
Final Homework. 1
1 This is the FInal Take-Home HW.
Due on Wednesday May 8th by 4pm.
Please email me or leave in my office.
Please try to do this by yourself. You
are allowed to discuss concepts with
each other, you must write your own
HW solutions independently. I will also
be having office hours next week to
help. I will be in my office on Monday
May 6 from 9:30-1pm. for questions.
You can also email me to set-up a time.

Pankaj Mehta

May 6, 2019

The goal of this HW is to force you to think about all concepts we have
learned in the class.

1. Growth laws revisited: Cell size regulation

We began the class discussing how we could make phenomeno-
logical growth laws. Here we will discuss simple models of cell-size
control. The question is how does a cell maintain a constant volume.
In other words, once there is a small fluctuation in the volume, why
does it not grow? Why don’t small changes in volume get amplified?
This is now an active area of research (check out Willis and Huang,
“Sizing up the bacterial cell cycle", Nature Reviews Microbiology
2017 for a good review).

In the absence of any regulation, smaller cells will have smaller
daughter cells and larger cells will have larger daughter cells and cell
sizes will diverge. Lets do a simple calculation and simulations to see
how this works.Imagine a cell population with some average size S̄.
It is helpful to think about a general function F which relates the new
cell size to old cell size

Si+1 = FSi. (1)

We can think of F as encoding complicated function that tells us
about how sizes of mother and daughter cells are related.

If we denote the average population size by S̄, it is actually useful
to think about the linearized growth law since we are asking about
how small perturbation grow of shrink:

δSi+1 = f δSi, (2)

where Si = S̄ + δSi. (a) Show that we can rewrite growth law equa-
tions as

Si+1 = f Si + S̄(1− f ). (3)

What are the different behaviors depending on the value of f ? When
is there cell-size regulation?

(b) Consider a population of N = 100 identical cells of size 1. Add a
small perturbation to each cell drawn from a Gaussian distribution
with mean zero and standard deviation 0.2. Simulate this equation
for 50 generations for f = 0, 1/2, 1, 2. When running the simulation
randomly choose a daughter cell to follow at each division (i.e. you
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Figure 1 | Quantifying the control of cell size. Three simple models underlie cell size regulation (part a). In sizer 
regulation, cells divide (or trigger DNA replication) upon reaching a critical size. In timer regulation, cells divide after a 
fixed period after birth. In adder regulation, cells divide after the addition of a critical size to their birth size. Correlations 
between birth size and division size, as well as between birth size and inter-division time, can be used to distinguish 
among the three different models (red lines). Dashed lines denote the average values of the corresponding variables. The 
adder rule leads to progressive regression to the mean cell size over several generations (part b). Cells that are born larger 
than the average birth size (blue) add a fixed increment of material (Δ) that is equal to the average birth size and then 
divide. Thus, large newborn cells become smaller over several generations to approach the average cell size. Cells that are 
born smaller than the average birth size (purple) also add an increment (Δ) that is equal to the average birth size and then 
divide, so these cells increase their average size over several generations. Overlaid on a phylogenetic tree (part c) are the 
bacteria for which cell size control measurements have been reported to date. Cell outlines indicate Gram-positive (thick) 
or Gram-negative (thin) wall structure. Yellow regions indicate the places at which new cell wall material is inserted (if 
known). Arrows indicate the division sites. The reported homeostasis rule (or rules) is indicated. B. subtilis, Bacillus subtilis; 
C. crescentus, Caulobacter crescentus; D. vulgaris, Desulfovibrio vulgaris Hildenborough; E. coli, Escherichia coli; 
M. smegmatis, Mycobacterium smegmatis; P. aeruginosa, Pseudomonas aeruginosa. Part c is adapted with permission from 
REF. 155, Macmillan Publishers Limited.

REV IEWS
Figure 1: Figure of basic models of
cell-cycle control.

should end up with 100 cells at the end of the simulation, with each
cell a descendant of one of the 100 original cells). Make a plot of 10 of
the cell lineages as a function of generation. Calculate the mean and
standard deviation of the resulting distribution of cells? Explain your
results.

(c) Decrease the standard deviation of the perturbation to 0.05 and
redo (b). How do your results change?

As shown in Figure ??, there are there are three general models
for how cells work. These are called the sizer (where cells directly
control size), the timer (where cells grow for fixed time T), and a
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Figure 2: Real data confirming the
adder model from Sattar Taheri-Araghi
et al. Cell-Size Control and Home-
ostasis in Bacteria. Current Biology
2015.

adder (where cells add a constant volume at each cell division). Let
us relate this to what we did above.

(d) Argue that the size corresponds to f = 0 and that the timer
corresponds to f = 1.

(e) Let us now consider a simple “adder” model where one adds a
fixed ∆ to the cell at each iteration. In this case, we have

Si+1 =
1
2
(Si + ∆). (4)

Show that this model corresponds to S̄ = ∆ and that f = 1/2.

Note that we can check the type of mechanism used by a cell by
just measuring f . This is actually much trickier than it seems and lot
of fun experimental designs have been used. Here is data from Fig.
?? showing the adder describes E. coli. using a fun set-up they call the
“Mother Machine”.

2. Random Walk model of Polymers We spent a lot of time thinking
about diffusion and random walks. It turns out that random walks
are also good approximation for biological polymers like DNA, actin,
and microtubules.

In particular, we can think of Polymers as being composed of N
stiff rods of length l that perform a random walk (see Figure ??).
The reason we can do this is that each Polymer looks stiff on a short-
enough scale. The length-scale associated with these stiff segments
is usually called the Kuhn length. The simplest approximation to a
polymer of length L is to think of it as N = L/l stiff rods.

In what follows, for mathematical simplicity, we call consider a
random walk in 2D dimensions. (a) Look up the Kuhn length for

DNA, actin, and microtubules in order to get a feeling for these poly-
mers.
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Figure 3: A polymer can be thought of
as a random walk in three dimensions.
This is called the Freely Jointed Chain.
It of course ignores charge, steric
occlusion, etc. but is still surprisingly
useful model.

(b) Let us denote position by vector ~R = (Rx, Ry). Show that 〈Rx〉 =
〈Ry〉 = 0.

(c) Consider a single link ~e = (ex, ey) of length l (this is just an arrow
of length l that can point uniformly in any direction on the 2d plane
). Show that

〈e2
x〉 = 〈e2

y〉 =
l2

2
(5)

(d) Since all links are independent, use this to calculate for a chain of
N segments

〈R2
x〉, 〈R2

y〉, 〈~R2〉. (6)

(e) Use the derived formula to estimate the genome length (in µm) of
E. coli.

3. Molecular networks for calculating Berg-Purcell
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Figure 4: Figure of showing network
that implments Berg-Purcell calculation

In this problem we will show that the simple two component
circuit shown in Fig. ?? implements the Berg-Purcell algorithm for es-
timating concentrations we disscussed in class. This two-component
biochemical network stores information about ligand concentration in
the steady-state concentration of the activated form of a downstream
protein (as shown in Figure ??). Such two-component networks are
a common signal transduction motif found in bacteria, and are often
used to sense external signals through receptor-catalyzed phospho-
rylation of a downstream response regulator . The membrane-bound
receptors can be in an either an active ‘on’ state or an inactive ‘off’
state. For simplicity, we assume that the binding affinity of the ‘on’
state is extremely high such that all ligand-bound receptors are al-
ways in the ‘on’ state and all unbound receptors are in the ‘off’
state. Receptors can switch between the off state and on state at a
concentration-dependent rate koff

4 and from the on state to the off state
at a concentration-independent rate kon

4 . Receptors additionally con-
vert a downstream signaling protein from an inactive form X to an
active form X∗, by for example phosphorylation, at a state-dependent
rate ks

2, where s = on, off. The proteins are deactivated at a state-
independent rate k1. The dependence of ks

2 on the receptor state is
what propagates information about ligand concentration from the
receptor to X.

Importantly, the deactivation rate of the off state is small yet must
be nonzero for thermodynamic consistency. We also note that for
the case where proteins are activated through phosphorylaltion, koff

2
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includes non-specific phosphorylation arising from other kinases as
well as contributions from the reverse reactions of the phosphatases.
The inactivation rate sets the scale for the effective measurement
time T ∝ k−1

1 , since sets the rate at which information encoded in
downstream proteins is erased due to inactivation. In order to com-
pute external concentrations accurately, the measurement time must
be much longer than the typical switching times between receptor
states, k1 � kon

4 , koff
4 . We show below that this simple network in fact

implements a noisy version of the original Berg-Purcell calculation.

(a) Show that the equation describing the mean number of phospho-
rylated proteins takes the form

dpon

dt
= koff

4 (1− pon)− kon
4 pon (7)

dn
dt

= kon
2 pon + ko f f

2 (1− pon)− k1n. (8)

(b) Show that at steady-state we have

p̄on = 1− p̄off =
Koff

4

Koff
4 + Kon

4
(9)

and
n̄ = (Kon

2 − Koff
2 ) p̄on + Koff

2 , (10)

where we have defined the dimensionless parameters Ks
j = ks

j /k1

with j = {2, 4} and s = {‘on’,‘off’}.

To quantify learning in our biochemical circuit, we follow Berg and
Purcell and estimate the fluctuations in (δc)2 as

〈(δc)2〉
c2 =

(
c

∂n̄
∂c

)−2
〈(δn)2〉, (11)

with (δn)2 = 〈n2〉 − n̄2.

(c) Let us assume that the on-rate is diffusion limited so that ko f f
4 =

k+c and denote kon
4 = k−. Show that(

c
∂n̄
∂c

)2
= ( p̄on p̄o f f ∆K2)

2. (12)

Calculating 〈(δn)2〉 is actually quite tricky. However, one can do it
using Generating Functions. Here, we will show the first few steps in
the derivation.
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(d) Show that the the master equation for the probability, ps(n), of
there being n active proteins with the receptor in a state s,

dps(n)
dt

= k1(n+ 1)ps(n+ 1)+ ks
2 ps(n− 1)+ ks̄

4 ps̄(n)− (k1n+ ks
2 + ks

4)ps(n)
(13)

where s̄ = off (on) when s = on (off). State the meaning of each of
these terms.

Let us define two generating function of the form

Gs(n) =
∞

∑
n=0

ps(n)zn, (14)

with s = on, off.

(e) Show that the Master equation above can be re-written as

[(z− 1)∂z − Ks
2(z− 1) + Ks

4] Gs(z) = Ks̄
4Gs̄(z). (15)

where we have defined Ks
i = ks

i /k1. It turns out that we can solve this
differential equation using Hypergeometric equations and then solve
for the variance. This is too hard for this HW 2. Instead, we will state 2 I encourage the more theory inclined

graduate physics students to try to
derive this expression below.

the answer.

(δn)2 = n̄ + p̄on p̄o f f
(∆Kon

2 )2

1 + Kon
4 + Ko f f

4

(16)

(f) Write a Gillespie algorithm to check this answer for the parame-
ters: koff

2 = 0.01, kon
2 , kon

4 = koff
4 = k1 = 1.

Plugging this into the equation above gives

(δc)2

c2 =
n̄

( p̄on p̄o f f ∆K2)2 +
1

( p̄on p̄o f f )(1 + Kon
4 + Ko f f

4 )
. (17)

How do we relate this to Berg-Purcell? To compute uncertainty,
Berg and Purcell assumed that the cell computes the average recep-
tor occupancy by time-averaging over a measurement time T. They
showed that,

(δcBP)
2

c2 = 2/Nb, (18)

(g) Argue that number of binding events will equal the number of
unbinding events and hence

Nb = Tp̄onkon
4 = Tp̄o f f koff

4 (19)
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(h) Let us identify the de-phosphorylation rate with the averaging
time in BP as follows k1 = 2T−1. Show then that Eq. ?? can be writ-
ten as

(δc)2

c2 =
n̄

(n̄− Ko f f
2 )2 p2

o f f

+
2

Nb

(
1− k1

kon
4 + ko f f

4 + k1

)
. (20)

When the measurement time is much longer than the timescale of
fluctuations in receptor activity, i.e. kon,off

4 � k1 (or equivalently
Kon

2 � Koff
2 � 1), and the average number of activated proteins is

large, n̄ � Ko f f
2 � 1, the expression above reduces to (δc)2/c2 ≈

2/Nb in agreement with Eq. ??.

4. Monod-Wyman-Changeux (MWC) model of allosteric interac-
tions

This exercise introduces the Monod-Wyman-Changeux (MWC)
model of allosteric interactions. The MWC model was first proposed
to explain the sigmoidal response of hemoglobin to oxygen and has
since become one of the canonical models allostery in biochemistry
and biophysics. The main idea of the model is that an enzyme or
protein can exist in multiple, interconvertible conformations with the
probability that the enzyme is in a given confirmation determined by
thermal equilibrium. The presence of ligands biases the enzyme to-
wards one of these confirmations by shifting the relative free energies
of the underlying protein confirmations.

In this exercise, we will derive the main results of the MWC model
from simple thermodynamic and statistical mechanical arguments.
This problem assumes knowledge of partition functions.

(a) Consider an protein with a single conformational state that can
bind a ligand [L] from the environment. In thermal equilibrium,
show that the free energy difference, ∆F, between the bound and
unbound state is given by

∆F = − log
[L]
KD

, (21)

with KD = k−/k+, k+ the ligand binding rate, and k− is the ligand
unbinding rate. KD is called the binding affinity of the protein

(b) Now consider a protein that can exist in two states, an active state
A, and an inactive state I. In the absence of ligand, the free energy of
the active state is εA and the inactive state is εI . Furthermore, denote
the binding affinity of the protein in the active state by KA

D and the
binding affinity in the inactive state K I

D. Calculate the probability
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that the protein is in the active state. Show that in the limit where
ligand binding strongly favors the active state K I

D � [L] � KA
D,

this expression reduces to a form similar to the Michaelis Menten
equation. Briefly discuss the meaning of KM and the relationship to
the Michaelis Metin equation.

(c) Generalize the calculation in b) to the case when the protein is
composed on 2 independent, identical subunits each of which can
bind ligand. For this case, there are 8 total possible states: the protein
can be active or inactive with 0,1, or 2 ligands bound to the protein.
Show that when K I

D � [L] � KA
D, your expression reduces to a form

similar to the Hill equation with a Hill coefficient of 2.


