
Free Energy Transduction II: detailed balance, fluxes,
cycles, entropy production.1

1 Optional Reading: Terrence Hill’s
magnificent cheap and short books
Free Energy Transduction in Biology.
We will especially focus on Chapter
4. We will also use the review by
Hong Qian Phosphorylation Energy
Hypothesis: Open Chemical Systems and
Their Biological Functions from Annu.
Rev. Phys. Chemistry 2007 58:113-42.
Also discussed relevant Nelson sections
scattered through out the Biological
Physics book.
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April 2, 2021

In these notes, we talk about how cell tranduce free energy by exploit-
ing non-equilibrium steady-states.

One of the central things that cells must do is be able to trans-
duce Free energy and extract it for useful purposes. The way that
the cell usually does this is by maintaining a pool of high energy
“cofactors” such ATP. For example, ATP can undergo hydrolosis
into ADP and release the chemical energy that has been stored in
the high-energy phosphoanhydride bonds. This process releases
about ∆G ≈ −20kBT to −30kBT or −35kJ/mol to −50kJ/mol of
energy depending on the cells exact conditions. The cell essentially
maintains ATP at a high non-equilibrium concentration by contin-
uously generating ATP and then uses this energy by coupling ATP
hydrolosis to less thermodynamically favorable reactions. To get a
better understanding the numbers involved in the please read the
discussion and look at the charts at http://book.bionumbers.org/
how-much-energy-is-released-in-atp-hydrolysis/ in detail! I will
not reproduce it in these notes.

Open Systems- A simple example

How can we understand the thermodynamics of such a system?2. 2 This follows Qian Phosphorylation
Energy Hypothesis: Open Chemical
Systems and Their Biological Functions
from Annu. Rev. Phys. Chemistry
2007 58:113-42 and this very nice
discussion by Daniel Zuckerman
http://www.physicallensonthecell.

org/chemical-potential.

This is very far from the kind of things we usually learn about in
most of our thermodynamics and statistical mechanics classes which
tend to focus almost entirely on equilibrium processes. So how can
we think about these kind of processes. We can actually start build-
ing on the foundation relating kinetics to thermodynamics that we
have already been discussing. Let us start by reviewing and reformu-
lating equilibrium thermodynamics.

Reviewing some equilibrium thermodynamics

We will start by considering an ideal, non-interacting gas X in some
volume V with N particles. We know that the partition function is
proportional to

ZX(N, V, T) ∝ λ−3N
deBroglieV

N/N! (1)

http://book.bionumbers.org/how-much-energy-is-released-in-atp-hydrolysis/
http://book.bionumbers.org/how-much-energy-is-released-in-atp-hydrolysis/
http://www.physicallensonthecell.org/chemical-potential
http://www.physicallensonthecell.org/chemical-potential
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Hence, we know that to leading order in N, the free energy goes like

FX(N, V, T) ∝ −kBTN log
N

V/λ3
deBroglie

− NkBT, (2)

where we have uses Stirling’s approximation logN! ∼ N log N − N.
From, this we conclude that the chemical potential can be written as

µX =
∂GX
∂N
' ∂FX

∂N
= kBTN log

N
V/λ3

deBroglie

= µ0
X + RT log [X], (3)

and in the last line we have introduced a standard concentration 1M
and hence introduced constant R = kBNA where NAis Avagadro’s
number.

A simple reaction

Consider a simple reaction of the form

A + D
k+−⇀↽−
k−

B + E (4)

Let us think about the Gibbs free energy associated with this reaction
when it is in equilibrium. From our considerations last time, we
know that we can think of this as an effective “two-state” system
with one state being the “products” and the other state being the
“reactants”. At equilibrium, we have detailed balance so that

−RT log
[B]eq[E]eq

[A]eq[D]eq
= − log Keq, (5)

where we have defined the equilibrium constant

Keq =
k+
k−

. (6)

Now, we can make use of our formulas for the chemical potential
(3) to derive a useful identity that will allow us to generalize many
things to nonequilibrium open systems. Notice that at equilibrium,
by definition the chemical potentials of the reactions and potentials
must be equal (this is the analogues of the statement that tempera-
tures of systems at equilibrium must be equal). Thus, we have that

µ
eq
B + µ

eq
E = µ

eq
A + µ

eq
D

µ0
B + RT log [B] + µ0

E + RT log [E] = µ0
A + RT log [A] + µ0

D + RT log [D]

µ0
B + µ0

E − µ0
A − µ0

D = −RT log
[B]eq[E]eq

[A]eq[D]eq

µ0
B + µ0

E − µ0
A − µ0

D = ∆Geq = −RT log Keq (7)
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Generalizing to Non-equilibrium Steady-states and open systems

Revisiting our simple reaction

Now consider the same reaction out of equilibrium so that the system
is not in detailed balance. We can ask how much will the Gibbs free
energy change every time the reaction proceeds in the forward direc-
tion. If we denote the number of molecules of type X by NX then by
definition

∆G = G(NA − 1, ND − 1, NB + 1, NE + 1)− G(NA, ND, NB, NE)

= − ∂G
∂NA

− ∂G
∂ND

+
∂G

∂NB
+

∂G
∂NE

= µB + µE − µA − µD (8)

Thus, as expected, the change in free energy per molecular conver-
sion is just the difference of the chemical potentials. Now we, can
make use of Eq. 3 to get

∆G = RT log
[B][E]
[D][A]

− µ0
B + µ0

E − µ0
A − µ0

D. (9)

Now we can substitute Eq. 7 to get a series of interesting, equiva-
lent expressions for the non-equilibrium change in Free Energy:

∆G = µB + µE − µA − µD

= RT log
[B][E]
[D][A]

− RT log Keq (10)

= RT log
k−[B][E]
k+[D][A]

(11)

= RT log
J+
J−

(12)

It is worth emphasizing these expressions measure the change in
free energy in an open, nonequilibrium system. Furthermore, notice as
expected, at equilibrium ∆G is zero. Furthermore, the more out-of-
equilibrium (i.e. bigger ∆G), the more one drives the reaction in the
forward direction, overcoming thermal fluctuations that want to drive
the system in the opposite direction (Le Chatelier’s principle). We
will see examples of this in various settings in the next few lectures
from Molecular machines.

Relating to Biology

In biology, this is exactly the ∆G we exploit when we use high-energy
cofactors such as ATP. By maintaining the ATP to ADP concentra-
tions artificially high, we can now extract an amount of ∆G equal to
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the expression above. Furthermore, my coupling these high-energy
reactions to other reactions we can do things like perform work or
process information. In particular, the key is to create cyclic processes
(just like engines in thermodynamics) and each time we perform a
cycle, we couple to these high-energy co-factors. This allows us to
drive the cycles in one direction, In fact this is how things like molec-
ular machines work, as well as all information processing tasks that
involve erasing and writing memories (Landauer’s principle). These
can all be thought of as cyclic processes that consume energy.

General Expressions and analogy to Circuits

Note that given a reversible chemical reaction r, we can always as-
sociate a chemical potential or equivalently change in Gibbs energy
with that reaction in terms of the forward to the backward flux.

∆Gr = ∆µr = RT log Jr
+/Jr

− (13)

This follows from a straight forward (nearly trivial) generalization
of the calculation done above 3. In terms of electric circuits, this is 3 See HW Problem 1

exactly the analogue of the “voltage drop” across each reaction. In
other words, if the particles were charged, this is how much voltage
(potential) would be lost across the reaction. We can also associate a
net flux with this reaction

Jr = Jr
+ − Jr

−. (14)

This is the analogue of the current of the electrical circuit.
Finally, we know that the power dissipated in an electric circuit

just given by P = IV. In our chemical reactions, the power dissipa-
tion then takes the form

P = Jr∆µr = RTJr log Jr
+/Jr

− = Jr∆Gr. (15)

This makes sense, since in our derivation ∆Gr is exactly the change
in the free energy when the reactants are converted into a product a
single time and Jr is how many times this happens per unit time.

Just as for a very complicated electric circuit, we can just use this
formula in very complicated reaction networks. Most of the times we
will be concerned with cyclic processes in which case we would like
to sum it over the links of a loop. We did this in class and you will
revisit this for your HW problems.

Examples

Let us now apply these ideas to some simple systems.



free energy transduction ii: detailed balance, fluxes, cycles, entropy production. 5

Kinetic Proof Reading

ANRV308-PC58-05 ARI 21 February 2007 11:26

k1
0

k3

k– 3
0

k– 2
0 k2

0

k–1

R + L

RL T

DRL*

Figure 8
A three-state kinetic model of receptor-ligand binding coupled with a hydrolysis reaction. The
biochemical literature often refers to RL∗ as an activated complex with crucial biological
activity. Rate constants with positive and negative subscripts are for clockwise and
counterclockwise directions, respectively. ko

1, ko
2, ko

−2, and ko
−3 are second-order rate constants.

k1 = ko
1[L], k2 = ko

2[T], k−2 = ko
−2[D], and k−3 = ko

−3[L] are pseudo-first-order rate constants.
Because the concentrations of T and D are not at equilibrium in living cells,
k1k2k3/(k−1k−2k−3) = γ > 1.

Specificity amplification:
specificity determined by
molecular structures and
equilibrium affinities can be
increased in a living cell

The affinity ratio Ar represents the relative probability of activation owing to non-
specific binding, and 1/Ar represents the specificity of ligand L′ with respect to L.
The smaller Ar is, the greater the specificity.

In living cells, [RL∗] and [R] are not at their equilibrium owing to their coupling to
the hydrolysis reaction in Figure 8 (RL+T ⇀↽ RL∗ + D). The affinity ratio therefore
depends on how much energy is available; in other words, Ar is a function of γ (72):

Ar (γ ) = σ
(k1k2 + k2k−3 + k−1k−3)

(
k2k−3 + σk−1k−3 + k1k2

γ

)

(
k2k−3 + k−1k−3 + k1k2

γ

)
(k1k2 + k2k−3 + σk−1k−3)

. (41)

We see that when γ = 1, Ar = σ . Given γ and σ , we can show that Equation 41 has
a minimum

Ar, min(γ ) = σ

(
1 + √

γ σ
√

γ +
√

σ

)2

, (42)

when

k−1 % k2, k1 % k−3, k1k2 > σk−1k−3, k3>k−2. (43)

Inequalities k−1 % k2 and k1 % k−3 imply that step 1 in Figure 8 is in rapid equilib-
rium for a maximal specificity.

Figure 9 shows Ar, min as function of γ as given by Equation 42. When γ goes
to infinity (i.e., there is a sufficient amount of energy available), Ar, min approaches
σ 2. This is the celebrated result of References 6 and 65. Equation 42 provides the
best scenario, under the constraint of finite γ and the kinetic scheme in Figure 8, for
specificity amplification, which can be defined as σ/Ar .

For kinetic schemes more complex than the one shown in Figure 8, we can
achieve greater specificity amplification (72). Kinetic proofreading is not just the
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Figure 1: Kinetic Proofreading as a
futile cycle from Qian Annu. Rev. Phys.
Chemistry 2007 58:113-42.

We previously discussed kinetic proofreading and showed that the
error function is set by the equilibrium free energy difference ∆Geq

between the correct and incorrect substrate. In particular, the error
fraction at equilibrium is set by

f = e−kBT∆Geq . (16)

The KPR scheme gets around this bound by consuming energy. How-
ever, by consuming energy we can of course increase the specificity.

Consider the two-step KPR cascade shown in Fig. 1. If we denote
the rate for the correct substrate by primes (e.g. k′1) and incorrect
substrates without primes (e.g. k1). The error fraction at equilibrium
is

f0 =
k′−1
k−1

. (17)

Now, we can characterize how out of equilibrium the process is by

γ =
k1k2k3

k−1k−2k−3
(18)

since the nonequilibrium Free energy per cycle is

∆Gnoneq = RT log γ. (19)

One can show through tedious calculation that in the usual Hopfield
limit (k−1 � k2, k1 � k−3, k1k2 � f k−1k−3, k3 � k−2) that

f (γ) ≥ fmin(γ) = f0

(
1 +

√
γ f0√

γ +
√

f0

)2

. (20)
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Notice that at equilibrium, γ = 1 so that

fmin(γ = 1) = f0 (21)

However, really far out of equilibrium when γ→ ∞ we get

fmin(γ = 1) = f 2
0 . (22)

Push-Pull amplifier and Gain/Bandwidth

We can also now consider a simple push-pull biochemical amplifier
This is a simple biochemical circuit that many eukaryotic cells use
to amplify signals. Below, I copy discussion from a relatively recent
review we authored.4 4 This section is copied from our re-

view Landauer in the age of synthetic
biology.

Biochemical networks can also consume energy to amplify up-
stream input signals. Signal amplification is extremely important
in many eukaryotic pathways designed to detect small changes in
input such as the phototransduction pathway in the retina 5 or the 5 Detwiler, Peter B., et al. "Engineering

aspects of enzymatic signal transduc-
tion: photoreceptors in the retina."
Biophysical Journal 79.6 (2000): 2801-
2817.

T cell receptor signaling pathway in immunology. In these path-
ways, a small change in the steady-state number of input messenger
molecules, dI, leads to a large change in the steady-state number of
output molecules, dO. The ratio of these changes is the number gain,
often just called the gain,

g0 =
dO
dI

(23)

with g0 > 1 implying the ratio of output to input molecules is neces-
sarily greater than 1.

Before proceeding further, it is worth making the distinction be-
tween the number gain, which clearly measures changes in absolute
number, with another commonly employed quantity used to describe
biochemical pathways called logarithmic sensitivity 6. The logarith- 6

mic sensitivity, d log [O]
d log [I] , measures the logarithmic change in the con-

centration of an output signal as a function of the logarithmic change
in the input concentration and is a measure of the fractional or rel-
ative gain. Though logarithmic sensitivity and gain are often used
interchangeably in the systems biology literature, the two measures
are very different. To see this, consider a simple signaling element
where a ligand, L binds to a protein X and changes its conforma-
tion to X∗. The input in this case is L and the output is X∗. To have
g0 > 1, a small change in the number of ligands, dL must produce a
large change in the number of activated X∗. Notice that by definition,
in equilibrium, dX∗

dL < 1 since each ligand can bind only one receptor.
If instead n ligands bind cooperatively to each X, then one would
have dX∗

dL < 1/n. Thus, cooperatively in fact reduces the number
gain. In contrast, the logarithmic sensitivity increases dramatically,
d log [X]
d log [L] = n. An important consequence of this is that amplification
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Figure 2: Amplifying signals in a
push-pull amplifier by consuming
energy. Schematic illustrates a simple
push-pull amplifier where a kinase,
Ea, modifies a protein from X to X∗

and a phosphatase, Ed, catalyzing the
reverse reaction. The plot illustrates
that larger gain can be accomplished at
the expense of a slower response time τ.

of input signals (as measured by number gain) necessarily requires a
non-equilibrium mechanism that consumes energy.

The fact that energy consumption should be naturally related to
the number gain and not logarithmic gain can be seen using both
biological and physical arguments. The fundamental unit of energy is
an ATP molecule. Since energy consumption is just a function of total
number of ATP molecules hydrolyzed, it is natural to measure gain
using changes in the absolute numbers and not concentrations. From
the viewpoints of physics, this is simply the statement that energy
is an extensive quantity and hence depends on the actual number of
molecules.

In biochemical networks, this signal amplification is accomplished
through enzymatic cascades, where the input signal couples to an
enzyme that can catalytically modify (e.g. phosphorylate) a substrate.
Such basic enzymatic “push-pull" amplifiers are the basic building
block of many eukaryotic biochemical pathways, and are a canon-
ical example of how energy consumption can be used to amplify
input signals (see Figure 2). A push-pull amplifier consists of an ac-
tivating enzyme Ea and a deactivating enzyme Ed that interconvert
a substrate between two forms, X and X∗. Importantly, the post-
translational modification of X is coupled to a futile cycle such as
ATP hydrolysis. The basic equations governing a push-pull amplifier
are

dX∗

dt
= Γa(Ea)X− Γd(Ed)X∗, (24)

where Γa(Ea) is the rate at which enzyme Ea converts X to X∗ and
Γd(Ed) is the rate at which enzyme Ed converts X∗ back to X. This
rate equation must be supplemented by the conservation equation on
the total number of X molecules,

X + X∗ = Xtot. (25)

In the linear-response regime where the enzymes work far from
saturation, one can approximate the rates in (24) as Γa(Ea) ≈ ka[Ea]

and Γd(Ed) ≈ kd[Ed], with ka = kcat
a /Ka and kd = kcat

d /Kd the ratios of
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the catalytic activity, kcat, to the Michaelis-Menten constant, KM, for
the two enzymes. It is straightforward to show that the steady-state
concentration of activated proteins is

X̄∗ =
Xtotka[Ea]

ka[Ea] + kd[Ed]
(26)

Furthermore, one can define a “response time”, τ, for the enzymatic
amplifier to be the rate at which a small perturbation from steady-
state δX∗ = X∗ − X̄∗ decays. This yields (see Dewtiler for details)

τ = (ka[Ea] + kd[Ed])
−1. (27)

As discussed above, a key element of this enzymatic amplifier is
that it works out of equilibrium. Each activation/deactivation event
where the substrate cycles between the states X 7→ X∗ 7→ X is
coupled to a futile cycle (e.g. ATP hydrolysis) and hence dissipates
an energy ∆Gcycle. At steady-state, the power consumption of the
enzymatic amplifier is

P = ka[Ea]X̄∆Gcycle = kd[Ed]X̄∗∆Gcycle. (28)

The input of the enzymatic amplifier is the number of activat-
ing enzymes Ea and the output of the amplifier is the steady-state
number of active substrate molecules X∗. This is natural in many
eukaryotic signaling pathways where Ea is often a receptor that be-
comes enzymatically active upon binding an external ligand. Using
(28), one can calculate the static gain and find

g0 = (P/[Ea])τ(∆Gcycle)
−1. (29)

This expression shows that the gain of an enzymatic cascade is di-
rectly proportional to the power consumed per enzyme measured in
the natural units of power that characterize the amplifier: ∆Gcycle/τ.
This is shown in Figure 2 where we plot the gain as a function of
power consumption for different response times.

Notice that the gain can be increased in two ways, by either in-
creasing the power consumption or increasing the response time.
Thus, at a fixed power consumption, increasing gain comes at the
cost of a slower response. This is an example of a general engineer-
ing principle that is likely to be important for many applications in
synthetic biology: the gain-bandwidth tradeoff. In general, a gain in
signal comes at the expense of a reduced range of response frequen-
cies (bandwidth). If one assumes that there is a maximum response
frequency (ie a minimal time required for a response, a natural as-
sumption in any practical engineering system), the gain-bandwidth
tradeoff is equivalent to tradeoff between gain and response time.
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For this reason, energy consumption is likely to be an important
consideration for synthetic circuits such as biosensors that must re-
spond quickly to small changes in an external input. More generally,
the gain-bandwidth tradeoff highlights the general tension between
signal amplification, energy consumption, and signaling dynamics.

A simple molecular machine

Homework

Problem 1 In the the main text, we considered a simple reaction of
the form

A + D
k+−⇀↽−
k−

B + E (30)

where one molecule of A and D are consumed to produce one
molecule of B and E. Now consider a more general reaction of the
form

nA A + nDD
k+−⇀↽−
k−

nBB + nEE (31)

where nA molecules of A and nD molecules of D are consumed to
produce nB molecules of B and nE molecules of E. Derive the equiva-
lent of Eq. 7 and Eq. 12 for this case. Can you write down an expres-
sion for the free energy change of a general chemical reaction?

Figure 3: Figure for HW problem 2.

Problem 2 Thermodynamics of a simple cycle. Here we will work
through some thermodynamics for a simple cycle. Consider the two
cycles in Fig. 3. Let us think about these from a thermodynamic
perspective. In the cycle in (b), we know that the full rates k±2 can be
written as the product of a bare rate k0

±2 times a concentration (e.g.
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k2 = k0
2[D], k−2 = k0

−2[E]). We can define for both cycles the quantity

γ ≡ k1k2k3

k−1k−2k−3
(32)

• Show that in the closed cycle in (a), detailed balance implies that
γ = 1.

• We can associate a Gibbs free energy for each reaction

∆GAB = kBT log
k−1[B]
k1[A]

∆GBC = kBT log
k−2[C]
k2[B]

∆GCA = kBT log
k−3[A]

k3[C]
.

Show that detailed balance is equivalent to the statement ∆GAB +

∆GBC + ∆GCA = 0

• Show that in the cycle in (b) that we have that

∆GAB + ∆GBC + ∆GCA = −kBT log γ = ∆GDE. (33)

where ∆GDE = kBT log [E]
[E]eq − kBT log [D]

[D]eq

• Show that with non-zero flux γ 6= 1, the current reaches a steady-
state with non-zero flux equal to

Jss =
k1k2k3 − k−1k−2k−3

k2k3 + k−1k−2 + k−1k3 + k3k1 + k−2k−3 + k−2k1 + k1k2 + k−3k−1 + k−3k2

• Set k±1 = k0
±2 = k±3 = 1. Plot the steady-state current, the

thermodynamic driving force (i.e. −kBT log γ), as a function of the
ratio θ = [E]/[D].

Problem 3 We are now going to think about this in terms of energy
conservation. We can define the total Gibbs Free energy of the open
system. We can associate a Gibbs free energy Gα with each state
α = A, B, C. Notice that by definition we have that (check signs)

GC − GA = ∆GCA (34)

GB − GA = ∆GBA (35)

GC − GB = ∆GBC − GDE. (36)

The last of this equalities tells us that the difference in Gibbs free
energy of state C and B also depends on the chemical potentials of D
and E.

We can define a Gibbs Free energy associated with the protein by

G = pAGA + pBGB + pcGC (37)
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where pα is the probability of being in state α = A, B, C.
These probabilities can be written in terms of the fluxes as

dpA
dt

= −J1 + J3

dpB
dt

= −J2 + J1

dpC
dt

= −J3 + J2,

where J1 = k1 pA − k−1 pB, J2 = k2 pB − k−2 pc, and J3 = k3 pC − k−3 pA.

• Show that

dG
dt

= (J1∆GAB + J2∆GBC + J3∆GCA)− J2∆GDE. (38)

The term of the left is the rate of increase of energy. The term in the
parenthesis is the energy dissipation rate (i.e. P = IV). The last term
is the power of energy input.

• Show that in a nonequibrium steady-state Jss = J1 = J2 = J3 and
we recover Eq. 33 from problem 1.

• Set k±1 = k0
±2 = k±3 = 1. Plot the entropy production rate as a

function of θ. Argue that these must always be positive.
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