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In this lecture, we begin our foray into stochastic processes. We discuss
random walks and simple birth death processes before moving on
to one of the simplest simulation algorithms for simulating chemical
kinetics: the Gillespie Algorithm. This serves as gentle introduction to
numerical simulations of stochastic processes.

Random Walks and Diffusion

Consider a particle moving in one dimension on a lattice (“Be wise,
discretize!" as M. Kac is supposed to have advised). The lattice sites
are are specified by integers. Assume that at every discrete time step
a particle moves either to the left or to the right with equal probabil-
ity. If the particle starts at position 0, what is the probability distribu-
tion of its positions after N such time steps? The mean displacement
is of course zero since the particle is equally likely to go left or right.
However, from experience we know that the particle is actually likely
to end us quite far from the origin on any given realization. In this
section, we introduce the mathematics to describe such processes.

A random walk can be described as an N letter word of the form
“LRLRRRL...R" where a L or R at the i-th position indicates that
the i-th move is to the left or to the right, respectively. If after N
steps, we have l left moves and r = N − l right moves, our total
displacement is q = r − l = N − 2l. The number of moves with a
fixed l (and, therefore, a fixed displacement q) is the combinatorial
factor NCl = N!/(l!(N − l)!). Since there are a total of 2N possible
walks, the probability of having a displacement q after N steps is just

Pq,N =
NCl
2N =

N!
l!r!

1
2N =

N!

(N+q
2 )!(N−q

2 )!

1
2N (1)

Note that q only takes odd or even values depending upon whether
number of steps N is odd or even.

To simplify this equation, we make use of the Stirling approxima-
tion to the factorial for large M,

ln M! = M ln M−M +
1
2

ln(2πM) + O(
1
M

) (2)
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Figure 1: Random walk on a lattice

and 1� m� M,

ln(M + m)! = (M + m) ln(M + m)− (M + m) +
1
2

ln(2π(M + m)) + O(
1
M

)

= M ln M−M +
1
2

ln(2πM) + m ln M +
1
2

m2

M
+ O(

m
M

). (3)

Using the equations 2 and 3 to expand the factorial in Eq. 1 and
noting 1� q� N, we have

Pq,N =
N!

(N+q
2 )!(N+q

2 )!

1
2N ≈

1√
2πN

e−
q2
2N × 2 (4)

This is just the gaussian approximation to a binomial distribution.
Thus,

Prob[a ≤ q ≤ b] = ∑
q∈{a,a+2,...,b−2,b}

Pq,N

≈ ∑
q∈{a,a+2,...,b−2,b}

1√
2πN

e−
q2
2N × 2

≈
∫ b

a

dq√
2πN

e−
q2
2N , (5)

where we have used the fact that as the lattice size goes to zero sums
can be replaced by integrals and changing l by 1 changes q by a fac-
tor of 2. Coming back to continuous space and time, let us have the
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Figure 2: An example of a random walk

lattice spacing to be ∆x and time steps to be ∆t. Then x = q∆x and
t = N∆t. The approximate probability distribution of x is then writ-
ten as

p(x, t) ≈ 1√
2πN

e−
q2
2N

dq
dx

=
1√

4πDt
e−

x2
4Dt , (6)

where we have defined the diffusion constant D = ∆x2/(2∆t). To
see that this definition is consistent with the usual definition of D, we
can directly derive the evolution equation for p(x, t) starting with the
recursion relation

Pq,N+1 =
1
2
[Pq−1,N + Pq+1,N ]. (7)

Since Pq,N is proportional to p(x, t) for x = q∆x and t = N∆t

p(x, t + ∆t) =
1
2
[p(x− ∆x, t) + p(x + ∆x, t)] (8)

or

p(x, t) + ∆t∂t p(x, t) + O(∆t2) =
1
2
[p(x− ∆x, t + ∆t) + p(x + ∆x, t + ∆t)]

=
1
2
[p(x, t)− ∆x∂x p(x, t) +

1
2

∆x2∂2
x p(x, t)

+p(x, t) + ∆x∂x p(x, t) +
1
2

∆x2∂2
x p(x, t)] + O(∆x4)

= p(x, t) +
1
2

∆x2∂2
x p(x, t) + O(∆x4) (9)

implying

∂t p(x, t) ≈ ∆x2

2∆t
∂2

x p(x, t) = D∂2
x p(x, t). (10)
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Figure 3: Gaussian distribution for
different values of time.

This is known as the Fokker-Planck equation.
If we have many particles with positions xi, the average density

ρ(x, t) = ∑i〈δ(x− xi(t))〉 = p(x, t)×Number of particles. Thus ρ(x, t)
also satisfies equation 10. Thus we derive the diffusion equation in
one dimension, with D identified as the diffusion constant. We leave
the generalization to higher dimensions as an exercise.

Excercise: Check that p(x, t) = exp(−x2/(4πDt))/
√

4πDt is the
solution of equation 10 with the initial condition p(x, 0) = δ(x).

Excercise: Consider that case of a bias one-dimensional random
walker where a particle can hop to the left with probability 1/2 + b
and to the right with 1/2− b, with 0 < b < 1/2.

a) Write down the evolution equation for Pq,N+1 and p(x, t).
b) Derive the appropriate diffusion equation.

Birth-Death Processes

Before moving on to thinking about stochastic aspects of chemical
kinetics and gene regulation, it worth considering a simple class of
processes known as birth-death processes. Birth-death processes
describe many systems of interest in biological physics including
chemical kinetics, ecology, and even evolutionary processes. They
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also serve as a wonderful playground for learning about probability,
stochasticity, and non-equilibrium statistical mechanics.

Birth-death with a single species/molecule type

Consider a system with a single species/molecule type. Let us de-
note the number of molecules in the system by n. A molecules can
be created (birthed) at a rate f (n) per unit time and destroyed (die)
at a rate g(n) per unit time. Notice that in general these rates de-
pend on the number of molecules in the system. For example, if each
molecule/individual dies at a rate τ−1, then g(n) = τ−1n.

Such a process can be described by a Master Equation. Let us de-
note the probability of having n molecules at time t by p(n, t). Then
the dynamics of such a process is given by the equation

dp(n, t)
dt

= f (n− 1)p(n− 1, t)+ g(n+ 1)p(n+ 1, t)− f (n)p(n, t)− g(n)p(n, t).
(11)

The first term on the right-hand side describes the probability that
the system has n− 1 particles and a new particle is birthed in a time
dt. The second term describes the probability that the system has
n + 1 particles and a particle is destroyed. The third and fourth terms
describe the probability that the system has n particles and a new
particle is created and destroyed respectively.

In general, this kind of Master Equation is extremely difficult to
solve. To get more intuition, we can ask about the behavior of the
mean-number of particles 〈n〉. This is the “deterministic” behavior
where we ignore all fluctuations. To derive this, we can use the Mas-
ter equation to write down an ODE that describes the behavior of this
mean

d〈n〉
dt

=
d ∑n p(n, t)n

dt
= ∑

n

dp(n, t)
dt

n

= ∑
n

n ( f (n− 1)p(n− 1, t) + g(n + 1)p(n + 1, t)− f (n)p(n, t)− g(n)p(n, t))

=
′

∑
n
(n′ + 1) f (n′)p(n′, t) + ∑

m
(m− 1)g(m)p(m, t)−∑

n
n( f (n) + g(n))p(n, t)

= 〈 f (n)〉 − 〈g(n)〉, (12)

where in going from the second to third line we have written n′ =
n− 1 and m = n + 1. This is of course the usual kinetic equations we
studied earlier in the class.

General Birth-Death Processes

So far we have only described a process in which a molecule is only
made not destroyed. In biological systems many molecules have ded-



random walks, birth death processes, and the gillespie algorithm. 6

icated enzymes for destroying them. RNA and proteins are degraded
by RNases and proteases, respectively, and both play important roles
in gene expression regulation. Proteins like phosphodiesterase con-
vert cyclic nucleotide monophosphate to nucleotide monophosphate,
and affect signaling. For any posttranslational modification of pro-
teins, like phosporylation etc., there are enzymes like posphatases,
that undo the change.

In general, for each molecule the birth rate and the death rate can
depend on the number of other molecules present. We specify the
state of the cell by a vector of numbers for the different species of
molecules, ~n = (n1, n2, ....., nk), the rate of synthesis of species i,
(n1, n2, ..., ni, ..., nk) → (n1, n2, ..., ni + 1, ..., nk), by fi(~n), and the rate
of degradation of species i,(n1, n2, ..., ni, ...nk) → (n1, n2, ....., ni −
1, ......, nk), by gi(~n).

Gillespie Algorithm

Before proceeding to analytic approximations, it is useful to discuss
how to numerically simulate the chemical reactions like birth-death
processes. One approach one can imagine to simulating these reac-
tions is to choose a small time step ∆t � 1, draw a uniform random
number for each reaction, check if a synthesis or degradation event
occurs during the time step by determining if the corresponding ran-
dom number is smaller than fi(~n)∆t � 1 or gi(~n)∆t � 1, updating
the state of the cell, and then repeating the process. The problem
with such a naive approach is that since the probability of an event
occurring in any time step is extremely small. In fact, during most
time steps nothing will happen. Consequently, such simulations are
extremely inefficient and slow. One can imagine speeding up the
simulation by increasing ∆t. However, for larger ∆t one quickly runs
into the problem that there is a non-zero probability of having mul-
tiple events during each time step. . An alternative approach, often
termed the “Gillespie Algorithm”, circumnavigates the problems
discussed above and has quickly become the standard technique for
simulating stochastic chemical reactions in systems biology. We now
discuss how to use the Gillespie algorithm to simulate an arbitrary
set of chemical reactions. As before, denote the number of molecules
present of all species by ~n. Furthermore, index the possible reactions
by P, with the rate of reaction P, ~n → ~n +~eP, given by rP(~n). For
example for the the birth-death processes discussed above, we can
consider the reaction for the creation of a molecule of species i. For
this case, rP = fi(~n) we have that ep = (0, 0, . . . , 1, . . . , 0), the vector
with 1 at the i-th position and zero everywhere else. The key ob-
servation behind the Gillespie algorithm is that each reaction is an
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independent Poisson process so we can explicitly calculate the wait-
ing time distribution between events. In particular, the probability
that any event occurs is a Poisson process with rate R = ∑P rP. The
reason for this is that the sum of independent Poisson processes is
itself a Poisson process

Exercise: We will make use of a number of basic properties of Pois-
son processes that we will prove in this exercise

• Prove that the sum of N independent Poisson processes with rates
r1, r2, . . . , rN is another Poisson process with rate rtot = ∑N

j=1 rj.

• We can define a random variable τ ∈ (0, ∞) which measures
the time until the next event occurs. We will now ask about the
probability that event j occurs in this time interval. Show that the
probability that an even occurs exactly in the interval (τ, τ + dt) is
given by P(τ, j) = e−rtotτrjdt.

• Show that we can write this probability at P(τ, j) = P(j|τ)P(τ)
with

P(τ) = e−rtotτrtotdt (13)

the time until the next event and

P(j|τ) =
rj

rtot
, (14)

the probability that reaction j occurs.

We now have to think about how we sample τ. From the exer-
cise above, we know that τ is an exponentially distributed variable.
Notice that the τ are drawn from an exponential distribution 2 How 2 In general, whenever a new distribu-

tion is introduced, I encourage people
to read about it on Wikipedia.

can we sample τ? The key idea is to use what is called inverse trans-
form sampling. Imagine we want to sample some random variable
Y. Furthermore, imagine that we know that there exists an easily
invertible function C such that C(Y) = U, where U is a uniform ran-
dom variable U on the unit interval [0, 1]. Then, we can sample Y by
drawing a random number U (which is easy to do), and calculating
Y = C−1(U).

Naively, one might think that it is extremely difficult to find such
a function C. However, its actually not as hard as one might think.
Imagine, that the random variable is drawn from some distribution
p(Y). We can than define a cumulative distribution

C(Y) =
∫ Y

−∞
dY′p(Y′) (15)
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Notice that if we define a random variable U = C(Y), by definition
it is uniform on the unit variable. After all, this is the definition of a
cumulative distribution. If we can easily invert the function C analyti-
cally, we are done.
Exercise: Use the exercise above to define a sampling scheme for the
waiting time τ for a Poisson process.

These observations and exercise above suggests the following
algorithm for simulating chemical reactions:

• Initialize the simulation at some ~n = ~n0 and time t = 0.

• Draw a random number x1 uniformly distributed between 0 and 1.

• Explicitly calculate the waiting time τ between event using τ =

− log (x1)/r. This step uses the usual Monte-Carlo sampling pro-
cedure based on the cumulative distribution function (cdf) of a
Poisson process, P(t).

• Draw a second random number x2 uniformly distributed between
0 and 1 to choose which of the reactions occurs. Reaction P occurs
if

∑
p−1
j=1 rj

R
≤ x2 <

∑
p
j=1 rj

R
(16)

.

• Update the time, t→ t + τ, and ~n using appropriate reaction.

We end this section by emphasizing that the Gillespie algorithm
outlined above is exact. No approximations of any kind were uti-
lized. For this reason, the Gillespie algorithm has become one of the
workhorses of simulating biochemical reactions

Homework

Excercise: Use the Gillespie algorithm to simulate a simple birth-
death process for a single species where molecules are synthesized at
a rate f (n) = R and are degraded at a rate g(n) = τ−1n.

Excercise: Use the Gillespie algorithm to simulate a stochastic version
of the following coupled birth death processes.

•
dn1

dt
= α− βn1 (17)

dn2

dt
= α2

nj
1

K + nj
1

− β2n2 (18)
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for α = 1, β = 0.5, α2 = 5, β2 = 1/30, K = 1. Interpret your results.
Change K = 5. How do your results differ.

• Calculate the mean and variance of the distributions. Calculate
the Fano factor σ2

n/n̄ for the two species. Can you give a simple
explanation for your results?
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