
Primer on Thermodynamics: Free Energies, Chemi-
cal Potentails, and all that.1

1 Readings: Chapter 8, Nelson Biological
Physics. Any undergraduate thermody-
namics/stat mech book that discusses
basic thermodynamics.

Pankaj Mehta

February 5, 2020

In the next lecture, we will discuss one way that organisms can reduce
errors during self-replication. However, in order to that we must first
understand the basics of chemical kinetic and there relationship to
thermodynamic quantities such as Free Energy. This lecture serves as
a primer for basic thermodynamics. The core part of the lecture is to
develop the machinery that will allow us to think about enzyme kinet-
ics in two different way: a kinetic perspective and a thermodynamic
perspective.

One the basic things that living things must do is transduce free
energy – in other words extract energy from their environments.
This is often done through chemical reactions that take a higher-free
energy molecule and turn it into lower free-energy products. The
problem with this process is that while thermodynamically favorable,
they are often kinetically extremely slow. The reason for this is that
there is often a “thermal barrier” that prevent the kinetics transition
to the lower energy states. Cell exploit this fact to store energy and
then use it when they need it.

A central aspect of all of living systems is that they control the
kinetics by creating specialized catalysts that speed up chemical re-
actions (without changing the underlying thermodynamics). In the
context of biology, these catalyst often take the form of specialized
molecular machines called enzymes. In this class we will discuss the
chemical kinetics from both a thermodynamic and kinetic perspec-
tive, and relate the two. It is essential that we can easily go back and
forth between the thermodynamic and kinetic perspectives.

What is Free Energy

A full account of Free Energy is beyond the scope of these lectures.
Here, we review the basics. A central quantity in the thermodynam-
ics is of course the entropy of a system S(E, N, V). The entropy is
considered a function of the average energy E, number of particles
N, and volume V and measures the number of available microscopic
configurations available to the system when it has average energy E,
particle number N, and volume V. The temperature of a system is
defined in terms of the entropy as

1
T

= kB

(
∂S
∂E

)
V,N

, (1)
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where kB =≈ 1.38× 10−23 J/K is the Boltzmann constant.

Equilibrium and Second Law (no particle, volume exchange)

Importantly, at equilibrium systems tend to maximize the entropy. We
emphasize that at equilibrium systems do not occupy one particular
microstate (microscopic) configuration, but rather represents a prob-
ability distribution over microstates (i.e the Boltzmann distrubution)
that reflect physical constraints on the system (total energy, volume,
particle number, etc.). Let us now review some thermodynamics.

Consider two systems that can exchange energies as shown in
Figure . (but not particles or volume). Define the total energy of the
system as E = E1 + E2 where E1(E2) is the energy of subsystem 1 (2).
Note that we assume the combined system is isolated so that the total
energy E is constant. In writing this we have ignore “boundary inter-
actions” which are assumed to be small. Under the same assumption,
we can write that the combined entropy of both systems as a sum of
entropies of both systems 2 2 See HW problem for deriving a very

interesting correction to this calculation.

Stot(E, E1) = S1(E1) + S2(E2) = S1(E1) + S2(E− E1) (2)

A fundamental postulate of thermodynamics is that entropy is
maximized at equilibrium. This is a direct result of the Second Law
of Thermodynamics that says that the entropy of an isolated system
must always stay the same or increase. Operationally, this means that at
equilibrium the two system will exchange energy until the system
1 reaches an energy E1 and maximizes Stot. This implies that the
derivative of Stot with respect to E1 must be zero. This gives the
condition

0 =

(
∂S1

∂E

)
|E1 −

(
∂S2

∂E

)
|E2 (3)

which implies that at equilibrium that temperatures must be equal.

T1 = T2. (4)

Before proceeding, we point out a common misconception that is
worth emphasizing. The second law applies only to isolated systems. If
we consider a subsystem of the isolated system (say chamber 1 in the
example above), the entropy of this subsystem can still decrease without
violating the second law as long as the entropy of the remaining parts
of the system increase so that Stot increases or stays the same. 3 3 In fact, this is essentially the strategy

that living systems use to maintain
order and why Schrondinger classified
life as having “negative entropy” (a
confusing if intuitive term).

Reformulating the Second Law in terms of Free Energies

Often, we consider a system that is hooked up to a thermal bath at
temperature T. In this case, the whole universe whose energy we
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denote E consists of the system with energy E1 and bath with energy
Eb = E − E1. Consider a process that changes the energy of the
system a little E1 → E1 + ∆E. The system is then coupled to the bath
and allowed to equilibrate. Since the bath is much bigger than the
system, we assume that ∆E � Eb (This is really our definition of our
bath. We know that this must increase the entropy Stot of the system.
Let us define ∆S = S1(E + ∆E)− S1(E) and the temperature of the
system/bath at T = Tb = T1

4. We now perform some elementary 4 By assumption, system and bath are
equilibrated.mathematical manipulations

Stot(E, E1 + ∆E)− Stot(E, E1) ≥ 0

Sb(E− E1 − ∆E) + S1(E + ∆E)− Sb(E− E1)− S1(E) ≥ 0

Sb(E− E1)−
∂Sb
∂E

∆E− Sb(E− E1) + ∆S + . . . ≥ 0

∆S− 1
T

∆E ≥ 0

−T(∆E− T∆S) ≤ 0

∆F ≤ 0, (5)

where in the third line we have performed a Taylor series ignoring
terms beyond first order in ∆E1/Eb and in the last line we have de-
fined Helmholtz free Energy

∆F = ∆E− T∆S. (6)

In terms of this Free energy, the second law can be restates that the
Free energy of a system must always decrease when it relaxes cou-
pled to a bath. Furthermore, notice that the free energy depends
only on the properties of the system we are measuring and makes no
reference to the bath!! This is the magic trick that makes thermody-
namics work. Furthermore, while we require ∆E � Eb, ∆E can still
be large compared to the energy of the system E1

Deriving the Boltzmann distribution

We can also quickly derive the Botlzmann distribution. We however
will have to evoke two basic facts from statistical mechanics.

• All microstates of an isolated system are equally probable. This is
the fundamental postulate of statistical mechanics.

• The entropy S is related to the number of accessible configurations
Ω(E) with energy E so that

S(E) = k−1
B log Ω(E) (7)

Consider again the situation shown in Figure ?? where we can
consider the universe (i.e an isolated system) is divided into a system
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and a bath that can exchange energy (but not particles and volume).
Then, we can write the number of configurations accessible to the
total system Ωtot(E) as a product of the number configurations of the
bath Ωb(E− E1) and the system Ω1(E1)

Ωtot(E) = Ωb(E− E1)Ω1(E1). (8)

Now choose a particular microstate s for the system with energy Es.
The number of configurations of the total system that are compatible
with this state is just Ωb(E− Es) since this is the number of configu-
rations available to the bath gives the microstate of the system. Thus,
the probability of finding the system in this state is just given by

ps =
Ωb(E− Es)

Ωtot(E)
, (9)

where we have used that fact that all configurations of the entire
system are equally likely. Notice that the denominator is hard to
calculate but does not depend on the state s. Thus, we can use the
usual trick of statistics which is to consider the ratio of probabilities
of two states, s and s′ to get

p(s)
p(s′)

=
Ωb(E− Es)

Ωb(E− Es′)

=
eS(E−Es)/kB

eS(E−Es′ )/kB

=
e−Es/kBT

e−Es′/kBT

where in the last line we have used that to first order S(E − Es) ≈
S(E) − ∂S

∂E Es, Eq. 1, and the fact that Es � E 5. It is common to 5 Again this is justified by saying energy
of bath is much larger than energy of
the system.

rewrite this in terms of β = 1/kBT. The quantity e−βEs is often called
the Botlzmann weight of state s.

This immediately gives us the Botlzmann distribution which
states that the probability of a state s is just

p(Es) =
e−βEs

Z
(10)

where we have defined the partition function as a sum of the Boltz-
mann weights over all configurations

Z = ∑
s′

e−βEs′ (11)

Systems that can exchange Energy, Volume, and Particles

In biological settings (and many physical settings), the system can
not only exchange energy with the environment but also particles
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and “volume”. 6 In this case, we do not have a well defined parti- 6 For example, a cell can expand or
contract in response to changes in
pressure, especially relevant through
osmolarity.

cle number or volume. Instead, we must work with fixed chemical
potential and fixed pressure.

Defining pressure and Chemical Potential

Consider a system with many species of molecules. We’ll call their
populations Nα where α = 1, 2, . . . runs over the kinds of species.
There is a separate chemical potential for each of these

µα = −T
∂S

∂Nα
|E,V,Nβ,β 6=α

(12)

We can also define the thermodynamic pressure 7 as 7 In equilibrium, one can show this is
the same as the mechanical pressure
(i.e. Force/Area). However, for systems
that actively consume energy such as
active materials this is not necessarily
the case. See Solon, Alexandre P., et
al. "Pressure is not a state function for
generic active fluids." Nature Physics
11.8 (2015): 673.

P = T
∂S
∂V
|E,Nα . (13)

You will show for HW that we can generalize the arguments above
to show that in addition to the having equal temperatures, when two
systems (1 and 2) are at equilibrium

µ1,α = µ2,α (14)

and
P1 = P2. (15)

Gibbs Free Energy and the Second Law

We can also generalize the Free Energy in the same way as we did
above 8 to arrive at the Gibbs free energy 8 Reader is strongly encouraged to

derive the expressions in these two
sections.∆G = ∆E− T∆S + µ∆N − P∆V. (16)

The second law then becomes that the Gibbs Free Energy always
decreases as one relaxes to equilibrium

∆G ≤ 0. (17)

Generalized Boltzmann distribution and the Grand Partition Function

We can also easily generalize the arguments above to the case where
the system exchanges both particles and volumes with its surround-
ings. In this case consider a state s with energy Es, volume Vs, and
Ns particles coupled to a bath (i.e environment) at a temperature T,
pressure P, and volume V. In this case, using an analogous argument
to above we can show 9 9 Please make sure you can derive these

expressions

ps =
e−β(Es+µs Ns−PVs)

Z , (18)
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where Z is the Grand Partition function

Z = ∑
s′

e−β(Es′+µs Ns−PVs). (19)

This formula can be easily derived using the Boltzmann distribution
and the fact that the kinetic energy

Chemical Potential for the the Ideal Gas

Thus, far everything we have done has been very abstract. One set
of results we will rely on for understanding chemical kinetics are
the thermodynamic potentials of an ideal gas of non-interacting
particles. The reason is that we will often treat our chemical baths as
non-interacting gases. The main result we will use is the form of the
chemical potential for such gases.

The starting point for this is the Sakur-Tetrode formula for an ideal
gas with N particles and volume V each with an internal energy ε:

S = kB log

[(
2π3N/2

(3N/2− 1)!

)
(2mE)3N/2VN 1

N!
(2πh̄)−3N 1

2

]
(20)

Here, E = Ekin + Nε refers to the total energy of the gas. Every-
thing except the constants can be easily derived using the Boltzmann
distribution 10. 10 See any elementary Stat Mech book

or Chapter 3 of NelsonUsing the expression above, we can now use E q. 12 to calculate
the chemical potential and get

µ = kBT log c/c0 + µ0(T), (21)

where we have defined the concentration c = N/V, c0 is a con-
stant called the reference concentration and reference concentration-
independent chemical potential

µ0(T) = ε− 3
2

kBT log
mkBT

2πh̄2c2/3
0

. (22)

Notice that Eq. 21 says that the chemical potential is directly pro-
portional to the log of the concentration. We will make use of this
extensively when comparing thermodynamic and kinetics. ’

Finally, notice that the difference of chemical potentials at a fixed
temperature does not depend on µ0(T) and the the difference in
chemical potential depends only on the ratio of concentrations

∆µ = µ(c1)− µ(c2) = kBT log c1/c2 (23)
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Homework

1. Prove that if two systems A and B that can exchange energy and
particles are at equilibrium, then TA = TB and µA,α = µB,α.

2. Mutual Information and Boundary Interactions (optional for
non-physics students). Let us define the probability that a system
has energy E by p(E). We can define the Shannon Entropy of a
system as

S[p(E)] = −∑
E

p(E) log p(E). (24)

Denote the probability distribution of the systems 1 and 2 by
p1(E1) and p2(E2). Furthermore, denote the joint distribution of
both systems by p(E1, E2).

• Show that Stot = S1 + S2 requires that the probability distribu-
tion of the whole system factorizes: p1+2(E1, E2) = p(E1)p(E2).

• In general, we must use Bayes Rule, p(E1, E2) = p(E1|E2)p(E2) =

p(E2|E1)p(E1) to relate these probability distributions. Show
that if the distribution does not factorize we must modify this
expression to include the mutual information between energies
of the system I(E1, E2). Note that

I(X, Y) = ∑
X,Y

p(X, Y) log
p(X, Y)

p(X)p(Y)
(25)

• Explain in words what this expression means. Why can we nor-
mally ignore this term safely? Discuss the relationship between
information and thermodynamics here in physical terms.

• Derive a new expression relating T1 and T2 at equilibrium.
What is this correction mean and why can we ignore it safely in
most large systems?

• (Optional) Think about Boltzmann’s Demon. How can we un-
derstand it qualitatively using this idea?

3. We can define the average energy of a system as

〈E〉 = ∑
s

Es p(Es) (26)

and the Hemholtz Free Energy as F = 〈E〉 − TS. Using the expres-
sion for the Shannon entropy and the Boltzmann distribution in
the last problem show that

F = −kBT log Z, (27)

where Z is the partition function.
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