAVE
RNRDLETTAG IEEHQIMNRA AAMTYGVLTG ATVKIIQNKN N--LLDYAVE
RNRDIELTSD IDEHQFMNRC AAMAYGVLTG ATVKIIKNRD G--LLDKAVE
RQRDFESTED IGEHIFMNRC AAMTYAVLTG ATVKIIKNRD F--LLDKAVQ
RVDDNEETIK KRLETYYKAT EPVIAFYEKR GIVRKVNAEG SVDDVFSQVC

MVO
MTH
MIG
MJA

ELTNVLR
ELFQVLR
ELISVLK
ELIEVLK
THLDTLK

1/6 21/26 41/41

141/141

121/118101/101

81/8461/66

161/161 181/183

Pig

Pig

Pig

Pig

Pig

}15-20 % sequence identity to the pig

Figure 1 Block alignment of highly related archaeal adenylate kinases (AKs) from the genus
Methanococcusto the sequence of the pig. Although the archaeal adenylate kinases, the mesophile
M. voltae [MVO], moderate thermophileM. thermolithotrophicus[MTH], and extreme ther-
mophilesM. jannaschii[MJA] and M. igneus[MIG] have 68–81% sequence identity with each
other, they have only low levels of sequence identity (15–20%) to the eukaryotic and eubacterial
AKs and lack several active site residues thought to be essential. The alignment is based on the
energy function by Koretke and coworkers (229, 231) that was optimized using energy landscape
analysis, and a model structure based on this alignment is shown in Figure 17. The highlighted
residues are in the active site and play an important role in the enzymes’s function to biosynthesize
ADP from ATP and AMP.
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proteins in nature contain many symmetrical structural elements. The difficulty
in extracting the meaning from protein sequences is in discerning what fea-
tures are common to all sequences, what features are specific to protein-like
sequences, and what features are specific to a given structure. A view of how
the ensemble of protein-like sequences is embedded in the ensemble of random
heteropolymers is sketched in Figure 2. Within the space of random heteropoly-
mers based on the 20 naturally occurring amino acids, we need to differentiate

Figure 2 How proteins in nature are embedded in the ensemble of random heteropolymers. Within
the space of random heteropolymers based on the 20 naturally occurring amino acids there would be
20N possible sequences of lengthN. Only a small subset of these sequences are thermodynamically
and kinetically foldable on the appropriate biological timescale to be seen in nature. We show the
kinetically allowed set as lying within the thermodynamic one. Depending on the temperature
(here taken to be rather low), it may be useful to consider the situation as reversed, i.e. a random
heteropolymer can transiently touch down in the native structure but not remain there at higher
temperatures.
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further between thermodynamically foldable sequences and the subset of ki-
netically foldable sequences that make up proteins in nature. Families such as
the adenylate kinase sequences belong in this last category. Determining the
precise evolutionary constraints on kinetics is subtle. Organisms live at widely
different temperatures (the pig around 300 K and the methanococcus at 350 K, a
big difference when the properties of the solvent water are taken into account).
Also the kinetic constraints especially may depend on the chain length—most
large natural proteins have a domain structure. Thus the border between thermo-
dynamic and kinetic foldability subset of sequences is a bit fuzzy. Nevertheless
proteins in nature, while only marginally stable (5–12 kcal) and easy to dena-
ture with either heat or pH, must fold on a time scale that is relevant for the
biological processes occurring in cells. This time is relatively short—less than
a minute. This seems paradoxical at first given the many conformations that a
protein can theoretically be in during folding. Quantitatively the kinetics rele-
vant for addressing this issue can be explored by studying the formation of local
structure, such as helix formation and the mechanism of collapse. But most im-
portant is understanding the funneled nature of the landscape for topological
rearrangements that determine the uniqueness of the global fold (23).

Energy Landscape of a Random Heteropolymer
Many aspects of the folding process can be understood from studying the ener-
getic properties of a random heteropolymer (RHP). Lattice models of protein
conformations (see below) have been helpful in these investigations, and the
simplest of these makes use of two kinds of residues (i.e. hydrophobic and
hydrophilic amino acids) randomly distributed. This is a useful model for vi-
sual illustration, although it has some special properties that make it different
from the more general 20–amino acid case. From both theoretical calculations
and simulations we know two basic facts about the random heteropolymer: A
modest structural change gives rise to a large change in energy, and low energy
states that are very different in structure but close in energy exist.

In the general case, the energy of any compact conformation of such a RHP is
a sum of random interactions that give rise to a rough energy landscape like the
Alps. Since the energy contributions can either be stabilizing or destabilizing,
the RHP is a frustrated system. In 1987 Bryngelson & Wolynes (10) applied the
random energy model (REM), developed by Derrida (44, 45) to describe spin
glass systems, to folding proteins (biopolymers), in particular to the misfolded
states of a protein. The basic validity of this approach as a starting point has
since been borne out by numerous analytical and numerical studies making the
REM a zeroth order approximation for understanding random biopolymers. A
brief review of the basic features of the REM for the RHP is shown in Figure 3.
As a result of the random interactions the density of states is approximately a
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Figure 3 The energy landscape of a random heteropolymer. (Top) The low-energy structures of
a RHP, represented by a lattice with two kinds of residues, are unrelated and the conformational
changes are associated with a fluctuation

√
1E2 in the energy. (Middle) As a result of the random

interactions, the density of states and the thermally weighted probabilities are approximately Gaus-
sian with the latter centered about the meanE = −1E2/2kBT and can be modeled by random
energy approximation. (Bottom) The system runs out of entropy when the average energy falls be-
low Eo, and this entropy crisis is characterized by a glass transition temperatureTG, which depends
on the corresponding conformational entropy and fluctuations.
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Gaussian distribution with a variance1E. The thermally weighted probability
is again a Gaussian distribution centered about the meanE = −1E2/2kBT .
The density of states cannot really be Gaussian in its tail, but runs out of low
energy states. The entropyS is defined

S(E) = kB log[�oP(E)] , 1.

where�o is the number of conformational states of the polymer. As the system
is cooled the energy falls. The system runs out of entropy when the average
energy falls below a critical valueE ≤ Eo such thatS(Eo) = 0. This entropy
crisis occurs at a glass-transition temperatureTG where

T−1
G =

√
2kBSo/1E2 2.

and So = kB log�o. Below TG the kinetics of the system exhibits glassy-
like behavior that depends on the history of the system. AboveTG the system
behaves like a viscous liquid. The slowing of transition rates between differ-
ent low-energy states upon cooling leads to a strong generally non-Arrhenius
temperature dependence of the rate of exploring configuration space. A more
detailed discussion of the kinetics on a REM landscape is given below.

Simplest Viable Protein Folding Landscape
The folding landscape of proteins is necessarily rugged because biomolecular
chains can sample many conformations during their motions and have the possi-
bility of making inappropriate contacts between residues. In the simplest model
one can assume that when nonnative contacts are made the energy contribu-
tions are random, and these contributions to the protein’s energy can be treated
like those for a RHP. In the ensemble of misfolded collapsed states with little
native structure, the energetics can be described crudely by the REM shown
in Figure 3. Low-energy structures will appear unrelated, and conformational
changes are associated with a fluctuation

√
1E2 in the energy.

Because native contacts and local conformation energies are more stabilizing
than expected, there is a smooth overall slope of the energy landscape toward
the native structure. This more realistic model considers the protein to be a
minimally frustrated heteropolymer. This means that the rugged landscape of
real protein folding is not globally flat with totally unpredictable fluctuations
about the mean as it would be for a RHP, but has a preferred direction of
flow. It can be described as a rugged funnel, shown in Figure 4, whose shape
can be estimated using theory and experiment. At the bottom of the funnel
there is a topologically nearly unique native state. As has been emphasized by
Frauenfelder and coworkers (46, 47), the physiologically active state is not just
this lowest energy one but actually a whole tribe of states that differ at least in
side-chain orientations (48) but possibly also in occasional topological defects
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Figure 4 A viable protein folding landscape. The rugged folding landscape of a small helical
protein is funnel-like, with a preferred direction of flow toward a unique native state (23, 60). The
ensemble of conformations in the upper part of the funnel can be described by modified theories of
a RHP (shown in Figure 3) that take into account the formation of secondary structure. The order
parametersE, the solvent-averaged energy, andQ, the fraction of native-like contacts, describe the
position of an ensemble of states within the funnel and stratify the landscape. The fluctuations1E
and the stability gapδEs between the compact misfolded or molten globule states and the native
state are functions of these order parameters and can be estimated using theory and experiment.
This figure is drawn after that in Onuchic et al (23) and also indicated are the contributions of local
signals and tertiary contacts as well as hydrogen bonding to the stability gap, which provides the
specificity of folding according to the estimates by Saven & Wolynes (74).
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from this idealized structure, which is the target of so many purely structural
studies. Useful order parameters to describe the position of an ensemble of
states in the funnel are the solvent-averaged energyE, the fraction of native-
like contactsQ, the percent of correct dihedral angles in the protein backbone
A, and the percent correct secondary structure. Other order parameters such as
total and local helicity may also be used to classify ensemble of states and are
accessible to experimental measurement.

Through these order parameters, the folding landscape is stratified. Within
each stratum we can define an average energyĒ(Q), although there are still
many states with different energies. To describe their distribution and proper-
ties we apply a REM model. The late stages of protein folding will have few
states all highly similar to the native. These could be given specific names (if
necessary), and the detailed kinetics of transitions between them counts. These
are analogous to the taxonomic substates discussed by Frauenfelder et al (49).
Again there are further levels of conformational substates below this point, but
they are usually sampled quickly at room temperature. As indicated in Figure 5,
some routes can dead-end in low-energy misfolded conformations from which
the protein has to partially unfold to reach the native state. In the early stages
of folding, corresponding to a nearly denatured protein withQ ≈ 0, there will
be many states, and the ensemble language is clearly most appropriate. The
hopping rate between microstates at each stage will depend on the ruggedness.

The complete statistical mechanical treatment of folding requires knowl-
edge of all thermodynamic variables as a function of the order parameters,
in particular the functional dependence of the thermal average energyĒ(Q),
the ruggedness

√
1E2(Q), the density of states�(E, Q) or equivalently the

entropy S(E,Q), and the local glass transition temperatureTG(Q). Using the
simplest form of the random energy approximation, Bryngelson & Wolynes
(10) derived these quantities for the case in which correlations of the energy
states within a stratum are neglected. The energy of a given misfolded state
arises from the contributions of many random terms, so the probability distri-
bution of energies at any stratum of the funnel is a Gaussian centered about the
mean energy

P(Q, E) = 1√
2π1E2(Q)

exp

{
− [E − Ē(Q)]2

21E2(Q)

}
. 3.

In a REM the probability that any two states have energyE1 and E2 is the
productP(E1)P(E2). If there areγ configurations per residue for a protein in
its unfolded state, then the total number of configurations for a protein withN
residues is�o = γ N . In models that use a reduced description of the protein and
include only the backbone coordinates,γ is less than 5, and when corrections
are made for the excluded volume effect in compact configurations,γ = γ ∗ ≈
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Figure 5 A schematic representation of the ensemble of folding pathways toward the native state.
The native structure is in the top of the figure, and clearly the number of available conformations
reduces asQ increases. Before the folding protein reaches the glass transition, there are many
accessible paths between conformations. In this regime, different folding events go through different
paths toward the native state. After the glass transition is reached, only a few paths remain accessible.
Thus the connectivity between configurations is reduced, and several paths may lead to dead ends
instead of to the native conformation.

1.5 (15, 50). As the structures become more similar to the native protein, the
total number of configurations will decrease, since only a single backbone con-
formation represents the native state. If we call�o(Q) the number of structures
with similarity measureQ to the native structure andSo(Q) the corresponding
entropy, then the density of conformational states with energyE and similarity
Q is then

�(E, Q) = �o(Q)P(Q, E), 4.

and the total entropy is

S(E, Q) = So(Q)− kB
[E − Ē(Q)]2

21E2(Q)
. 5.

At thermal equilibrium, the most probable energy is just the maximum of the
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Boltzmann weighted distribution in Figure 3

Em.p.(Q) = Ē(Q)− 1E2(Q)

kBT
. 6.

The number of thermally occupied states and entropy associated with this most
probable energy are

�(Em.p., Q) = exp

[
So(Q)

kB
− 1E2(Q)

2(kBT)2

]
7.

S(Em.p., Q) = So(Q)− 1E2(Q)

2kBT2
. 8.

By combining Equations 6 and 8, the free energy of the misfolded structures
with configurational similarityQ and at a fixed temperature becomes

F(Q, T) = Em.p.(Q)− T S(Em.p., Q)

= Ē(Q)− 1E2(Q)

2kBT
− T So(Q).

9.

Under some thermodynamic conditions, folding can be considered a two-
state reaction (see Figure 6). In this case the free energy has a double minimum,
with one minimum near the folded stateQ ≈ 1 and the other at the position
Qmin ≈ 0 corresponding to an ensemble of collapsed misfolded states with
varying degrees of ordering. The precise origin of the barrier is a subtle point
involving at least the polymer physics of entropy loss on contact formation
in lattice models but perhaps also explicitly cooperative many-body forces for
real proteins. To a first approximation, we can neglect the entropy of the folded
state so that its free energy is equal to its internal energy,EN. At the folding
temperature,TF, the probability of being in the folded state is equal to the
probability of being in the misfolded state implying,Fnative = F(Qmin, TF).
This equality yields an expression for the slope of the funnel

δEs/TF = So +1E2(Qmin)/2kBT2
f 10.

in terms of the stability gapδEs = Ē(Qmin) − EN. SinceQmin is close to the
unfolded state, we consider the folding temperature as being referenced to a set
of states with little structural similarity to the native state,Q ≈ 0.2–0.3 for the
simple funnel in Figure 4.

Recall that a glass transition occurs at the temperature where there are too
few states available, so the system remains frozen in one of a few distinct
states. Within each stratum this is characterized by an entropy crisis where
S(TG, Q) = 0. Using Equation 8, the local glass transition temperature is

TG(Q) =
√
1E2(Q)

2kBSo(Q)
. 11.
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Figure 6 Phase diagram and folding scenarios according to the minimally frustrated REM analysis.
(Top) The phase diagram along a line of some average sequence hydrophobicity shows the possible
thermodynamic states of a protein modeled as a minimally frustrated heteropolymer. Varying the
hydrophobicity by changes in solvent and temperature can modify the number of phases observed
in the folding process. (Bottom) The free-energy curves consistent with the above phase diagram
exhibit various folding scenarios: Type 0 and I are examples of fast folding, downhill with no
barrier and a small barrier in the latter. These are typical scenarios for well-designed proteins
at temperatures below the folding temperatures and conditions such that the glass transition is
not encountered. The Type II scenarios occur at the right-hand side of the phase diagram under
conditions that favor the formation of the glassy state either after or before the thermodynamic
transition barrier.
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Local glass transition temperatures are manifested in the folding and collapse
times measured in lattice calculations that are summarized below. Analytical
and numerical studies on lattice models have shown that the ratio ofTF/TG

can be used to distinguish fast and slow folding sequences. This ratio also
plays a central role in developing energy functions to predict protein structures.
Calculating this ratio using the set of states with the least structural similarity
to the folded state gives (51)

TF

TG
≈ δEs

1E
·
√

2kB

So
. 12.

As we show below, for a protein to fold,TF/TG must be greater than 1 for fast
folding, and sinceSo,1E2, andEN all depend linearly on the chain lengthN,
TF/TG is independent of length and sensitive to the interaction energies.

A phase diagram is a useful tool for summarizing which states of a protein
are involved in the various folding scenarios. So far our analysis has only used
a single parameterQ to characterize the changes in free energy and the differ-
ences between the native and unfolded states. Clearly there are other parameters
besides the number of correct contacts that could be used to compare structures
and describe the partial ordering that occurs as the protein folds. For example,
in a folded protein, the core consists primarily of hydrophobic residues and the
surface of hydrophilic residues (52). This ordering is due to the hydrophobic
effect arising from folding a protein in water. Variations in the solvent proper-
ties will have profound effects on the interaction energies of the hydrophobic
groups. The phase diagram in Figure 6 shows the possible thermodynamic states
of a model protein as a function of temperature and the roughness of the en-
ergy landscape expected from the minimally frustrated REM analysis (15). The
phase diagram is actually a slice through a more complicated diagram along a
line of some average hydrophobicity of the sequence. Since average hydropho-
bicity itself depends on solvent and temperature, under some conditions the
coexistence curve between the random coil and the folded state disappears, and
the folded state becomes only accessible after nonspecific collapse. The ther-
modynamic dependence of hydrophobic forces is one of the main complicating
features in relating the theoretical phase diagrams (that assume temperature-
independent forces) to experiment. This is most manifest in the phenomena
of cold- and pressure-induced denaturation. The glass transition, which occurs
after the collapse of the system, is a continuous transition. This portion of the
phase diagram is typical of RHPs (53). Recent lattice simulations of Socci &
Onuchic (54) on protein-like sequences probe the phase diagram as a function
of temperature and average hydrophobicity and provide qualitatively the same
picture.
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Figure 7 The heat capacityCP of a dense hydrated protein (legumin) before and after denaturation.
The heat capacity curves are based on the data from Sochava & Smirnova (58) and discussed by
Angell (59). The experimental curve upon heating the native protein exhibits a peak at the folding
temperatureTF around 410 K, while the bulk denatured protein cannot refold but undergoes a glass
transition atTG,bulk = 320 K, a much lower temperature. The ratio ofTF/TG = 1.3 is probably an
underestimate for the value of individual proteins that are highly solvated.

The phase diagrams of real proteins in the laboratory can be more complex
and in fact are difficult to determine completely. The glass transition in the
molten globule (MG) phase of globular proteins, which is most important for
theoretical considerations in particular, has hardly been probed. The glass tran-
sition within folded proteins has been studied extensively (55, 56), but questions
have been raised concerning the role of solvent dynamics in that case (57). On
the other hand, the glass transitions in bulk protein materials have been directly
observed (58) (see Figure 7). This has been carefully discussed by Angell re-
cently (59). The experimental heat capacity of a native protein shows a peak
when it denatures at the folding temperature. When bulk denatured protein is
cooled, on the other hand, the aggregated protein undergoes a glass transition at
a lower temperature,TG,bulk. Theory would suggest that this bulk glass transition
is higher than the corresponding transition for a globule. Thus the experimental
data strongly support the minimal frustration principle notion thatTF exceeds
TG.

This phase diagram can be used to understand the free-energy behavior in
the various folding scenarios. In general, in each region of the phase diagram,
the free energy is either unimodal or bimodal. The unimodal case is called
Type 0. In a Type 0A scenario no glass transition is encountered, and the folding
process can be considered strictly downhill. In a Type 0B scenario the glass
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transition is encountered before complete folding, and escape from individual
traps determines the rate. Type I scenarios correspond with the bimodal free
energies diagrams. Type 0A and Type I scenarios dominate the left-hand part
of the phase diagram, in which no glass transition occurs, and the system is
at a temperature such that the global minimum is the native folded state with
Q = 1. Direct folding from the random coil state favors these scenarios, since
glassy states can only occur in nearly collapsed chains. Type II scenarios occur
in the right-hand part near the coexistence curves for the folded, collapsed,
and collapsed frozen states. In a Type IIA scenario the glass transition occurs
after the thermodynamic barrier, and in a Type IIB scenario the folding protein
becomes glassy before the barrier is reached.

MICROSCOPIC APPROACHES TO THE ENERGY
LANDSCAPES OF PROTEINS AND HETEROPOLYMERS

The energy landscape view of protein folding addresses a global characteriza-
tion of the states involved in folding through statistical means. A central problem
for physical chemists is to see how these global characteristics are related to the
microscopic forces. This is difficult because proteins are chemically complex.
Their backbones contain both specific and generic stereochemical information,
and the side chains themselves are not particularly simple from an organic
chemical viewpoint. Atomistic simulations provide one route to accommodate
this complexity. Computational difficulties limit the extensive use of this ap-
proach at present. Thus most exploration of the energy landscape ideas has used
very simple so-called minimalist models of the interactions to get started. The
connection of microscopic forces to the landscape have been carried out in two
divergent styles: One important thread uses the formal statistical mechanics of
disordered systems to proceed. The advantage of this approach is that it en-
riches the conceptual tools of the energy landscape framework for interpreting
experiments and provides a set of algorithms that can be quantitatively used.
The other thread of approach investigates lattice models and off-lattice models
(see below) of heteropolymers by using computer simulation. The advantage
of this approach is that it provides controlled tests of the theory, by accessing a
broad range of regimes not necessarily found in a laboratory, and perhaps most
significantly visual representations that make the ideas concrete for everyone.
In this section we review the formal statistical mechanical approaches and some
of the new ideas that come into play in even simple microscopic theories.

The REM can itself be used to relate landscape characteristics to the mi-
croscopic forces. At first, the assumed lack of correlation between configu-
rations would seem to be a severe approximation. To be at all meaningful,
characteristics of the complete energy landscape of a heteropolymer must be

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
7.

48
:5

45
-6

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

76
.2

4.
25

.2
08

 o
n 

03
/1

5/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



   

P1: NBL/ary/dat P2: N/MBL/plb QC: MBL/agr T1: MBL

July 31, 1997 9:34 Annual Reviews AR040-19

THEORY OF PROTEIN FOLDING 561

described with additional order parameters that quantify the way in which the
energy landscape is stratified (15, 60). This is quite different from the situation
where the REM is applied to magnetic spin glasses (44). The primary quantita-
tive parameters of the energy landscape model, the entropy and the fluctuations
in energy, depend on several gross characteristics of partially folded proteins.
The most important additional order parameter is the degree of collapse of the
heteropolymer. Much of the work by Dill and coworkers has focused on this
topic (61). In the energy landscape context we noted that frustration arises from
nonlocal interactions. Local interactions can be satisfied individually by local
adjustments in a strictly one-dimensional model. Thus a fully extended chain
does not have a rugged energy landscape. Bryngelson & Wolynes showed how
the ruggedness depends on the overall density of a polymer globule (62). Using
a simple Flory theory of the entropy of such a globule as a function of its degree
of collapse, they showed that the glass transition is strongly coupled to the col-
lapse transition and, indeed, can only occur once collapse is thermodynamically
favorable. Lattice simulations by Socci & Onuchic support this notion (54). An
important qualitative result of their analysis was that the search difficulties
that can only occur because of landscape ruggedness are also already partially
simplified by the reduction in entropy due to collapse. Therefore collapse has
somewhat contradictory effects on rates of folding and conformational search.
The observation that the glass transition occurs only in collapsed states also sim-
plifies the approximate treatment of glass transitions for interaction potentials
with a realistic level of complexity. In these engineering applications of energy
landscape theory, discussed in the previous section, highly collapsed structures
can be generated on the computer or modeled as alternate native protein struc-
tures from a database. This has allowed the use of the REM approximation to
crudely locate transition temperatures in such models and to design optimal
energy functions for structure prediction, as we discuss below.

Stratified random energy models can also be used to take into account other
order parameters in folding. At least partially because of its name, secondary
structure has always played an important role in the discussion of folding. The
helix-coil transition, as studied by the classical theories of the 1950s (6), can
play an important role even before the protein molecule collapses. Peptide frag-
ments often have a weak tendency to form their final correctly folded structure
autonomously or to form helices even when ultimately they will not in the
folded protein (63, 64). Qualitative notions such as the framework model and
the diffusion-collision hypothesis advanced the idea that secondary structure
formation, nearly on its own, could account for the physical basis of folding.
The modern analysis shows this is not sufficient, but secondary structure for-
mation can be ignored only at great peril (23, 65). The molten globule state
of many proteins contains considerable amounts of local secondary structure,
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such asα-helices. This is sometimes the case even when the final protein does
not contain helices (66). Desolvation makes this necessary in order to satisfy
the strong constraints of hydrogen bonding. The energy landscape of a polymer
therefore depends on the amount of helix present as well as on its degree of
collapse. It is possible to simultaneously take into account helix-coil transitions
and collapse in a REM for the heteropolymer (67). The local interactions of
helix formation are one dimensional. The effect of hydrogen bonding on en-
tropy can be taken into account through the use of two order parameters: one
measuring the amount of helix, the other measuring the number of defects in
the helical structure. The finite energy cost of a defect in a one-dimensional
system is the primary cause of the rounding of the helix-coil transition rela-
tive to a true phase transition in three dimensions. In the absence of collapse
the combinatorics associated with these order parameters is straightforward.
New phenomena enter because of the interplay between the local polymer con-
figuration and collapse. An entirely helical chain cannot take advantage of a
general hydrophobic attraction or advantageous random contacts, so it will not
be collapsed. If we know the polymer is collapsed through these interactions,
we must take into account how the entropy of the chain is reduced through
excluded volume and its confinement to a globular structure.

When these effects are taken into account for rigid chains, it becomes clear
that the polymer will also order in a fashion expected for liquid crystals forming
bundles of helices most favorably. These effects can be taken into account using
theories of polymeric liquid crystal transitions by Flory and coworkers (68–
70), Onsager (71) and Grover & Zwanzig (72). This analysis makes clear that
even for the homopolymer, the secondary structure and tertiary structure can
be in conflict and exhibit frustration. This was also seen in models by Bascle
et al (73) of the hydrophobic homopolymer collapse with secondary structure.
The primary effect of these partial orderings is to considerably reduce the
configurational entropy of the chain even before heteropolymer effects are taken
into account. This is of great importance in describing the global landscape of
real proteins as we discuss below.

Still more order parameters stratifying the energy landscape can be taken
into account while otherwise keeping to the REM level of approximation. One
of the more important of these is the fraction of secondary structure that is
locally correct. Locally correct secondary structure might be induced by local
conformational signals in the sequence. Prolines, for example, often break up
helices while end capping sequences for helices have been proposed. Saven
& Wolynes (74) have shown how such local conformational signals are more
effective in the collapsed helical state because of the already large degree of
entropy diminution caused by collapse with hydrogen bonding. These ampli-
fication effects arise from the cooperative loss of entropy density caused by
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collapse. If minimally frustrated, such local signals should not conflict greatly
with tertiary structure guiding forces. Using peptide studies to estimate the bare
local signal strength predicts that one third of the energetic structural specificity
can come from this source.

The microscopic approach based on the REM can be taken somewhat further
through the use of a generalized version of the REM in which there are uni-
form correlations in the landscape. These are not describable by global order
parameters because they refer to a triangulation of the landscape—each pair of
structures has some degree of correlation that describes their similarity in en-
ergy. A scheme that takes into account the pair correlations of energy levels was
introduced for spin glasses by Derrida and is known as the generalized REM
(GREM) (75, 76). It can be used to better approximate transition temperatures
but also to characterize more completely the basins of attraction once freezing
occurs on the landscape.

Plotkin et al have developed the correlated landscape approach for the RHP
(77). The primary new ingredient needed in the theory is a treatment of the
entropy of a chain as a function of its fractional similarity to another chain
configuration in terms of pair contacts. This problem resembles the statistical
mechanics of vulcanization, and many useful approximations from that theory
can be used and extended (50, 78, 79). The essential physical result is that the
first few contacts to be organized in folding are more entropically costly than
later ones. The log number of basins is reduced through correlations by 70%,
thus limiting the difficulty of the search problem at the glass temperature. The
theory smoothly goes over to the REM in all details when highly cooperative
many-body forces are dominant, but one important quantitative result is that
even for the worst case of pair interactions alone, the glass transition temper-
ature is actually very little changed by the correlations, thus justifying the use
of simpler theory for many quantitative uses such as the structure-prediction
algorithm (51, 80). Also, Pande, Grosberg, and coworkers have shown that cor-
related landscapes are important when studying minimalist folding models (81).

The correlated landscape model can be easily extended to deal with the in-
troduction of the minimal frustration necessary to obtain a funneled landscape.
It is necessary only to postulate a priori that a particular structure for the given
sequence is much more stable than the typical GREM ground state. Plotkin
and collaborators have used this to find the form of the free energy as a func-
tion of the topological order parameterQ on a funneled landscape (82). An
important question highlighted in this approach is the physical origin of the
thermodynamic barrier to protein folding under given conditions. In the sim-
ple pair interaction model, their barrier is rather low and is largely entropic
(82). Quantitative treatment of the barrier height requires consideration of the
coupling to the overall degree of collapse and suggests that it is important
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to consider the partially folded protein as having a core-halo structure with a
high-density well-folded interior surrounded by a low density halo. The addi-
tion of many-body forces that mimic surface area models of hydrophobicity
leads to larger thermodynamic (largely energetic) barriers between folded and
denatured states in this treatment.

An extremely important statistical mechanical tool for investigating the con-
nection between the microscopic forces and the energy landscape of proteins in
heteropolymers has been the replica method from spin glass theory (83). The
method was first used for polymers but truly flowered in the study of random
magnetic systems. This technique has some forbidding mathematical aspects
both for the neophyte and for the initiated. It has, however, been studied exten-
sively in the statistical mechanics of magnetic spin glasses, and a reasonably
good physical feeling for the meaning of its results can be obtained in the study
of those magnetic systems. A desirable feature of the technique is that it puts the
theory of protein and heteropolymer landscapes on the same footing as these
other phase transition systems for which the universality classes of the ordering
transitions are believed to be understood.

Secondly, while the algebra is sometimes complicated, the manipulations
used in replica methods resemble in many ways the standard field theoretical
techniques used in the condensed matter physics of homogeneous systems, so a
variety of standard approximation methods can be used, albeit with some care.
In addition, the properties that have been understood for spin glasses below their
transition temperatures can be used to discuss non–self-averaging behavior of
proteins and heteropolymers. Indeed, it turns out that several questions that
are abstract and difficult to test experimentally for spin glass phase transitions
of magnets turn out to be extremely important and particularly apropos in the
experimental study of proteins. It is likely that some of the fundamental and
surprising results from the theory of spin glasses belowTC, such as ultrametricity
(84), will first be tested in the context of biological heteropolymers.

Early treatments used replicas only to study the role of disorder in expanded
phases where the excluded volume problem was the interesting question (85–
88). The first treatments of RHPs addressing folding with replica methods
were done by Garel, Orland, and coworkers (12, 89, 90) and Shakhnovich &
Gutin (91). They started with the partition function of a connected polymer
interacting with random interactions, sometimes supplemented with three-body
interactions that prevent nonphysical collapse of the polymer chain and allow
the inclusion of torsional effects. The basic partition function for a single chain
with a given sequence ofN amino acid residues and, therefore, a single set of
interactions has the simple form

Z =
∫ N∏

i=1

d Eri

N∏
i=1

δ[(ri−1− ri )− a]
∏
i< j

e−βVi j (ri j ), 13.
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whereβ = (kBT)−1. The vectorsEri denote the position of selected backbone
atoms, typicallyCα atoms, and theδ function product imposes the chain connec-
tivity constraint, e.g the distance between consecutiveCα values isa = 3.8Å.
For lattice simulations this term would be modified to specify the lattice spac-
ings. The monomers interact only when they are in contact, soVi j = vi j δ(ri−r j )

and the individualvi j values were chosen as independent Gaussian random
variables. This partition function is analyzed in the continuum limit familiar
in polymer theory, thereby giving an expression for the single chain partition
function as a path integral:

Z =
∫

DEr (s) exp

{
− 1

2a2

∫ N

0
ds

[
dEr (s)

ds

]2

− β/2
∫ N

0
ds
∫ N

0
ds′vss′δ[r (s)− r (s′)]

}
.

14.

It is at this point that the replica technique is introduced in order to carry out
the average of the free energy that is the logarithm ofZ over random sequences:

〈log Z〉 = lim
n→0

〈Zn − 1〉
n

. 15.

The strange mathematical aspect of the replica theory for〈log Z〉 is that it
involves taking an apparent unphysical limit of a very unusual partition function.
For fixedn, Zn is the partition function ofn noninteracting copies of the same
polymer system. This must be computed for general values ofn; then finally
the limit of n going to zero is taken. Many analytic continuations are apparently
possible. The convenient feature of replica analysis is that the average ofZn

over the Gaussian noise gives an effective Hamiltonian in which the different
copies (that for a given sequence did not interact) now are explicitly interacting
together

〈Zn〉 =
∫ ∏

α

DErα(s) exp

{
− 1

2a2

n∑
α=1

∫ N

0
ds

[
dErα(s)

ds

]2

+ β
2〈v2〉
2

×
∑
α,β

∫ N

0
ds
∫ N

0
ds′δ[rα(s)− rα(s

′)]δ[rβ(s)− rβ(s
′)]

}
,

16.

where we have ignored the effects responsible for chain collapse, and〈v2〉 is the
mean square value of the random variablesvi j values. The effective interaction
between copies simply reflects the fact that a state that is low energy for one
copy of the system will also be a low-energy state for the other; thus they will
seem to be attracted to the same point in configuration space and effectively
seem to be attracted to each other. An interesting analogy is to children in the
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presence of an ice cream wagon. Each child is attracted to the ice cream wagon
because of its desirable product. Because of this, when many children hear the
ice cream wagon, they all go to the same place as if they were attracted to each
other, but instead, they are simply all finding a common favorable situation.
Eventually the replica interaction can evolve into a real one. (Note how lasting
friendships were made by those kids.) The apparent attraction between copies
allows one to introduce a new order parameter, reflecting the similarity of
different thermally occupied configurations. This order parameter is analogous
to one already introduced in the theory of spin glasses by Edwards & Anderson
(92). It has the form

qαβ(r, r
′) =

∫ N

0
dsδ
[Erα(s)− Er ]δ[Erβ(s)− Er ′]. 17.

We can see that this order parameter measures whether two different copies
of the same system have related three-dimensional structures. In their first treat-
ment of the problem, Garel & Orland (93) assumed thatqαβ was symmetrical.
While this crudely locates the phase transition in temperature, the symmetrical
approximation is not good enough for describing the nature of the transition.
As Garel & Orland themselves argued, the RHP should have a phase transi-
tion something like that of the Potts spin glass (93). A Potts spin glass is a
random magnetic system in which the spins have multiple pointing directions.
They tried to make this connection through thinking about the lattice version
of the theory rather than the continuum path integral. In fact, there are more
general grounds for believing this. While seemingly exotic, Potts spin glasses
represent the general case of a system of interacting objects lacking special
symmetry. Gross and coworkers showed that such systems have a phase transi-
tion in which the symmetry between the different copies of replicas is broken,
but in a particularly simple way (94).

Later, Kirkpatrick & Wolynes showed that this type of replica symmetry
breaking exhibited by Potts glasses corresponds to an entropy crisis essen-
tially like that in the random energy model (95), the only difference being the
configurational entropy of groups of states or basins of attractions located at
the transition point. Thus microscopically, the coarse-grained energy landscape
would resemble that of the REM used earlier. Garel & Orland (93) did not
explicitly construct solutions for the path integral that lacked replica symmetry.
This was first done by Shakhnovich & Gutin (91). Their replica calculations
showed that it was important for the polymer globule to first collapse before the
glass transition exhibiting replica symmetry breaking could occur. They were
able to describe the replica symmetry breaking by mapping the problem of the
polymer chains interacting with each other onto a quantum mechanical problem
in 3n-dimensional space. The important quantitative result from the solution
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of this quantum mechanical problem is the scale of the vibrational fluctuations
around a given structure. They were able to show that this microscopic scale
has a discontinuous jump at some point. This discontinuous jump is typical of
a Potts glass phase transition, thus showing explicitly in a microscopic model
that the RHP leads to a coarse-grained energy landscape like that of the REM.

The replica techniques importantly allow one to address other questions that
arise from the microscopic nature of the randomness in the sequence. Instead
of taking the pair interactions to be individually Gaussian random, one can take
each amino acid of the sequence to be a multivalued random variable. This,
of course, gives rise to correlations between different pair interaction energies.
Garel & Orland investigated such a model in which the interactions are of the
contact type and separable into a sum of terms involving the physicochemical
properties of the amino acids in the sequences that are taken to be random (89).

An interesting aspect of this model is that it can undergo a rather simple type
of ordering, not involving replica symmetry breaking. In this ordering, the dif-
ferent sorts of residues can separate from each other. This so-called microphase
separation is the essential feature of many models of folding, notably those due
to Chan & Dill (61) that arise from quantitatively modeling Kauzman’s seminal
suggestion that hydrophobic residues find themselves invariably in the core of
a protein, while the surface is largely hydrophilic (5).

Whether random sequences lead to microphase separation or to replica sym-
metry breaking depends on the rigidity of the polymer chain and the number
of residue types. If only two types of residues are used and the chains are very
flexible, microphase separation wins, whereas if many types of residues are
used, or the chains are rigid, the Potts spin glass type of transition is more
important. A detailed description of this competition in both phases of random
heteropolymers has been carried out in a series of papers by Shakhnovich and
collaborators (96–98). Pande et al (99) have also developed a general replica
formalism to deal with this problem for the multiletter code.

The replica methods require a specification of the ensemble of interactions.
They are thus most easy to apply to the fully random heteropolymer that does not
include the constraints of minimal frustration. The replica tricks were first used
to study a minimally frustrated model of protein folding by Sasai & Wolynes
(100, 101). They explicitly studied the associative memory Hamiltonian intro-
duced by Friedrichs & Wolynes for structure prediction (102). Most of their
analysis, however, is based on a model in which there is a particular struc-
ture that dominates the energy landscape while competing structures contribute
to a Gaussian random noise. Thus their analysis applies to a phenomenolog-
ical model that is minimally frustrated but differs from lattice models only
in having both short- and long-range interactions in space and sequence. The
Gaussian noise, which still acts in addition to the terms in the energy function
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correctly guiding the protein to its minimally frustrated ground state, is av-
eraged over using the replica trick. Because of the long-range interactions in
sequence, the direct mapping onto a simple time-independent quantum me-
chanical problem used by Shakhnovich & Gutin (91) was not available to Sasai
& Wolynes (100, 101). They introduced a new approach to the replica statis-
tical mechanics based on a replica version of Feynman’s treatment of the po-
laron. The same technique was later used for other problems involving random
higher-dimensional manifolds (103). Sasai & Wolynes (100, 101) introduced a
reference Hamiltonian that reflects the possible phase transitions of collapse,
ordering in the correct structure and the replica symmetry breaking. The famil-
iar Peierls variation principle, now in replica space, was used to find the phase
diagram. Their diagram is essentially isomorphic to the phase diagrams ob-
tained for minimally frustrated partially random heteropolymers using random
energy model approximations by Bryngelson & Wolynes (10).

An interesting feature of the replica approaches is the importance of the
vibrational entropy describing fluctuations around both local minima and the
native structure. Both the folding transition and the trapping transitions then
have instabilities and an associated Lindemann criterion for the mean square
fluctuations about the appropriate structures (100, 101). A similar such insta-
bility point occurs in the theory of the liquid glass transition as well as in the
more general Potts spin glass. The instability point for the glassy metastable
states reflects the point at which dynamics changes from an inactivated hydro-
dynamic type well described by mode-coupling theory to one involving hopping
between different states. This dynamical transition occurs at a higher temper-
ature than the ideal glass transition temperature. The chain dynamics should
depend greatly on the proximity to the dynamical transition. For the associative
memory protein models with long-range interactions in space studied by Sasai
& Wolynes (100), the dynamical freezing temperature is close to that at which
the globule is first formed. The transition to activated dynamics, however, de-
pends on the range of the interactions. Using the same approach, Takada &
Wolynes have recently discovered that models that are minimally frustrated
but with short-range interactions have a distinctly lower dynamical transition
temperature (104). Thus activated escape from traps actually occurs at a lower
temperature. A phase diagram indicating both instability points for the folded
structure and for traps, reflecting the entropic smoothing of the landscape, is
shown in Figure 8.

In these microscopic treatments, the minimal frustration is still put in phe-
nomenologically. One might well ask how to pre-specify the ensemble of fold-
able sequences. This may be very important when one considers recent efforts
using combinatorial synthesis to make foldable proteins (105, 106). As we have
already seen from phenomenological arguments, foldable sequences must be
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Figure 8 Phase diagram for a short-range minimally frustrated heteropolymer. Both thermody-
namic transition lines and instability curves are shown. The ordinate is the temperature in units of
stability gap, while the abscissa is the ruggedness in the same units. Solid curves separate different
static phases, and dotted curves represent the boundaries at which metastable states become unsta-
ble and disappear. The dashed curve shows the glass transition in the metastable unfolded state. The
M1 region is the equilibrium molten globule phase where traps are entropically unstable, yielding
a monotonous free energy landscape. TheM2 region still corresponds to the molten globule state
but where the landscape is rugged because the system is below the dynamical glass transitionTA.
G corresponds to the ideal thermodynamic glassy phase. In theF1 region the protein is folded but
a free-energy barrier exists to the unfolded state while inF2 folding is downhill. F3 corresponds
to a region where the folded state is stable but, since the molten globule is glassy folding, is very
slow. The values of the parameters used in the calculations by Takada & Wolynes (104) were made
to correspond roughly to the lattice simulations described in the next section.

stable at a higher temperature than the glass transition for most random se-
quences. This can be turned into a formal criterion for describing the ensemble
of foldable sequences by specifying the energy of the ground state structure.
Ramanathan & Shakhnovich have introduced an ensemble of selected sequences
according to a selection temperature that is thermodynamically conjugate to the
ground state energy (107). This ensemble, rather than the purely random one,
can now be used along with the explicit replica technique. The phase diagram
obtained in this evolutionarily selected ensemble agrees with that of Sasai &
Wolynes (100) in qualitative form, although the quantitative mapping between
the two models is not entirely trivial.

An alternate and very interesting approach to an ensemble of minimally
frustrated proteins has been proposed by Pande et al (108). They invented an
ensemble describing a polymer that is meant to bind to a particular ligand. This
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also gives rise to minimally frustrated sequences. Their mathematical ensem-
ble corresponds rather closely to the experimental procedure of imprinting. In
this method, sequences are assembled on a template and chemically bonded
together. This might be described as a Lamarckian evolution of foldability as
opposed to the Darwinian approach of the Ramanathan-Shakhnovich ensemble.
Various scenarios for the origin of foldable proteins in the primeval soup can
be based on such imprinting mechanisms. It resembles the famous clay origin
of life espoused by Cairns-Smith (109).

The statistical mechanics of sequence selection can explain many provocative
features of the natural taxonomy of proteins. Finkelstein et al use it to understand
the paucity of energetically costly local structures in natural proteins, although it
would seem these could be allowed by compensating stabilization over design
of other parts of the protein (110, 111). Wolynes has used it to discuss the
relation between the observed approximate symmetries of natural proteins and
the symmetry of clusters with magic numbers of atoms (112), an issue also
addressed by lattice simulations and other arguments (113, 114).

Almost all microscopic approaches to the energy landscape of proteins and
heteropolymers rely on approximations with an element of mean field theory.
More needs to be done to address this. Shakhnovich (97) has deduced a Ginzburg
criterion suggesting that mean field theory is exact for equilibrium questions.
This analysis is based on the usual low-order perturbation corrections to mean
field (97). While adequate for the usual polymer aspects, it does not include the
nonperturbative effects that are known to be important in spin glasses (95, 115–
118). Thirumalai has presented a qualitative argument that contains such effects
(119). Franz et al have argued that the mean field approach is inadequate because
one can apply the same approximation to the random directed-polymer, which
models a noninteracting polymer absorbed on a random surface, but this has
been shown to be mean field–like only in very high dimensions (120). The spin
glass defect configurations, which are worrying for RHP, are even more effective
in the directed-polymer case because of its special quasi one-dimensionality of
interactions along the sequence. At this point the mean field arguments seem
adequate for the smaller protein-like systems studied by simulations. This may
be because the defects are large, i.e. of the order of the size of natural protein
domains.

SIMULATION OF MINIMALIST MODELS

As discussed above, the energy landscape theory suggests there are several
scenarios for folding kinetics and mechanisms (15). This diversity has been
observed in many computer simulations of the folding event and has aroused
considerable interest in the folding community (121). Such simulations can be
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carried at various levels. Ideally we would like to have all calculations performed
at the atomistic level, including all the details of the protein-solvent environ-
ment. The main limitation is that the overall time scale of the folding events can
extend from milliseconds to seconds, far from the reach of the present molecu-
lar dynamics simulations. For this reason, this approach has primarily provided
insights into local aspects of folding (122–125) (such as helix formation) and
has also been successful in characterizing ensembles of deliberately unfolded
proteins (126–132). Because of the limitations of the atomistic models, more
has been learned about the overall folding process from minimalist models of
protein folding (133). They include the simple lattice models exploited early
on by Gō (134) and Covell, Jernigan, and coworkers (135–138) and devel-
oped most extensively by Dill and coworkers (16, 61, 139, 140). More recently,
several other groups, including Shakhnovich, Thirumalai, Karplus, Scheraga,
Pande and Grosberg, Socci, and Onuchic (22, 54, 141–148) have vigorously
pursued the simple forms of these models toward a better understanding of the
folding mechanism. Lattice models have been elaborated quite completely by
Skolnick and coworkers (149–153) into schemes that show great promise for
structure prediction. Minimalist models are not confined to lattices. Off-lattice
models were used very early on by Levitt & Warshel (154) and more recently
by Friedrichs, Wolynes, and coworkers (102, 155, 156), Thirumalai and collab-
orators (157–160), Berry, Wales, and collaborators (161–164), Sasai (165), and
Friesner, Honig, and collaborators (166, 167). Many of the same features dis-
cussed by simulators of lattice models have been seen as well in the continuum,
sometimes earlier in fact. Because of the greater variety of continuum models,
there has been less quantitative comparison of simulation results to analytical
theory, which is why we focus here on the basics of lattice models and their
interpretation using landscape ideas.

The advantage of studying the lattice models is that an in-depth analysis (on
occasion both exhaustive and exhausting) can be performed, yielding detailed
answers and information. Interpreting the results using the landscape theory
is essential because minimalist models make many artificial simplifications,
and theory should be the guide to what are artifacts of the model and what
are common features of model proteins and real ones. It is important to bear
in mind the simplifications associated with these lattice models. To make this
point clear we now discuss the basic protocol of lattice simulations, using as an
example some of the studies of Socci & Onuchic.

The most studied lattice model consists of a string of connected beads with
fixed bond length that are allowed to move on a cubic lattice in two or three
dimensions. This has a venerable history in polymer physics, and its use for
proteins was pioneered by G¯o and coworkers (134). The length of the chain is
at the simulator’s disposal, but in three-dimensions, the paradigm system is a
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Figure 9 A random configuration for a 27-mer sequence encountered en route to the native
structure. The maximally compacted conformation for this sequence, not shown here, has the
shape of a 3× 3 × 3 cube.

27-mer. A felicitous aspect of the 27-mer is that, in addition to stochastic sam-
pling methods, one is able to completely enumerate all its maximally compact
structures (3× 3× 3 cubes) (140). In order to address the sequence-to-structure
information transfer problem, which is the central question of folding, at least
two different kinds of beads are needed. Figure 9 shows a random configuration
encountered en route to the native structure. Kinetic simulations start from a
random configuration on the lattice, and a series of configurations are generated
by the conventional Monte Carlo kinetics procedure (168–171). The relation-
ship between lattice dynamics and real time dynamics has been a main concern
since the early 1970s. A variety of move sets has been investigated both in
the context of proteins and for dense phases of polymers. In the dense polymer
phase, there is a strong dependence of the dynamics on the move set chosen, but
for model proteins, which have a large surface area allowing less constrained
motion, the effect of changing the move set is usually simply a rescaling of
the overall time scale. Global moves are not normally allowed, so for larger
proteins where domain motion may be involved, the move set dependence may
become more critical.

Using the simplest possible potentials between the different beads already
yields interesting information. The first set of potentials (61, 134) only included
attractive interactions between hydrophobic groups (H) that are neighbors in the
lattice. A slightly different choice of simple potentials has also been widely used.
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Residues attractively interact with nearest neighbors in the lattice with a stronger
attraction when the residues are of the same kind. Potentials mimicking the full
variety of amino acids are also commonly employed (136, 151, 172, 173), and
occasionally pair interactions are chosen from independent random distribu-
tions, which can facilitate statistical analysis and comparison with analytical
theory (144).

To get at the kinetics, a series of runs are initiated. Statistics for the times to
achieve different ensembles of configurations are monitored. The mean first pas-
sage times are particularly enlightening. Figure 10 shows folding and collapse
times as a function of temperature for a series of sequences with two and three
kinds of beads (15, 23, 148, 174). The nonmonotonic temperature dependence
is striking and very much in keeping with the behavior expected from analyti-
cal energy landscape theory, where folding down the funnel is accelerated by a
stronger thermodynamical driving force as the temperature decreases, but tran-
sient trapping in local minima on the rugged energy landscape is enhanced with
decreasing temperature. For this potential the time to form collapsed structures
is not strongly dependent on sequence at high to moderate temperatures but
becomes strongly sequence dependent at a temperature near the theoretically
expected glass transition temperature. On the other hand, folding is strongly
sequence dependent, even at high temperatures. The fastest folders are the ones
with the largest stability gap. This correlation is most dramatic when we con-
sider folding under conditions where the folded state is required to be stable.
WhenTF < TG, the rate of folding is more than 10,000 times slower (limit of
the simulation time) than the good folding sequences. The fast folders that cor-
respond to well-designed sequences exhibit exponential folding kinetics around
TF and become nonexponential asTG is approached. This distinction between
good and bad folders becomes more important as the systems grow in size. The
ratio betweenTF andTG becomes more kinetically relevant for larger systems.
As system size increases, since the configurational space grows exponentially,
a larger separation betweenTF andTG becomes necessary for a single domain
protein. Larger proteins in nature are generally multidomain.

Many minimalist simulations have addressed the question of foldability. As
discussed earlier, this is a simplified formulation, since we must specify nec-
essary time scales and thermodynamic conditions to be precise. In any case,
most of them come to conclusions that are consistent with theTF/TG criterion
that quantifies the minimal frustration principle to achieve fast stable folding
proteins. Two early off-lattice simulations make this connection. Friederichs,
Wolynes, and coworkers discuss the capacity of associative-memory Hamilto-
nians to fold heteropolymer chains to correct structures in terms of this ratio
(102, 155, 156). Thirumalai and coworkers designed an off-lattice bead model
and examined its lower-energy states (157). They suggested the foldability
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Figure 10 Folding times, collapse times, and thermodynamic stability versus the inverse temper-
ature for several designed two-letter code (2LC) and three-letter code (3LC) 27-mers. The potential
used favors strong (weak) attractive interaction between neighboring residues of the same (differ-
ent) kind. Since the entire range of temperatures is scanned, there is only one free parameter that
determines how fast folding is compared to collapse for the well-designed sequences. The results
presented here are for the potentials where collapse is rapid relative to folding. The units of energy
are arbitrary and are chosen to have a theoretical glass temperature close to one. All the two-letter
code sequences have been designed under the constraint of a ratio of 14:13 between monomer types.
The three-letter code sequences are designed by selectively introducing a third kind of residue in
our designed two-letter code sequences (23, 54, 148, 174).

The (kinetic) glass transition is chosen when folding times become extremely long (of the order
of 100 times longer than the fastest folding time) (see 23 for details). The mean first passage time
for collapse is sequence independent, until glassy dynamics takes over forT ∼ 1. (The maximally
compact conformations have 28 contacts, and we define collapse when the first 25 contacts are
made.)

The ground state energies for sequences 2LCa, 2LCb, and 2LCc are−84,−80, and−76, respec-
tively. For two-letter sequences with fixed composition, the one with the lowest ground state seems
to be the fastest folder. This difference becomes pronounced upon examination of the folding tem-
perature,TF where the probability of being in the native configuration is 50%. The fast sequences
haveTF > TG. From the 2LC sequences, it appears that the solution to the design problem would
be merely to minimize the energy of the native configuration. This misconception is clarified upon
comparison of the 2LC and 3LC sequences. The best designed 2LC sequence hasTF/TG ∼ 1.3. By
changing the designed 2LC sequences with a third kind of monomer, the ground state energy of the
best designed sequences did not change, but the energies of the other collapsed configurations were
raised. This effectively increased the stability gap and thusTF, and since these nonnative collapsed
states have weaker nonnative contacts,TG became smaller. With the help of the third monomer it
was therefore possible to raiseTF/TG to 1.6. The design strategy should be to maximize the energy
gap between the native configuration and a typical collapsed configuration (stability gap) in units
of the roughness.
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was related to a gap in the low-energy spectrum that would be expected if the
design satisfied a largeTF/TG. Leopold et al have shown that good folding se-
quences have a funnel-like landscape that only exists for minimally frustrated
heteropolymers and illustrated both the spectrum of states and kinetic connec-
tivities of a folding and nonfolding sequence (22). While preliminary results of
another lattice calculation suggested no connection of foldability and minimal
frustration (141), a later extension of these studies by Sali et al (144) con-
curs with the landscape ideas. They also formulated their foldability criterion
in terms of an energy gap. In a survey of two hundred random sequences of
27-mer, kinetic foldability at a fixed temperature correlates well with the gap
for this family of sequences. They did not account for stability when analyzing
their data. It is clear when this is taken into account that the appropriate gap
involves the difference between the folded state energy and the thermal average
of typical collapsed unfolded states with which it competes. That gap is more
precisely related toTF/TG for a family of sequences with similar roughness,
as can be noticed for the collection of 2LC sequences in Figure 10 (54, 148).
Simulations on continuum models by Hao & Scheraga also provide supporting
evidence for theTF/TG criterion (175, 176).

Joint consideration of stability and kinetics is vital for understanding fold-
ability. The fact that several studies only focused on the kinetic aspects has been
the source of most of the controversies. Figure 10 clarifies this point. It shows
that sequences that have mean first passage folding times not very different for
a given high temperature differ substantially in their ability to fold if compared
at their respectiveTF.

Recently, renewed controversy has arisen about quantifying foldability.
Klimov & Thirumalai suggested that one should compareTF with the collapse
temperature (177). Their simulation shows that the larger this ratio, the faster
sequences fold. This criterion is not inconsistent with theTF/TG criterion, since
Bryngelson & Wolynes showed theTG is always below the collapse tempera-
ture (62). For fixed average hydrophobicity,TG and the collapse temperature
are strongly correlated (54, 62). WhenTG of the collapsed manifold is fixed,
decreasing the average hydrophobicity does in general speed up folding as ex-
pected, since less compact structures yield less ruggedness (54). An amusing
feature of the Klimov & Thirumalai (177) work is that they clearly illustrated
that the gap must be defined through the stability gap defined earlier (23), not
by the first excited state gap, with which it is sometimes confused. Their study
shows no correlation between stability and the first excited state gap.

Other routes to minimally frustrated sequences have been explored in lattice
studies. These include sequence design on the lattice by Shakhnovich & Gutin
(142) and Pande et al (147) using explicitly the minimal frustration strategies.
Banavar and coworkers (178) investigated sequence design using a hierarchical
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picture of sequence organization that was not overtly based on the minimal
frustration principle. After examining the energy spectra of their sequences,
they discovered again consistency with theTF/TG criterion (178).

Simulations can also be compared more quantitatively to energy landscape
theory (174). A protein folding along the funnel shown in Figure 4 moves
through an ensemble of partially ordered structures characterized by the simi-
larity measureQ (Q is the fraction of native contacts). In Figure 11, we show a
trajectory of theQ andAcoordinates superimposed on the free-energy contours
for these collective variables (A is the fraction of native angles). The motion is
very erratic and looks Brownian. A simple description of the overall dynamics
within the folding funnel thus should be obtained using a diffusion equation.

Figure 11 A transition trajectory projected onto theQ-A plane for the designed three-letter code
sequence (see Figure 10). The time span is approximately 25% of the folding time, which is
∼ 3×106 Monte Carlo steps. The last part of the trajectory that is connected by lines includes only
one eighth of the full trajectory. The free-energy contours are from−67.5 to−82.5 in increments
of 2.5 in energy units such thatkBTF ≈ 1.5. The trajectory clearly indicates the diffusive nature of
the Q andA dynamics, and that the transition event over the barrier is very short compared to the
full folding time. See Reference 23 for more details.
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The gradient of the free energy determines the instantaneous drift velocity down
the funnel. Superimposed on the drift are stochastic fluctuations inQ reflecting
individual escapes from traps. Even though this diffusion picture appears to
be a continuous process, the existence of a barrier in the free-energy profile
leads to exponential folding kinetics. The roughness of the energy landscape
at any stage acts like a set of speed bumps slowing both the drift and the su-
perimposed Brownian movement. At a given temperature the population of the
various structural strata changes with time according to

∂P(Q, t)

∂t
= ∂

∂Q

{
D(Q, T)

[
∂P(Q, t)

∂Q
+ P(Q, t)

∂βF(Q, T)

∂Q

]}
. 18.

In general the local configurational diffusion coefficientDdepends on the rough-
ness of the energy surface, which determines the escape time from traps. The
diffusion coefficient is inversely proportional to the lifetimeτ(Q) of a mi-
crostate with similarityQ to the native state. If the microstate is deep, it will be
long-lived and the diffusion coefficient becomes small. In the REM analysis,
being trapped in this microstate characterized by a roughness1E(Q)2, motion
must take place over an energy barrierĒ(Q) − Em.p.(Q) = 1E2(Q)/kBT in
the timeτo it takes for a large segment of the chain to move. This gives an
escape time from the local traps that is super-Arrhenius

τ(Q) = τo exp
[
1E2(Q)/(kBT)2

]
. 19.

While the specific temperature dependence is now subject to much discussion,
this relation can be at least used as a phenomenological one. For a well-designed
3LC sequence (see Figure 10), this diffusion coefficient can be obtained directly
by measuring the correlation function of the fluctuations ofQ from simulation
data of the collapsed states alone.

In the case of fast downhill folding at a fixed temperature shown in a Type 0
scenario, a kinetic folding bottleneck occurs at a regionQ‡

kin with the maximum
lifetime or the smallest diffusion coefficient. This maximum lifetime is also a
simple estimate of the overall folding time

τf ≈ τmax(Q
‡
kin). 20.

For a bistable system as in Type I and Type IIA scenarios, the overall folding
timeτf will be determined by the difficulty to overcome the free-energy barrier
and a prefactor that depends on the ruggedness of the energy landscape

τf ≈
〈
1Q2

MG

〉
D−1(Q‡)e1F‡/kBT , 21.

where1F‡ is the free-energy barrier measured from the unfolded minimum to
the top of the thermodynamic barrier.〈1Q2

MG〉 is the mean square fluctuation
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of the configuration coordinate in the molten globule state. This equation sug-
gests that an Arrhenius plot of folding time versus inverse temperature would
be curved, and such behavior is frequently observed in protein folding exper-
iments (179) and lattice simulations, as seen in Figure 10. As the temperature
is decreased, the escape time will increase until the local glass transition tem-
peratureTG(Q) is reached. ForT < TG(Q), the protein has kinetic access to
very few structures, and the protein is effectively frozen into a single or several
low-energy states, each with a specific escape rate. A traditional experimental-
ist would be tempted to describe escape from these traps as a pathway. In this
case the kinetics are dominated by the details of the specific landscape, and the
expressions for the folding time and the diffusion coefficient would have to be
modified for a quantitative treatment.

The theoretical ideas above can be used for quantitatively predicting folding
times in model proteins with a realistic energy landscape topography. Socci et al
(174) have shown that as long as the glass transition falls after the transition
region (top of the barrier in the free energy profile for the collective reaction
coordinate) this is the case. In this limit the single dominant funnel picture is ap-
propriate. The system they studied is the best designed 3LC 27-mer lattice model
(Figure 10). Figure 11 shows a folding trajectory of theQ coordinate superim-
posed on a plot of the free energy. Most of the trajectory consists of diffusive
motion about the molten globule region. Once the barrier has been surmounted,
folding occurs rapidly, taking roughly 105 Monte Carlo steps (≈.03τf ).

From Equation 21 it becomes clear that to estimate the folding times at a
variety of temperatures, knowledge of the free-energy barrier alone is insuf-
ficient. Information about the dynamics must be obtained by calculating the
configurational diffusion coefficient through the complex energy landscape. In
general the diffusion coefficient will depend onQ, but one more simplification
is assumed here. Only the average value ofD, computed for states in the molten
globule band, is inferred from simulations. This was done by computing the
correlation function of the fluctuations of the reaction coordinate1Q(t).

With the diffusion coefficients and free-energy surfaces in hand, the analytical
predictions given by Equation 21 were tested. The results are presented in
Figure 12, and the agreement between theory and simulations is remarkable.
Thus we see the analytical theory based on the actual molten globule dynamics
and funnel free-energy profile is not simply qualitatively correct but can be used
for quantitative predictions of the folding time over a wide thermodynamic
range, at least for well-designed sequences at temperatures above the glass
transition.

To explore this correspondence between real proteins and minimalist protein
folding models, the effect of the additional degrees of freedom have to be
included, particularly secondary structure possessed by real proteins. If separate
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Figure 12 Comparison of the mean first passage times from Monte Carlo simulations with the
theoretical predictions using the landscape theory by Socci et al (174) for the three-letter code
27-mer sequence presented in Figure 10. The agreement between theory and experiments is out-
standing (rates differ by less than a factor of two), clearly indicating that the folding kinetics can
be represented as a diffusive event in theQ reaction coordinate. The configurational diffusion
coefficient is obtained by computing the correlation function of the fluctuations of the reaction
coordinate1Q(t) only for states in the molten globule band (collapsed states only).

phase transitions for ordering these additional degrees of freedom intervene
during folding, a multistep mechanism could result, but in a major part of
the complex phase diagram, the effect of these extra degrees of freedom is
to renormalize the entropy and energy scales for the protein folding funnel
(see phase diagram in the previous section). In the regime of fast collapse, a
simple version of this renormalization can be performed analytically, and a law
of corresponding states relates the 27-mer lattice model to a 60–amino acid
helical protein. This law of corresponding states is in a later section of this
review.

ADVANCED DYNAMICS ISSUES

The analysis of folding kinetics using a single diffusive reaction or progress co-
ordinate is at present the approach that has been most worked out quantitatively.
Another description, which is not orthogonal, has also received attention. When
a barrier exists, one may describe folding down a funnel as being nucleation in
a finite size system (10, 13, 14, 23, 62, 180). If the nucleus is specific and very
small, the quantitative use of a global reaction coordinate for kinetics can be
misleading. To understand the magnitude of the effects, the scientific question
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becomes How big and how localized is the nucleus? If it is large or delocalized,
single progress coordinate language will be more than adequate, with structural
inhomogeneities being a significant but secondary perturbation. This issue de-
pends on details of the microscopic potentials and the thermodynamic condi-
tions of folding. The uniqueness of the nucleus depends on the heterogeneity of
contact energy and thus the quality of design of the protein. Classical nucleation
theory suggests nucleus size further depends on surface tension and the driving
force to the ground state structure, both of which depend on the thermody-
namic conditions (181, 182). In 1990, using the classical theory, Bryngelson &
Wolynes addressed the nucleus size issue, and suggested that the nucleus was
quite large, comparable in size to the whole protein (62). Elegantly refining this
argument to take into account the shape of the protein, Finkelstein suggested
recently that the nucleus would be somewhat smaller, about one third the size of
a single domain protein (183). However, simulations by Shakhnovich’s group
led them to suggest that the nucleus for their designed lattice protein is much
smaller, perhaps containing only three or four key residues (143). They further
showed that these key residues are at locations in the lattice protein where it
is most constrained and argue that naturally conserved residues in real protein
are likely to be this specific nucleus (172). Indeed, experimentally, Fersht and
coworkers have beautifully shown in the most studied example, chymotrypsin
inhibitor CI2, that different residues participate in the folding transition state en-
semble to varying extents (35). The most significant residues are indeed highly
conserved, but a closer examination of the experimental data suggests that the
participation of residues in the transition is still highly delocalized, although it
does not encompass more than half of the protein.

The specificity of the nucleus depends on the heterogeneity of the contact
energies and on the entropy losses of forming contacts during folding. When
heterogeneity is small the delocalization is significant. Socci and coworkers
showed that for a well designed 27-mer whose properties resemble fast folding
proteins, there is a wide but unimodal participation distribution in the folding
transition state that qualitatively resembles the histogram of CI2 experimental
data (180). A bimodal distribution can be found for larger or more poorly
designed models.

Shoemaker et al characterized the structural correlations in the transition
state ensemble of CI2 by using a mean field theory that takes into account the
specific energies of making pair contacts; but they still used a single progress
coordinate for folding (184). The calculation agrees well in locating the central
core of folding participation and exhibits a good correlation with experimental
results from protein engineering for fractional participation for buried residues
but not a very good correlation with highly solvent exposed residues that were
inadequate for the energy function used.
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Energetic heterogeneity also can lead to a breakup of folding into kinetic
domains (62, 185). In lattice studies this has been observed by Shakhnovich
and coworkers (18, 143, 186). One sequence with a specific nucleus in an early
Shakhnovich study (143) actually exhibits two such kinetic domains. Panchenko
et al have used empirical energy functions along with energy landscape analysis
to scan for such kinetic subdomains, which they call foldons in a large group
of natural proteins (187). The foldons they find are comparable in size to the
exons found in the DNA sequences for these proteins but seem not to be always
identical to them. This may be relevant to the debate about why genes have
pieces. There is some overlap of the predicted foldons with late-stage kinetic
intermediates in cases where this has been studied. Most notable here is the
comparison with the late-stage folding of lysozyme and lactoalbumin studied
by Dobson and coworkers (188, 189).

Another constraint on the the use of the reaction coordinate idea is that a sense
of locality of moves must be imposed on the kinetic connectivity. This may be
hard to satisfy, especially if there are topological constraints leading to dead
ends. An alternative formulation of rates can be modeled with global but ran-
dom connectivities. Such globally connected models for minimally frustrated
landscapes, both with and without correlation, have been studied and produce
behavior for the variation of rates with thermodynamics that is qualitatively
similar to that of diffusive dynamics (190, 191). Zwanzig has shown that the
kinetic description depends weakly on the connectivity if it is sufficiently large
(192). Wang et al have gone further and discussed the relationship between the
uniqueness of kinetic paths and connectivity (193).

Equally as important as the thermodynamic free-energy profile along the
reaction coordinate to understand the folding rate is the configurational diffusion
coefficient, which reflects the ease of sampling new configurations and escaping
from transient trap structures. Within the REM approximation this reflects the
full energetic ruggedness of the landscape. The simulations of Socci et al show
that the configurational diffusion coefficient of the 27-mer can be fit with the
REM form but with a diminished apparent ruggedness or with an Arrhenius law
with a large barrier (174). This suggests a substantial but partial participation
of the chain in the motion leading to trap escape. A similar diminished barrier
was also found at low temperature by Gutin and collaborators (194). Those
studies also show trap escape barriers increase with system size at least at low
temperatures.

Analytical treatments of kinetics that go beyond the REM and include the
correlated nature of the landscape are beginning to be developed. Takada &
Wolynes used replica techniques developed for mean field spin glasses to es-
timate the barriers between the onset of activated dynamics (TA) and the glass
transition atTK (104). The predicted barrier heights atTK are in harmony with the
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low-temperature simulation. The generalized REM also can be used to describe
global escape from traps. Wang et al (193) showed that the GREM exhibits the
two transitions atTA andTK and that the correlations significantly diminish the
barrier heights. The dynamic GREM approximation shows a smaller tempera-
ture dependence than that of the simulation values (195).

The existence of a dynamic transition (TA) is a bit controversial. We must
recognize that it can only be crisp for large systems with long-range interactions.
Takada & Wolynes have generalized their earlier mean field calculation to allow
entropic droplet configurations as escape routes (196). The most important
droplets in this calculation are again similar to the entire small protein in size,
suggesting the validity of a mean field approach as a starting point.

At temperatures aboveTA it is not appropriate to describe chain molecule
motion as activated trap escape. Instead, chain dynamics is Rouse-Zimm–like
modified by mode-coupling effects. A fairly advanced mode-coupling theory
for homopolymers was put forward by Schweizer (197). For the heteropoly-
mer a variety of different mode-coupling calculations have been carried out
with results at variance with each other. Roan & Shakhnovich concluded that
there is no dynamic transition (198), while Thirumalai and collaborators, for
a somewhat different heteropolymer model, obtained a transition that depends
on chain length (199). Dawson and coworkers have carried out a numerical
treatment of collapsed dynamics which shows a glass transition (200). Takada
et al recently developed a mode-coupling calculation that is compatible with
the replica theory results (201).

CONNECTION TO FAST FOLDING PROTEINS
EXPERIMENTS

Onuchic et al developed a law of corresponding states to relate simulations of
small lattice models to real proteins (23). The correspondence analysis made use
of an analytical theory of helix formation in collapsed polymers that related the
configurational entropySo to the amount of helical structure (67). The hypoth-
esis behind this approach is that as the protein goes through the hydrophobic
collapse, around 60% of helix formation has occurred (not necessarily the native
helices), just as some think occurs at equilibrium globules, and this collapse is
fast relative to folding. The phase diagram envisioned here is essentially shown
in Figure 13. Even though both of these hypotheses, need of fast collapse and
a fixed amount of secondary structure for collapsed states, are probably too re-
strictive, the general features of the law of corresponding states should remain
the same for more elaborate approaches, at least in the lower part of the funnel.
For a 60–amino acid chain at 60% helicity,So ≈ 40kB, which corresponds
approximately to a conformational entropy of 0.6kB per monomer unit.
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Figure 13 A possible phase diagram for a minimally frustrated, hydrophobic, helical protein.
Depending on the hydrogen-bond strength, the molten globule can have either no well developed
secondary structure, or may be a helical liquid crystaline molten globule, as discussed by Luthey-
Schulten et al (67). The quantitative funnel shown in Figure 4 was drawn assuming the latter is
encountered before the rate-limiting step of folding.

After this renormalization, a correspondence between the lattice model and
real, small proteins can be done by three parameters: configurational entropy,
energy ruggedness of the landscape, and the stability gap that quantifies the
specificity of the native contacts. For a given value of the configurational en-
tropy, the competition between the stability gap and the ruggedness can be
quantified by the ratioTF/TG. TF is the folding temperature (when the occu-
pation of the folded state is 50%).TG is the glass temperature, below which
trapping dominates the folding event. Onuchic et al (23) estimated that a realis-
tic folding funnel for fast folding a 60–amino acid helical protein should have a
TF/TG ∼ 1.6, corresponding to the designed three-letter code sequence in the
lattice. The schematic folding funnel for such a protein is shown in Figure 4. At
TF folding proceeds via a Type IIB scenario with the transition state atQ = 0.60
and a glass transition atQ = 0.71 (recall thatQ measures the density of native
tertiary contacts).

Although the detailed funnel topography was originally proposed using the
correspondence with the lattice simulations, this theoretical prediction parallels
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Figure 14 The folded structure of chymotrypsin inhibtor 2 (CI2) is shown for ensembles with a
transition state value ofQ∗ = 0.45 and with residues colored according to their involvment in the
ensemble (184). Darkest shading indicates strongest participation. The specific hot sites identified
by experiment (35, 202) are indicated by arrows.

later experimental work on small helical proteins obtained by Huang & Oas (24)
for the monomericλ-repressor, a∼ 70 residue protein with largely helical struc-
ture. A transition state located nearQ = 0.5 was obtained. Similar behavior has
been observed by Fersht and collaborators (202) for chymotrypsin inhibtor 2
(CI2), a small 64-residue protein (Figure 14). Even though the comparison is not
as direct because this protein is composed of bothα-helices andβ-sheets, again,
the bottleneck is midway between the folded and unfolded regions. Slow fold-
ing proteins, whose late stages were studied earlier, usually have much higher
Q transition state. Pascher et al (40) have initiated the folding of cytochrome
c by means of photochemical electron transfer, with a strategy analogous to an
earlier experiment using CO photodissociation (37). Since horse cytochrome
c has 104 residues, its folding funnel has a different topography from the one
for the smaller protein. Since the protein has more subunits, entropy is lost
more rapidly in the initial stages, moving the bottleneck higher in the funnel.
This collection of data clearly indicates that the transition state ensemble is
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midway between folded and unfolded states and has considerable configura-
tional entropy; it is thus composed of a large ensemble of states, much as in the
corresponding picture of the funnel.

Even though native contacts participate on average with a probability of 60%
in the transition state, the polymeric nature of the protein chain creates inhomo-
geneity for the probability of individual contacts. By sampling all configurations
with Q = 0.6, the participation probability of individual tertiary contacts at the
transition state can be computed (180). A broad distribution centered around
0.5 is found for these participation probabilities, but with values ranging from
almost zero to one, indicating that the transition state bottleneck is composed by
an ensemble of delocalized nuclei. A similar broad distribution for tertiary con-
tact participation in the transition state has been observed by Boczko & Brooks
in their atomistic simulations of a three-helix bundle (126). Also, experiments
on CI2 by Fersht’s group (35, 203) and on ChY by Serrano’s group (36) provide
evidence for this ensemble of delocalized nuclei in the transition state. These
experiments encourage the application of landscape theory and simulations as
quantitative tools.

The quantitative analysis of the folding landscape topography is just begin-
ning. The advances in theory discussed above as well as new measurements of
residual structure in molten globules and its dynamics already lead to a revi-
sion of the detailed numbers. Nevertheless, the framework is a useful one for
combining results of many experiments into a coherent whole.

PROTEIN STRUCTURE PREDICTION AND DESIGN
USING ENERGY LANDSCAPE IDEAS

In the previous sections we have shown how the energy landscape theory can
be used to interpret the kinetics and thermodynamics of protein folding. It has
long been the hope that such physicochemical work would contribute to the
practical aspects of predicting the structure of a protein from its sequence and
of the design of novel proteins from scratch. These two problems are often
approached in an artistic way that, while pleasing and sometimes successful,
lacks a framework for making organized progress. Energy landscape ideas like
those used to understand protein physical chemistry provide a framework for
these practical engineering questions. The essence of landscape engineering is
that in its simplest form the theory requires quantifying only a few parameters:
δEs, the stability gap between the ground (native or folded) state of the protein
and the mean of the excited (misfolded) states and1E, the roughness of the
energy landscape. Nature has designed its fastest folding proteins to maximize

the dimensionless ratio,TF
TG
≈ δEs

1E ·
√

2kB
So

, and this automatically suggests a

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
7.

48
:5

45
-6

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

76
.2

4.
25

.2
08

 o
n 

03
/1

5/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



       

P1: NBL/ary/dat P2: N/MBL/plb QC: MBL/agr T1: MBL

July 31, 1997 9:34 Annual Reviews AR040-19

586 ONUCHIC, LUTHEY-SCHULTEN & WOLYNES

physically meaningful criterion in the design of energy functions for protein
folding in machina. The essential feature of a potential function is that the
energy of a sequence in its native structure measured from the mean of the mis-
folded states is much larger than the width of that distribution. In such a case
the folded conformation will automatically have an energy lower than that of all
alternative conformations. Nearly all algorithms for predicting structures rely
at some point on minimizing an energy function for a given sequence. While
the algorithm for minimization may not be slavishly identical to the physical
motions, most algorithms still have the property that their computational speed
or reliability depends on the discrimination between the energy of the correct
folded conformation and other false alternatives. Therefore, effective potential
functions for structure prediction should satisfy the principle of minimal frus-
tration just as they do in nature. Similarly, to design a new sequence that will
kinetically and thermodynamically fold, the principle of minimal frustration
must be respected if robust results are desired. Otherwise, small design flaws
will not be tolerated (13, 14).

The energy functions used in structure prediction fall roughly into two cate-
gories: (a) those based on standard bonding and van der Waals interactions that
are used in conventional molecular dynamics studies and (b) knowledge-based
potentials that are derived from known structures. The functions based on quan-
tum mechanical calculations and fit to spectroscopic data on small molecules
have been well parameterized to describe the motion of the atoms about or near
their crystallographic coordinates. It is not yet possible to test whether they are
sufficient to describe the folding process, since the natural process is very slow
on the time scale of atomistic simulations (≈1 ns). Thus the theoretician must
seek simpler interaction functions that can encode sequence-structure relation-
ships. There is much raw material for trying to learn these relationships. Accord-
ing to the latest release of the SWISSPROT database, we know the sequences
{Si } of about 40,000 proteins. A small subset of these proteins, approximately
4000, have been well crystallized or are small enough for structure determina-
tion by NMR, so the mean positions{ri } of all the atoms have been determined.
Energy landscape theory provides a way of understanding the learning process
of extracting important correlations from these raw data. Indeed the energy
landscape theory of structure prediction has many mathematical parallels with
the theories of learning used in connectionist artificial intelligence (204, 205).
Using the fact that evolution has already found out how to design different
sequences{Si } compatible with a given structure{ri }, scientists trying to break
the protein folding code must use all the information collected in the sequence
and structural databases along with such an organized theory of inference.

While the landscape energy ideas provide a way for understanding the algo-
rithms, the idea of extracting energy parameters from a statistical analysis of the
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structural database predates it and originated with the early papers of Tanaka
& Scheraga (206) and Miyazawa & Jernigan (135, 136). In a similar approach,
Sippl and coworkers (207, 208) calculated distance-dependent potentials that
included information about the proximity of the residues in the sequence. Eisen-
berg and coworkers (209, 210) developed effective one-body profile potentials
for each amino acid from studying its context in typical structures. None of these
early methods made explicit use of the energy landscape theory. Therefore it
is no surprise that in application they do not satisfy the minimal frustration
criterion and that multiple minima often plague their use. Since the criterion
that the native state must have a pronounced energy minimum with respect to
the distribution of misfolded conformations is so important for optimization
algorithms to successfully find the global minimum, it is interesting to use it
directly in the design of energy functions.

An approach that puts the learning problem in direct contact with energy
landscape ideas is the use of the associative memory Hamiltonian (AMH). In
1989 Friedrichs & Wolynes introduced an AMH (HAMH ) that encodes cor-
relations between the sequence of the target protein whose structure is to be
determined and the sequences and structures of a representative set of mem-
ory proteins taken from a database (102). In one respect the AMH resembles
the empirical energy functions used in conventional molecular dynamics, by
describing an effective backbone potentialVo common to all proteins. Such a
chain molecule potential for the backbone atoms includes harmonic terms to
induce backbone rigidity and the correct chirality, and to prevent the overlap of
nonbonded atoms. The correlations in the database are used directly to find the
sequence-dependent interaction energies. This is analogous to the way in which
neural networks are built to perform pattern recognition. The novel aspect of the
AMH is its use of pair interactions defined by analogy to the connections found
in pattern recall neural networks. Since the AMH is actually used to generalize
and generate structures for new sequences and not just the old ones, the name
is perhaps not the best—they really are pattern recognition Hamiltonians. The
Hamiltonian has the form (51, 155, 156)

HAMH ({ri j , Ai }) = −
∑
µ

∑
i< j

γ
µ
i j θ
(
ri j − r µi ′ j ′

)+ Vo. 22.

The first term, the associative memory potential, is a function of the pairwise
distance between selected atoms (usuallyC − α or C − β) of residuesi and
j , ri j . γ

µ
i j encodes a degree of similarity between residuesi and j of the tar-

get protein and a corresponding pair in the memory proteinµ, and it may
include information about the physicochemical properties of the residues, their
probability of mutation, or context of the residues in the protein.θ(ri j − r µi ′ j ′)
is chosen for convenience to be a Gaussian function of the distance of the
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difference between the pairwise distance in the target structure and the memory
structure. Notice that if the database is extremely large and we use no particular
rule for associating pairs of residues in the memory with those in the target,
the energy function would be a simple statistical pair correlation function of
the properties encoded byγ in the known database. In that sense the AMH is
just a more general form of pair potential than the statistical pair correlations
introduced above. On the other hand, for a finite database and with limited
rules of correspondence, the AMH can be analyzed in accordance with energy
landscape theory very much in the way Hopfield neural networks have been
studied using spin glass theory. We can see that for a small database, the energy
function has many minima of varying depth corresponding with the structure
of each database or memory protein as well as mixed minima. These minima
are differentiated by the sequence property similarity weightsγ µ.

In essence, each memory protein constructs a small folding funnel. If these
funnels add coherently or only a single one dominates, the Hamiltonian will
not be very frustrated, and a single folding funnel to a structure consistent
with empirical correlations will be formed. On the other hand, if the database
examples conflict with the properties chosen to measure sequence similarity a
rugged landscape results and optimization will give different results dependent
on the starting point. Friedrichs, Wolynes, and coworkers showed that with
naive encodings, the size database that could be accommodated was large but
still inadequate for useful predictions (156). Achieving a coherent addition of the
funnels, even for large databases, that allows generalization to novel structures
requires optimization of theγ -parameters for a given encoding and selection of
appropriate training proteins with their corresponding memory proteins. This
is where the quantitative version of the principle of minimum frustration was
used. Maximizing the dimensionless ratioTF/TG for a set of training proteins
produces a problem very much like the variational principle used in quantum
chemistry. Goldstein et al (51) showed that with the simple energy landscape
analysis the variationally optimal energy parameters can be expressed in terms
of two statistical quantities giving the gap and the ruggedness of the landscapes
for the training examples. They write the average gapδEs = Aγ and the
average ruggedness1E2 = γBγ, whereA is a vector andB a matrix given by
the statistical quantities

A i = 〈λi 〉f − 〈ζi 〉mis 23.

and

Bi j = 〈ζi ζ j 〉mis− 〈ζi 〉mis〈ζ j 〉mis. 24.

λi denotes the frequency ofγi interaction in the folded structures, andζi denotes
the frequency ofγi in the full ensemble of misfolded structures. The explicit
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values ofA andB are obtained by averaging over a set of training proteins with
known structures and simulated molten globule states. According to Equation
12, TF/TG is maximized when the dimensionless ratio R= δEs/

√
1E2 is

maximized. Solving this variational problem is straightforward and does not
have multiple minima. This relative lack of frustration for the decoding task
is important and also relevant for protein design. In fact, this maximization
procedure leads to an explicit formulaγ = B−1A. Simulations with naive
assignments ofγ , e.g. interaction energies between similar residues in the target
and memory beingEsim = −3 and between dissimilar residuesEdis = −1, give
rise to much smallerTF/TG values than with optimization. For an optimized
comparison code based only on hydrophobicity and proximity, the results of
molecular dynamics runs are much more encouraging. Some snapshots of runs
for the small helical protein 2cro using a single correct memory are shown in
Figure 15. The simulation begins with the protein in a random extended form
and shows the collapse and compaction of the protein to its native fold.

This same optimization strategy for learning potentials can be used to learn
parameters in the more conventional forms for potentials that do not explicitly

Figure 15 Simulated annealing run showing the collapse and structure formation of the small
helical protein 2cro (N = 65) using theHAMH energy function with one memory. The simulation
begins with the protein in a random extended form with a radius of gyration typical of a random coil,
Rg = 30 Å. Collapse and compaction of the protein occurs quickly to a state that has roughly the
native topology or fold but has incomplete secondary structure. Continued folding in this compact
state completes the formation of the helices and modifies the tertiary contacts.
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match target proteins with memories (80). These are of course less discrim-
inating because theirTF/TG ratios are smaller. But they can still be used for
screening predictions of protein structures in which different candidates are
compared. An interesting model study of the optimization strategy for deriving
potentials has been carried out by Mirny & Shakhnovich (211). Using a some-
what different averaging scheme from Goldstein and collaborators (51, 80),
Mirny & Shakhnovich (211) also infer a contact Hamiltonian from a set of lat-
tice proteins designed originally with the minimal frustration principle. They
show that the use of the optimization learning scheme gives back a potential that
reproduces the structures. While the exact method in which training proteins are
averaged over might seem to make a significant difference, their study shows
only a few percent improvement in the discrimination score over the averaging
scheme presented by Goldstein et al (51, 80).

What is the relation between the optimization learning schemes and the
older approaches to learning pair potentials? The older approach to extracting
structure-based potentials assumes there is a potential of mean force for the
experimentally observed frequencies of nonbonded amino acid residue pair
contacts. This assumption is puzzling until examined with energy landscape
theory. The potential of mean forceW between two residues in contact at a
distancerc is assumed to be related to these database frequencies through a
Boltzmann factor

exp{−Wi j (rc)/RT} = Pi j (rc)

Pi j (re f )
, 25.

wherePi j (re f ) is a reference probability andT is some effective temperature
usually left undetermined. Using the quasi-chemical approximation that ne-
glects chain connectivity, Miyazawa, Jernigan, and coworkers (136, 212, 213)
described the reference state in terms of various random mixture approxima-
tions. This gives rises to an effective contact energyEi j that is measured relative
to either self-interactions

Ei j = Wi j (rc)− [Wii (rc)+Wj j (rc)]/2 26.

or interactions with some average residue or solvent molecule A

Ei j = Wi j (rc)+WAA (rc)−Wi A(rc)−Wj A(rc). 27.

In the simplest application of these potentials the interaction sites are typically
chosen to be the position of theCα atom or some atom in the side chain of each
amino acid residue. Sippl (208) and others have also constructed potentials
of mean force using radial distribution functionsgi j (r, l ) for pairs of residues
separated by a distance ofl in the sequence

Wi j (r, l ) = −RT loggi j (r, l ). 28.
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Energy landscape theory provides an interpretation of the effective temper-
atures in these expressions, if we neglect the principle of minimal frustration.
If the REM without minimal frustration is assumed valid for natural proteins
(i.e. natural proteins are truly random heteropolymers), the spin glass analogy
used in energy landscape theory suggests that the probability of a particular
ground state energy is given by a Boltzmann distribution at the glass transition
temperature (111, 214). Thus the number of states nearEg is approximately,

n(E) = exp

(
E − Eg

TG

)
, 29.

and if the energyE of a conformation is assumed to be a sum of independent
pairwise contact energies, then the frequenciesfi j of contacts would befi j =
exp(−1Wi j /TG). Here the energies are measured from the average energy per
contact atTG. Again assuming the quasi-chemical approximation to be valid,
the log probability formula is obtained and the mysterious effective temperature
can be identified with theTG.

The knowledge-based potentials of mean force have often been successfully
used to evaluate the compatibility of a sequence with a given structure. The
contact energies generated either from the frequencies or the radial distribution
functions have been used primarily to evaluate the compatibility of a sequence
on a given structure as in the work of Maiorov & Crippen (215). Some of the
progress in this area has been reviewed by Wodak and coworkers (216, 217).
The successful implementation of these Boltzmann-weighted potentials into
prediction by full folding simulations has not been demonstrated. Indeed, re-
cent lattice simulations by Hinds & Levitt (218) using contact energies based on
the procedure of Miyazawa & Jernigan (212) have generated native-like confor-
mations with about 30% of the native contacts in place. This is consistent with
the fact that the principle of minimal frustration was explicitly not used in de-
riving the potentials. The difference between these two types of approaches for
finding database potentials depends on how truly optimized for folding natural
proteins are. Determination ofTF/TG by experiments is central to providing an
answer. Whether any scheme will work may depend on the level of description
used. More encouraging results have been reported when a much finer lattice
grid is incorporated with a more detailed potential that includes many-body
terms and orientation factors (219, 220).

Seemingly different optimization strategies not based on Monte Carlo or
molecular dynamics used to predict protein structures can also be understood
with energy landscape theory ideas. An important practical procedure is the
threading algorithm in which one tries to thread a new sequence onto all the
known structures. It is based on the idea that at least the more common protein
structures are limited in number. The distribution of natural folds is interesting.
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Jones & Thornton have shown that certain super folds dominate the current
database (221). Goldstein and coworkers have explained this using energy land-
scape theory (222), and it has also been shown in an interesting lattice study by
Tang and coworkers (223, 224). Indeed, the total number of structures, may be
limited. Of the current 4000 structures, there are 200 different fold topologies,
and Chothia has estimated that this number will increase to only about 1000
when the sequencing of the human genome is completed (225, 226). Threading
tries to match structure with sequence in a fashion similar to the way sequences
are matched onto each other in phylogenetic analysis. Pioneering papers show-
ing this possibility came from the groups of Eisenberg and coworkers (209) and
Thornton and coworkers (227), and since them many other similar schemes have
been used with potentials of mean force learning of the energy function. In the
most general scheme of this type, the evaluation of this sequence-structure
alignment is based on contributions from pair contact terms,Ect, a pseudo one-
body profile (Ep), hydrogen bonding (Ehb), gaps in the aligned structure (Eg),
and satisfaction of any known experimental constraints (80, 214, 228, 229):

ET = Ep+ Ect+ Ehb+ Eg+ Eexp. 30.

The profile energy (Ep) is a measure of the propensity of an amino acidAi to re-
side in a particular context of secondary structureSSi and surface accessibility
S Ai .

Ep =
N∑

i=1

γ p(Ai , SSi , S Ai ) 31.

The contact energyEct measures the pairwise interaction energies within two
cut-off radii and monitors selected multibody interactions (mb) such as multiple
cysteine bond formations:

Ect =
N−2∑
i=1

N∑
j=i+2

2∑
k=1

γ ct
k (Ai , Aj )u

(
r ct

k − ri j
)+mb. 32.

ri j is the distance between residuesAi andAj , and in simple modelsu(r ct
1,2−ri j )

can be taken as unit step functions that include all short range interactions act-
ing within 5 Å and all intermediate range interactions between 5 and 12Å,
respectively. The energy termEhb provides contributions for backbone hydro-
gen bond formation withinα-helices and betweenβ-sheets. The gap energy
term (Eg) enforces only physically acceptable insertions, deletions, or bulges
in the sequence-structure alignment. The energy term (Eexp) may be used to
aid in guiding an alignment to incorporate experimental data such as known
contacts in an active site. The explicit use of energy landscape theory improves
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the performance of threading schemes. In early threading algorithms the gap
parameters are usually inferred empirically, but the energy landscape theory
allows them to be chosen in an optimal way again by optimizing a stability
gap to ruggedness ratio (214, 228). The simple energy landscape learning ap-
proaches described above can be improved upon when correlations in the energy
landscape are taken into account (230). Rather than using the REM approxima-
tion for the competing alternative states, a self-consistent optimization can be
carried out to improve the discrimination. In this scheme, shown in Figure 16,
low-energy misfolded structures are explicitly constructed in computing the gap
and ruggedness. This has so far been only carried out successfully for energy
functions used in threading because low-energy minima are easy to generate
by this method (229). The self-consistent energy function produces low rms
threading alignments for distant homologs and was used in Figure 17 to predict
a structure for the archeael AK sequence shown in Figure 1 (231).

Many of the same landscape ideas used earlier to develop protein structure
prediction methods have their counterpart in protein design. We may say that
protein structure prediction is reverse engineering, i.e. trying to tease out the
rules nature has used in design. If we are bold enough to assume those rules
already known, then the same mathematical principles can be used for forward
engineering, i.e. sequence design for a given structure. So far this has only been
tested in the artificial world of lattice models, but the study has been enlighten-
ing. Shakhnovich and coworkers used the simple form of the minimal frustration
principle to design sequences of lattice proteins with simple codes (232–234).
For the two letter codes the preliminary results were very encouraging, but in
a contest between Dill, Shakhnovich, and coworkers the simple scheme was
found to fail (235). The origin of the failure for the two letter code lies in the
lack of self-consistency in the optimization, since the MG states were in fact
microphase separated, i.e. correlations exist in the landscape. The situation for
the many-letter code even with the simple approximation seems much better.
Hao & Scheraga (176) and Deutsch & Kurosky (236) have recently proposed a
design scheme using self-consistent optimization. This performs considerably
better. Clearly, to be of practical significance design schemes must be developed
for use with reliable atomistic potentials or several rounds of engineering and
reverse engineering (i.e. learning) will have to be carried out. This is likely to
be a major activity of the future.

The theory of protein folding based on energy landscapes provides a general
framework for thinking about many facets of this complex problem. The next
stage involves many developments. Clearly, the formal theory of folding using
energy landscapes is still developing. At the same time experimental techniques
that allow the submillisecond stages of folding are becoming available. Protein
engineering is allowing site-specific experimental probes to be introduced, and
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Figure 16 The distributions of energy states for a typical training protein before and after one
round of self-consistency. (A) Using the original optimized energy function, the distribution of the
thermal minima of the misfolded states (Gaussian-like curve at the left) lies close to the energies
of the native and homolog structures. (B) By re-optimizing with respect to the mean of these minima,
the energy function is able to better discriminate the correct (native and homologs) structures from
the minima that have many features of real proteins such as partial redistribution of hydrophobic
residues toward the interior of the protein due to microphase separation (229).
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Figure 17 Predicted structure of adenylate kinase fromMethanococcus jannaschii. The structure
was obtained by a mean-field alignment of the archaeal sequence given in Figure 1 to the scaffold
of an uridylate kinase from yeast. The sequence-structure compatibility during the alignment was
evaluated according to Equation 30. Residues believed to be essential in its function to catalyze the
biosynthesis of ADP from ATP and AMP are shown in black.

new information about the correlations of structures in partially folded protein
ensembles is becoming available. The practical aspects of protein science are
also acting to encourage the development of the theoretical perspective. Struc-
ture prediction and actual design of proteins foldable in the laboratory look to
be in sight. The current theory provides a route to achieving these goals.
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