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Problem 94: Analysis of DNA sequences. The file seqs.txt contains data from the exper-
iments of Kinney et al. (2010); focus on the data labeled crp-wt. There are a large number
of sequences for the promoter region of a gene, and each sequence is associated with a batch
B0, B1, . . . , B9. B1 through B9 are those sequences that generate expression levels in some
specified ranges, and B0 is a sample of all sequences used in the experiment. At each site along
the sequence, you should have enough samples to estimate the joint distribution of the base
at that site (four possibilities) and the batch number (nine possibilities). Using the ideas in
Chapter 6, compute the amount of information that the base gives about the expression level
(or its surrogate in this experiment, the batch number). Can you identify regions of the se-
quence that are particularly informative? Does the information ever go to zero, suggesting that
some bases are completely irrelevant to the control of expression?

Now that we have some confidence in our description of the binding energies, we
can go back and ask once more about the statistics of sequences and the problem of
robustness versus fine tuning. The essential point, I think, is that although proteins
bind to segments of DNA that are ∼10 bases long, to first approximation all that
matters is the binding energy, which is one number. Out of ∼410 sequences, there are
many ways of achieving the same value of the binding energy. The natural hypothesis
is that evolution allows nearly random wandering among the isoenergetic sequences;
comparing the genomes of closely related organisms gives results consistent with this
hypothesis.

Our discussion has focused on the interaction of (mostly) single proteins with sin-
gle DNA sequences. The real problem is in a larger context—there are more than 100
transcription factors, even in relatively small bacteria, and several thousands of func-
tional binding sites. It is not enough that one protein bind to one site with a sensible
energy; it must also be true that this protein does not bind to the wrong sites, nor that
other proteins bind to its intended site. If we can take seriously the representation of a
protein’s sequence specificity by a linear model, then we can start to ask how different
transcription factors distribute themselves in the space parameterized by the matrix el-
ements Wiµ, and whether this distribution provides maximum discriminability among
the alternative regulatory signals. As explained in the references (see the Annotated Bib-
liography for this section), there are some interesting efforts in this direction, but much
remains to be done.

5.2 Ion Channels and Neuronal Dynamics
The functional behavior of neurons involves the generation and processing of electrical
signals, voltage differences, and current flows across the cell membrane. As noted in our
discussion of the rod photoreceptor cell (Section 2.3), the membrane itself is insulating,
and hence there would be no interesting electrical dynamics if not for the presence
of specific conducting pores or channels. These pores are protein molecules that can
change their structure in response to various signals, including the voltage across
the membrane, which means that the system of channels interacting with the voltage
constitutes a potentially complex, nonlinear dynamical system. We can also think of the
ion channels in the cell membrane as a network of interacting protein molecules, with
the interactions mediated through the transmembrane voltage. In contrast to many
other such biochemical networks, we actually know the equations that describe the
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network dynamics, and as a result the questions of fine tuning versus robustness can
be posed rather sharply.

When we move from thinking about individual neurons to thinking about circuits
and networks of neurons, which really do the business of the brain, it is easy to imagine
that the neurons are circuit elements with some fixed properties. We enhance this
tendency by drawing circuit diagrams in which we keep track of whether neurons excite
or inhibit one another, but nothing else about their dynamics is made explicit. Indeed,
we will take this point of view in Section 5.4, just to keep things tractable. Despite our
hopes for simplicity, our genome encodes ∼102 different kinds of channels, each with
its own kinetics. This range is expanded even further by the fact that many of these
channels have multiple subunits, and cells can splice together the subunits in different
combinations. On the one hand, this creates enormous flexibility and presumably adds
to the computational power of the brain. On the other hand, this range of possibilities
raises a problem of control. A typical neuron might have eight or nine different kinds
of channels, and we will see that the dynamics of the cell depend rather sensitively on
how many of each kind of channel is present. In keeping with the theme of this chapter,
it might seem that cells need to tune their channel content very precisely, yet this needs
to happen in a robust fashion.

To explore the trade-off between fine tuning and robustness in neurons, we need to
understand the dynamics of the channels themselves.7 For simplicity, let’s neglect the
spatial structure of the cell and assume we can talk about a single voltage difference V

between the inside and the outside of the cell. Then because the membrane acts as a
capacitor with capacitance C, we can write, quite generally,

C
dV

dt
= Ichannels + Iext, (5.32)

where Iext is any external current that is being injected (perhaps by us as experimenters)
and Ichannels is the current flowing through the channels. Each open channel acts more
or less as an Ohmic conductance, and the structure of the channel endows it with
specificity for particular ions. Because the cell works to keep the concentrations of ions
different on the inside and outside of the cell, the thermodynamic driving force for
the flow of current includes both the electrical voltage and a difference in chemical
potential; it is conventional to summarize this by the reversal potential Vi for the
currents flowing through channels of type i, which might involve a mix of ions. Because
current only flows through open channels, we can write

Ichannels = −
∑

i

giNifi . (V − Vi), (5.33)

where gi is the conductance of one open channel of type i, Ni is the total number of
these channels, fi is the fraction that are open, and Vi is the reversal potential. If each

7. As with many of the topics discussed in this text, we could spend an entire semester on ion channels
and not exhaust the subject. I admit that in some sections of the book I feel that I am providing a good
guide to potentially complex matters, whereas in other sections I feel very strongly the weight of the things
I am leaving out. As always, I encourage you to dig into the references in the Annotated Bibliography for
this section.
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FIGURE 5.21
Activation curve for an ion channel, from Eq. (5.36), with Q = 4.

channel has just two states, open and closed, then the dynamics would be described by

dfi

dt
= − 1

τi(V )

[
fi − f

eq
i (V )

]
. (5.34)

The equilibrium fraction of open channels as a function of voltage, f
eq
i (V ), often

is called the activation curve, and τi(V ) is the time constant for relaxation to this
equilibrium.

What is a reasonable shape for the activation curve? We are describing a protein
molecule that can exist in two states, and the equilibrium between these two states
depends on voltage. This is possible only if the transition from closed to open rearranges
the charges in the protein. In the simplest model, the opening of the channel effectively
moves a charge Q across the membrane, and so the free-energy difference between
open and closed states will be "F = F0 − QeV . Then the equilibrium probability of
a channel being open will be given by

f eq(V ) = 1
1 + exp

[
(F0 − QeV )/kBT

] (5.35)

= 1
1 + exp

[
−(V − V1/2)/Vw

] , (5.36)

where the point of half maximal activation is V1/2 = F0/(Qe), and the width of the
activation curve is Vw = kBT /Qe, as shown in Fig. 5.21. The charge Q is referred to
as the gating charge. At room temperature we have kBT /e = 25 mV, so that even with
relatively small values of Q we expect channels to make the transition from closed to
open in a window of ∼10 mV. The location of the midpoint V1/2 depends on essentially
all aspects of the protein structure in the open and closed states, so it is harder to develop
intuition for this parameter.

In the absence of external inputs, all currents through the channels have to cancel.
If only one kind of channel dominates, it will drive the voltage across the membrane
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to Vi, the reversal potential for that particular channel. Cells have pumps that maintain
differences in the concentration of ions between the inside and outside of the cell,
but these differences are not infinitely large. If, for example, there is a ratio of 100
between the internal and external concentrations of an ion with charge 1, then the
reversal potential for the flow of this ion will be ±(kBT /e) ln(100) ∼ 115 mV, where
the sign depends on whether the higher concentration is inside or outside the cell. This
estimate suggests that full dynamic range of voltage changes across the membrane will
be limited to ±100 mV, which is correct.

To get started on the dynamics, it is useful to identify the “resting potential” V = V0,
and study small perturbations around this steady state. The full dynamics are

C
dV

dt
= −

∑

i

giNifi . (V − Vi) + Iext, (5.37)

dfi

dt
= − 1

τi(V )

[
fi − f

eq
i (V )

]
, (5.38)

and the linearization is

C
dδV

dt
= −

∑

i

giNif
eq
i (V )δV −

∑

i

giNi(V0 − Vi)δfi + Iext, (5.39)

dδfi

dt
= − 1

τi(V0)



δfi −
df

eq
i (V )

dV

∣∣∣∣∣
V =V0

δV



 . (5.40)

Fourier transforming, we can solve for the channel dynamics, then substitute and collect
terms to find

[

−iωC + 1
R0

+
∑

i

giNi(V0 − Vi)[df
eq
i (V )/dV ]0

1 − iωτi(V0)

]

δṼ (ω) = Ĩext(ω). (5.41)

The resting resistance of the membrane is defined by

1
R0

=
∑

i

giNif
eq
i (V ). (5.42)

The term in brackets in Eq. (5.41) is the inverse impedance (or admittance) of the system.

Problem 95: Details of membrane impedance. Fill in the steps leading to Eq. (5.41).

To understand what is going on here, it is helpful to think about channels with fast
(1/τi # ω) or slow (1/τi $ ω) responses. The fast channels renormalize the resistance:

1
R0

→ 1
R0

+
∑

i∈fast

giNi(V0 − Vi)
df

eq
i (V )

dV

∣∣∣∣∣
V =V0

. (5.43)

Importantly, the correction to the resistance can be either positive or negative. Suppose
that, as in Fig. 5.21, the channels tend to open in response to increasing voltage, as
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most channels do. Then [df eq
i (V )/dV ]0 > 0. But if this channel is specific for an ion

with a reversal potential above the resting potential (Vi > V0), then opening the channel
creates a stronger tendency to pull the voltage toward this higher potential, which is a
regenerative effect—a negative resistance. The power supply for this negative resistor is
provided by the pumps that maintain the reversal potentials.

If the channels are slow, they make a contribution to the imaginary part of the
admittance, along with the capacitance,

−iωC → −iωC + 1
−iω

∑

i∈slow

giNi

τi(V0)
(V0 − Vi)

df
eq
i (V )

dV

∣∣∣∣∣
V =V0

. (5.44)

Again the sign depends on details. If the channels are opened by increasing voltage and
the reversal potential is below the resting potential, then their contribution is (almost)
like an inductance and can generate a resonance by competing with the capacitance.
This resonance is at a frequency

ω∗ =



 1
C

∑

i∈slow

giNi

τi(V0)
(V0 − Vi)

df
eq
i (V )

dV

∣∣∣∣∣
V =V0




1/2

. (5.45)

Problem 96: Equivalent circuits. Equation (5.41) shows that each type of channel con-
tributes a parallel path for current flow through the membrane. The impedance of this path
is defined by

1

Z̃i(ω)
= giNif

eq
i (V ) + giNi(V0 − Vi)[df

eq
i (V )/dV ]0

1 − iωτi(V0)
. (5.46)

Without resorting to the fast/slow approximations above, draw an equivalent circuit using
the standard lumped elements (capacitance, resistance, inductance) that realizes this im-
pedance. Show how the parameters of the lumped elements relate to the parameters of the
channels.

So, we have seen that even in response to small signals, the dynamics of ion
channels generate an interesting complement of electronic parts: resistors, inductors,
and negative resistors. Certainly these elements together can make a filter, playing the
effective inductance of the channels against the intrinsic capacitance of the membrane,
as noted above. The negative resistor can sharpen the resonance and even generate an
instability; on the other side of the instability is a genuine oscillator.

Problem 97: Oscillations. Construct a minimal model for ion channels in the cell mem-
brane that supports a stable limit-cycle oscillation of the voltage.

The negative resistance alone means that we can have (without oscillations) an
instability of the steady state around which we were expanding, presumably because
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FIGURE 5.22
Bistability in a simple model of a neuron. The channel
nullcline is Eq. (5.49), and the voltage nullcline is Eq. (5.50). To
be explicit, we choose feq(V ) from Eq. (5.36), with V1/2 = 70
and Vw = 10, and Gleak/gN = 0.1. Note that there are three
crossing points, corresponding to steady states. The low- and
high-voltage states are stable; the intermediate-voltage state is
unstable.

the real system is multistable. To see this behavior more clearly, consider just two types
of channels—a leak channel, which has a total conductance Gleak independent of the
voltage and has a reversal potential of zero, and some other channel, which opens in
response to increasing voltage and has a reversal potential Vr. Then the dynamics are

C
dV

dt
= −GleakV − gNf . (V − Vr), (5.47)

df

dt
= − 1

τ (V )
[f − feq(V )]. (5.48)

The steady state solutions are determined by solving two simultaneous equations,
usually called the nullclines, obtained by setting the time derivatives equal to zero:

f = feq(V ), (5.49)

V = Vr
f

f + Gleak/gN
; (5.50)

these nullclines are shown schematically in Fig. 5.22 for some reasonable choice of
parameters. We can see that there are three solutions to the two simultaneous equations;
two are stable and one is unstable. The two stable states correspond, roughly, to one
state in which all channels are closed and the voltage is zero (the reversal potential of the
leak), and one state in which all channels are open and the voltage is near the reversal
potential for these channels. The bistability means that, if the cell starts in the low-
voltage state, injection of a relatively small, brief current can drive the system across a
threshold (separatrix), so that it falls into the high-voltage state after the current pulse
is complete. This behavior constitutes a form of memory (interesting, although not
very realistic), but it also substantially amplifies the incoming signal, especially if the
parameters are tuned so that the difference in voltage to the unstable state is small.
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Problem 98: Bistability. Work through a concrete example of the ideas in the previous
paragraphs, perhaps using the detailed model from Fig. 5.22. Verify analytically the claims
about stability of the three different steady states. Explain how these analytic criteria can be
converted into a test for stability of each steady state that can be read off directly from the plots
in Fig. 5.22. Analyze the response to brief pulses of current, showing that there is a well-defined
threshold for switching from one stable state to the other.

All the different kinds of dynamics we have seen thus far—filtering, oscillation, and
bistability—can be generated by just one kind of channel with only two states. Real
neurons are more complex. One important class of dynamics that we can’t quite see in
the simplest models is excitability. In this case, a small pulse again drives the system
across a threshold, but what would have been a second stable state is destabilized by
relaxation of some other degrees of freedom. The result is that the system takes a long,
and often stereotyped, trajectory through its phase space before coming back to its
original steady state after the input pulse is over. The action potential is an example of
such excitable dynamics.

Our understanding of ion channels goes back to the classic work of Hodgkin and
Huxley in the 1940s and 1950s. They studied the giant axon, a single cell, visible to
the naked eye, which runs along the length of a squid’s body and along which action
potentials are propagated to trigger the squid’s escape reflex. Passing a conducting wire
through the interior of the long axon, they short-circuited the propagation, ensuring
that the voltage across the membrane was spatially uniform, as in our idealization
above.8 They then studied the current that flowed in response to steps of voltage. If
the picture of channels is correct, then with the voltage held constant, there should be
an (Ohmic) flow of current through the open channels. If we step suddenly to a new
value of the voltage, Ohm’s law states that the current through the open channels will
change immediately, but there will be a prolonged time dependence that results from the
open or closing of channels as they equilibrate at the new voltage. In the simple model
with two states, this changing current should relax exponentially to a new steady state;
in particular, the initial slope of the current should be finite.

Hodgkin and Huxley found that the relaxation of the current at constant voltage
has a gradual start, as if the channels had not one closed state but several, and the
molecules had to go through these states in sequence before opening. They chose to
describe these dynamics of the currents by imagining that, for the channel to be open,
there were several independent molecular gates that all had to be open. Each gate could
have only two states and would obey simple first-order kinetics, but the probability that
the channel is open would be the product of the probabilities that the gates were open.
In the simple case that the multiple gates are identical, the probability of the channel
being open is just a power of the gating variable describing the probability that one
gate is open. Hodgkin and Huxley also discovered that at least one important class
of channels opens in response to increased voltage and then closes over time. They

8. There is a video of Hodgkin himself (along with a colleague) recreating some of these experiments in
the 1970s: http://youtu.be/k48jXzFGMc8. You can also find the great anatomist J. Z. Young dissecting a
squid, and taking us along the rather astonishing path to realizing that there are single nerve axons more
than 1 mm in diameter: http://youtu.be/pw6_Si5jOpo.
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described this mechanism by postulating that in addition to activation gates that were
opened by increasing voltage, there were inactivation gates that closed in response to
increasing voltage but had slower kinetics. Putting the pieces together, they described
the fraction of open channels as

fi = m
αi
i h

βi
i , (5.51)

where m and h are activation and inactivation gates, respectively, and the powers α and
β count the number of these gates that contribute to the opening of one channel. The
kinetics are then described by

dmi

dt
= − 1

τ
(m)
i (V )

[
mi − m

eq
i (V )

]
, (5.52)

dhi

dt
= − 1

τ
(h)
i (V )

[
hi − h

eq
i (V )

]
, (5.53)

and finally the voltage (again neglecting spatial variations) obeys

C
dV

dt
= −

∑

i

giNim
αi
i h

βi
i

. (V − Vi). (5.54)

Problem 99: Two gates. Suppose that each channel has two independent structural ele-
ments (gates), each of which has two states. Assuming that the two gates are independent of
each other, fill in the steps showing that the dynamics of the channels are as described above.
In particular, show that after a sudden change in voltage, the fraction of open channels starts
to change as ∝ t2, not ∝ t as expected if the entire channel only has two states.

Problem 100: Hodgkin and Huxley revisited. The original equations written by Hodgkin
and Huxley are:9

C
dV

dt
= −ḡL(V − VL) − ḡNam

3h(V − VNa) − ḡKn4(V − VK) + I (t), (5.55)

dn

dt
= 0.01(−V + 10)

e(−V +10)/10 − 1
(1 − n) − 0.125e−V/80n, (5.56)

dm

dt
= 0.1(−V + 25)

e(−V +25)/10 − 1
(1 − m) − 4e−V/18m, (5.57)

dh

dt
= 0.07e−V/20(1 − h) − 1

e(−V +30)/10 + 1
h, (5.58)

where Na and K refer to sodium and potassium channels, respectively; time is measured in
milliseconds and V is measured in millivolts. These equations are intended to describe a small

9. The only difference from the original paper is that we use the modern sign convention for the voltage.
Notice that this original formulation is in terms of a “maximal conductance” for each type of “current,”
whereas in modern language we could talk about the number of each type of channel. In fact, the more
phenomenological description persists, because it corresponds more directly to what is measured, but it
allows us to forget that such parameters as ḡK actually measure the number of copies of a protein that
have been inserted into the membrane.
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patch of the membrane, and so many parameters are given per unit area: C = 1 µF/cm2,
ḡL = 0.3 mS/cm2, ḡNa = 120 mS/cm2, and ḡK = 36 mS/cm2; the reversal potentials are VL =
10.613 mV, VNa = 115 mV, and VK = −12 mV, all measured from the resting potential.

(a) Rewrite these equations in terms of equilibrium values and relaxation times for the
gating variables, for example,

dm

dt
= − 1

τm(V )

[
m − meq(V )

]
. (5.59)

Plot these quantities. Can you explain, intuitively, the form of the curves?

(b) Simulate the dynamics of the Hodgkin-Huxley equations in response to constant
current inputs. Show that there is a threshold current above which the system generates
periodic pulses. Explore the frequency of the pulses as a function of current.

(c) Suppose that the injected current consists of a mean (less than the threshold you iden-
tified in part (b)) plus a small component at frequency ω. By some appropriate combination
of analytic and numerical methods, find the impedance Z(ω) for different values of the mean
injected current. Show that the membrane has a resonance, and explore what happens to this
resonance as the mean current is increased toward threshold. How do your results connect to
the frequency of pulses above threshold?

(d) Real axons are essentially long thin cylinders. Show that, if we allow the voltage to
vary along the length of the axon, a current per unit area should flow across the membrane of

I = a

2R

∂2V

∂z2
, (5.60)

where z is the coordinate along the cylinder, a is its radius, and R is the resistivity of the
fluid filling the axon, assuming that resistance outside the axon is negligible. For the squid
giant axon, a ∼ 250 µm and R ∼ 35 ohm.cm. Use this result to write equations for the voltage
and gating variables along the axon. Note that only the equation for the voltage has spatial
derivatives. Why?

(e) Simulate the response of a long segment of the axon to a current pulse injected at
one end. Show that small pulses result in spatially restricted voltage responses, whereas larger
inputs produce a propagating pulse. Confirm that these pulses become more stereotyped as
they propagate and have a velocity that is independent of the input current. What is this
velocity? How does it compare to the observed speed of action potentials, v ∼ 20 m/s?

Problem 101: Simplification. It is difficult to make analytic progress in understanding the
dynamics of a system with five variables. There is a history of trying to approximate the
Hodgkin-Huxley model by exploiting the fact that the different variables have very different
time scales. See how far you can go along this path. I have left this problem deliberately open
ended. For some approaches, see the references in the Annotated Bibliography for this section.

It is good to pause here and review how we know that the Hodgkin-Huxley descrip-
tion of ion channels is correct. The initial triumph, which you are asked to reproduce in
problem 100, is the prediction of the propagating action potential itself, as in Fig. 5.23,
with the correct speed. The model also predicts that, as the action potential passes,
there is a net flux of potassium and sodium across the membrane. On long time scales,
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FIGURE 5.23
The action potential that emerges from the
Hodgkin-Huxley model. The voltage trace is
shown by the heavy dashed line, and the time
dependence of the underlying conductances
for sodium and potassium are shown by solid
lines. Note that the rise of the action potential is
associated with the opening of sodium channels,
whereas the fall is a combination of these channels
closing and the opening of potassium channels.
The dynamic range of the electrical signal is
bounded by the reversal potentials for these two
ions (VNa and VK), as shown.

this flux must be balanced by the action of pumps that maintain the concentration
differences between the inside and outside of the cell. But either by looking quickly or
by poisoning the pumps, one should be able to detect the flux (e.g., using radioactive
tracers); this works, quantitatively.

Nature provides a variety of toxins that block the action potential in different
ways,10 and we can also use artificial blockers, for example, by using ions with very large
radius that can literally plug the hole in open channels. It is striking that these agents
act selectively on different channels, and one can verify that this way of isolating the dy-
namics of sodium and potassium channels matches the Hodgkin-Huxley description.
If we can arrange for the channels to open but be blocked, then the structural change
of the channel molecule upon opening should still move the gating charge across the
membrane. In addition, if we are careful, this movement should be measurable essen-
tially as a delayed capacitive response to changes in the applied voltage. These gating
currents have indeed been detected, and the magnitude of the gating current matches
quantitatively what is predicted from the voltage dependence of the activation curve. In
some cases this agreement can be extended to genetically engineered channels, where
one can show that changes in the activation curve and gating currents track one another.

If individual channels are independent of one another, then their opening and
closing events should be independent. If we look at a small patch of the membrane,
there will not be that many channels present, and we might be able to see that the
discrete events in the individual molecules do not quite average out—there should
be noise from the random opening and closing of the single channels. This channel
noise has been detected and has the spectral properties expected from the Hodgkin-
Huxley model. Finally, if we look at even smaller patches of the membrane, and have

10. The most famous of these toxins might be tetrodotoxin, produced by the puffer fish. This molecule
blocks the sodium channel and hence eliminates action potentials. It is worth remembering that these
toxins serve a positive function for the organisms that produce them.
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proportionately more sensitive amplifiers, we should be able to see the opening and
closing of single channels. Again, this has been done. Most importantly, we can look at
the distribution of times that individual channels spend in the open and closed states
and connect this distribution to the kinetics predicted by the Hodgkin-Huxley model
and its generalizations. Although these more-detailed measurements have revealed new
features of channel kinetics even in well-studied examples, in outline the picture given
to us by Hodgkin and Huxley has stood the test of time.

Now that we have confidence in our mathematical description of neurons, it is time
to appreciate just how many parameters are involved. A typical cell expresses eight or
nine different kinds of channels. Each channel is described by the dynamics of two
gating variables. If activation and inactivation curves have a simple sigmoidal form as
in Fig. 5.22, then there are two parameters for each such curve—the voltage at half
activation and the slope or width—and at least one more parameter to set the time
scale of the kinetics. Finally, there is a parameter to count the total number of channels,
or equivalently the maximal conductance achieved if all channels are open. All together,
then, this is ∼7 parameters per channel type, or roughly 50 parameters for the entire
neuron, conservatively. Importantly, to a large extent the cell actually has control over
these parameters and, in a meaningful sense, can adjust them almost continuously.

How do these adjustments occur? Most obviously, the total number of open chan-
nels is controlled in the same way that all other protein copy numbers are controlled.
Sometimes, because of a clear connection to experiment, one speaks of the maximal
conductance associated with a particular type of channel (Gmax

i = giNi), but this ter-
minology obscures the fact that this parameter really is the total number of copies of
the protein that the cell has expressed and inserted into the membrane. The parameters
of the activation curves and the time constants are intrinsic properties of the proteins,
but they too can be adjusted in several ways. Like all proteins, ion channels can be co-
valently modified by phosphorylation or other actions. More importantly, the genome
encodes a huge number of different ion-channel proteins; the human genome has 90
different potassium channels alone. Although they do form classes based on their dy-
namics, considerable variation exists within classes, and because many of these genes
have multiple alternative splicings, there is the potential for almost continuous parame-
ter variation. These different mechanisms of variation interact; as an example, different
splicing variants can exhibit different sensitivities to phosphorylation.

Problem 102: Continuous adjustment of electrical dynamics. To illustrate the possibility
of nearly continuous adjustments in the electrical dynamics of neurons, consider the case of
the hair cells in the turtle ear. In these cells (see Section 4.5), one contribution to frequency
selectivity comes from a resonance in the electrical response of the hair cell itself. This
resonance is driven by a combination of voltage-gated calcium channels and calcium-activated
potassium channels. A detailed model of this system is described by Wu and Fettiplace (2001).
Try to understand what they have done, and reproduce the essential theoretical results. In
particular, what is the role of “details” (e.g., the building of channels out of combinations of
different subunits) in generating the correct qualitative behavior?

One well-studied example of channel dynamics is in the stomatogastric ganglion of
crabs and lobsters, schematized in Fig. 5.24. This network of ∼30 neurons generates a
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FIGURE 5.24
The stomatogastric ganglion (STG) in crustaceans. Reprinted with permission of Annual Reviews, Inc., from Marder
and Bucher (2007); permission conveyed through Copyright Clearance Center, Inc. (a) The location of the STG and the
commissural ganglion (CoG) in a lobster. (b) Schematic of the ganglion dissected out of the animal, and the opportunities
for recording the activity of the neurons. (c) Simultaneous extracellular recordings from nine motor nerves at the output
of this network. Names indicate particular neurons that can be identified in each individual (as with the named neurons
in the fly visual system discussed in Section 4.4), and in some cases (e.g., avn, mvn) we can identify spikes from several
individual neurons in the recording from one nerve. There are two main rhythms, the faster pyloric rhythm in cells PD,
LP, PY, VD and IC, and the slower gastric-mill rhythm in cells MG, DG, GM, LPG, and LG.

rhythm, and this rhythm in turn drives muscles that actuate teeth in the crab stomach,
grinding its food. Evidently getting the correct rhythm is important in the life of the
organism. Records of the electrical signals from individual neurons show that several
of the cells produce periodic bursts of action potentials, and a handful of cells are
pacemakers that can generate this periodic pattern without input from the other cells.
In one such cell (the lateral pyloric neuron), experiments show that there are seven
different channel types. An important feature of this cell, shared by many other cells, is
the presence of voltage-gated calcium channels. As action potentials occur, they trigger
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calcium flux into the cell. Because some channels are also directly affected by the
calcium concentration, a complete model must include a description of the calcium
buffering or pumping that counterbalances this flux.

It is worth being explicit about all these ingredients in the dynamics of the lateral
pyloric neuron, not least to get a sense for the state of the art in such analyses. This
will, however, take us to a level of detail that I have largely tried to avoid until this point
in the text. It is essential, however, because this level of detail is where the problems
become apparent. Once we have identified the problem, we can zoom back out to a
more schematic view.

As before, we neglect the spatial structure of the cell, so there is just one relevant
voltage difference V between the inside and outside of the cell, which obeys Eq. (5.54),

C
dV

dt
= −

∑

i

giNim
αi
i h

βi
i (V − Ei) + Iext, (5.61)

where Iext is any externally injected current, and Ei is the reversal potential for channel
type i. The kinetics of the gating variables mi and hi are governed by Eq. (5.52) and
Eq. (5.53), respectively. For most channels, we can take the equilibrium values of the
gating variables to be given by the generalization of Eq. (5.36),

m
eq
i (V ) = 1

1 + exp[−(V − V
mi
1/2)/V

mi
w ]

, (5.62)

h
eq
i (V ) = 1

1 + exp[−(V − V
hi
1/2)/V

hi
w ]

, (5.63)

and the time constants for relaxation of the gating variables are phenomenologically,

1

τ
(m)
i (V )

= k
(m)
i

1 + exp[−γ
(m)
i (V − V

(m)
i )]

, (5.64)

1

τ
(h)
i (V )

= k
(h)
i

1 + exp[−γ
(h)
i (V − V

(h)
i )]

. (5.65)

As shown in Table 5.1, this description works for several channel types, one selective for
potassium (the delayed rectifier), two for calcium, and one mixed (the inward rectifier),
plus a leak that exhibits no significant time or voltage dependence of its conductance.

Two of the important channel types allow calcium to flow into the cell. As we will
see, this current is big enough to change the concentration of calcium inside the cell,
which has a variety of effects on other processes, including one of the channels that
does not fit the simple description we have given so far. So, we need to describe the
dynamics of the calcium concentration itself. The simplest model is that the calcium
relaxes back to some internally determined steady state, [Ca]0 = 0.05 µM, with a rate
kCa = 360 s−1, and the current through the open calcium channels is driving an increase
in the intracellular calcium concentration. In this case,

d[Ca]
dt

= −kCa
(
[Ca]− [Ca]0

)
+ AICa, (5.66)
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TABLE 5.1
Subset of channels in the lateral pyloric neuron

Channel type giNi (µS) Ei (mV) Midpoint (mV) Width (mV) Rate (s−1)

i = 1: delayed rectifier 0.35 EK = −80

Activation equilibrium (α1 = 4) V
m1
1/2 = −25 V m1

w = 17

Activation kinetics V
(m)
1 = 10 1/γ (m)

1 = 22 k
(m)
1 = 180

i = 2: Ca++ current 1 0.21 ECa

Activation (α2 = 1) V
m2
1/2 = −11 V m2

w = 7 50

Inactivation (β2 = 1) V
h2
1/2 = −50 V h2

w = −8 16

i = 3: Ca++ current 2 0.047 ECa

Activation (α3 = 1) V
m3
1/2 = −22 V

m3
w = 7 10

i = 4: inward rectifier 0.037 −10

Activation equilibrium (α4 = 1) V
m4
1/2 = −70 V

m4
w = −7

Activation kinetics V
(m)
4 = −110 1/γ (m)

1 = 13 k
(m)
1 = 0.33

i = 5: leak 0.1 -50

i = 6: A-current 2.2 EK = −80

Activation equilibrium (α6 = 3) V
m6
1/2 = −12 V

m6
w = 26

Activation kinetics k
(m)
6 = 140

Inactivation equilibrium (β6a = 1) V
h6a
1/2 = −62 V

h6a
w = 6

Inactivation kinetics k
(h)
6a = 50

Inactivation equilibrium (β6b = 1) V
h6b
1/2 = −40 V

h6b
w = −12

Inactivation kinetics k
(h)
6b = 3.6

For the delayed rectifier and the second type of calcium channel, there is no evidence for inactivation. The negative value of V (h2)
w means,

from Eq. (5.36), that the probability of the inactivation gate being open decreases with increasing voltage. For calcium channels, the reversal
potential varies, depending on the calcium concentration inside the cell, as in Eq. (5.67), and the relaxation times do not have a detectable
voltage dependence. The voltage dependence of the inward rectifier kinetics is opposite to Eq. (5.64), that is, 1/τ ∝ 1 + exp[−γ

(m)
i (V − V

(m)
i )].

The leak current, by convention, is the current that exhibits no voltage or time dependence of its conductance. From Buchholtz et al. (1992).

where ICa is the total calcium current (ICa = I2 + I3 from Table 5.1). The constant
A = 300 µM/nC is inversely proportional to the volume into which the current flows,
which experimentally comes out to be much smaller than the total volume of the cell
body. As the concentration of calcium changes, the reversal potential for the calcium
currents also changes,

ECa = kBT

2e
ln

(
[Ca]out

[Ca]

)
, (5.67)

where the calcium concentration outside the cell is [Ca]out = 13 mM.
We are still missing three channel types in this cell. First, there is another potassium

channel that is almost described by our standard model, but the inactivation seems to
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involve two processes that occur on different time scales. This behavior can be captured
by replacing

h6 → x(V )h6a + [1 − x(V )]h6b , (5.68)

where the weighting function is

x(V ) = 1
1 + exp[−(V − 7)/15]

, (5.69)

with V measured in mV, as before.
Second, there is a fast sodium channel not unlike the ones that Hodgkin and Huxley

found in the squid giant axon, with α7 = 3 and β7 = 1. The activation is sufficiently fast
that it can be approximated as instantaneous, so that m7 is always at its equilibrium
value, which varies with voltage in a slightly more complicated way than for the other
channels,

m7 = m
eq
7 (V ) = 1

1 + 136 exp[−(V + 34)/13]
(
1 − exp[−(V + 6)/20]

)
/(V + 6)

,

(5.70)

where V again is measured in mV. The inactivation gates obey

dh7

dt
= a7(V )(1 − h7) − b7(V )h7, (5.71)

where the rates,

a7(V ) = 40 exp[−(V + 39)/8], (5.72)

b7(V ) = 500
1 + exp[−(V + 40)/5]

, (5.73)

are measured in s−1. The total conductance contributed by these channels is large,
g7N7 = 2300 µS, although they are only open briefly.

The last type of channel, like the first two in Table 5.1, is selective for potassium
ions, but the probability of the channel being open is modulated by the intracellular
calcium concentration. This channel has α8 = β8 = 1, and the equilibrium state of the
inactivation gate depends only on the calcium concentration:

h
eq
8 = 1

1 + [Ca]/(0.6 µM)
. (5.74)

The equilibrium state of the activation gate, in contrast, depends both on voltage and
on calcium,

m
eq
8 = 1

1 + exp[−(V + f [Ca])/23]
. 1

1 + exp[−(V + 16 + f [Ca])/5]
. [Ca]

2.5 µM + [Ca]
,

(5.75)

where f = 0.6 mV/µM. The relaxation rates, k
(m)
8 = 600 s−1 and k

(h)
8 = 35 s−1, show

little if any voltage dependence. This seems like a complicated model, but it fits the
experimental results very well, as shown in Fig. 5.25.
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FIGURE 5.25
Dynamics of the calcium-dependent potassium current in
response to voltage steps of varying size. Redrawn from
Buchholtz et al. (1992). Experimental data (noisy traces)
from Golowasch and Marder (1992); solid lines are from the
model including Eq. (5.74) and Eq. (5.75).

Problem 103: Calcium-dependent potassium conductances. Develop a microscopic pic-
ture to explain the combination of voltage and calcium dependences seen in Eq. (5.74) and
Eq. (5.75). Remember that these equations describe the equilibrium fractions of molecules in
particular states, so you need to relate these fractions back to the free energies of the different
states. Connect your discussion with the MWC models introduced in the discussion of the
cGMP gated channels in rod cells (Section 2.3).

The model of the lateral pyloric neuron described here represents the culmination
of many years of effort, both in experiments on this particular system and in the
exploration of these fully realistic generalizations of the Hodgkin-Huxley model to
what seems the more typical case, with many different channel types functioning
together. This model also represents a level of detail and complexity that I have tried to
avoid so far, so some explanation is called for. First, the complexity consists largely of
variations on a theme. Many channels are known to be described by the general picture
of multiple activation and inactivation gates, so this picture provides a framework in
which each new type of channel can be fit. Second, the complexity is justified by a large
body of data. Independent experiments have been done on other systems, exploring
quantitatively each type of channel seen in this neuron, and detailed experiments on
this one cell have teased out the contributions of each channel type.

Problem 104: Justifying complexity. Go through Buchholtz et al. (1992), Golowasch and
Marder (1992), and Golowasch et al. (1992), and explain the justification for each channel type
in the model discussed above.

Indeed, the program of describing the electrical dynamics of single neurons in terms
of generalized Hodgkin-Huxley models, usually with many different channel types
functioning together, became a small industry. It really worked. In some cases one could
go so far as to characterize the kinetics of particular channel types through measure-
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FIGURE 5.26
Simulations of a detailed model, with seven types of channel,
for the lateral pyloric neuron in the stomatogastric ganglion
of the crab. Changes in the pattern of activity are shown
as a function of the numbers of two different kinds of
channel, where channel number is expressed as the maximal
conductance when all channels are open (ḡCa and ḡKCa). Note
that relatively small changes in these parameters can result
in both quantitative and qualitative changes in the pattern
of electrical activity, running the full range from silence to
single spike firing to bursting. Redrawn from Le Masson et al.
(1993).

ments on single molecules and then put these single-molecule properties together to
reproduce the functional behavior of the cell as a whole. This body of work is beautiful
and implements what many people would like to do in other systems, building from
measured properties of individual molecular events up to macroscopic biological func-
tion. As emphasized above, we can think of the ion channels in the cell membrane as a
network of interacting proteins, where the interaction is mediated by the voltage across
the membrane rather than direct protein-protein encounters, and where the equations
for the dynamics of individual channels have a firm foundation. It is not unreasonable
to claim that ion channels in the cell membrane are in fact the best-understood exam-
ples of biochemical networks, although the language typically used in describing these
systems obscures this connection.

Despite their success, it came to be known, though not widely commented on, that
these models of coupled ion-channel dynamics had a problem. Although experiments
often characterize the activation curves and kinetics of the individual channels, it is hard
to make independent measurements of the total number of channels (or equivalently,
the maximum conductance when all channels are open). Thus, one is left adjusting
these parameters, trying to fit the overall electrical dynamics of the neuron—for exam-
ple, the rhythmic bursting of the pyloric neuron. This fitting turns out to be delicate;
as one adjusts the (many) parameters, one finds bifurcations to qualitatively different
behaviors in response to relatively small changes. An example of this behavior is shown
in one two-dimensional slice through the seven-dimensional space of channel numbers
in the pyloric model (Fig. 5.26).

From a physicist’s point of view, this all seems a mess. There are many details one
has to keep track of and many parameters to adjust.11 One might be tempted just to
walk away, and count this model as a part of biology we don’t want to know about. But

11. As in the case of kinetic proofreading, I think there is a tendency to remember the original papers as
having proposed mechanisms that solve problems. But in many ways, it was a much deeper contribution
to formulate the problems. Even if the solutions turn out not to be precisely the ones chosen by Nature,
the problems are important.
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FIGURE 5.27
Mean calcium concentration follows the pattern of
electrical activity. Main figure gives a coarse map of
mean calcium concentration as a function of the same
two variables shown in Fig. 5.26. Regions are labeled A,
B, . . . , E in order of increasing mean concentration.
Region A corresponds to near-zero concentration,
region B to c < 0.1 µM, up to region E in which
0.4 < c < 0.5 µM. Small figure at right shows that
the region of bursting activity corresponds almost
perfectly to the region of parameter space in which
the mean calcium concentration is between 0.1 and
0.3 µM, so that holding the calcium level fixed will
stabilize bursting. Redrawn from Le Masson et al.
(1993).

there is a deep question here. If we have trouble adjusting the parameters of models
to reproduce the observed functional behaviors of particular cells, how do the cells
themselves adjust these parameters to achieve their correct functions? How does a cell
choose the correct number of each type of channel to express? One could imagine that
the cell has some sort of lookup table—I am a cell of type α, so I should express Nα

1
molecules of channel type 1, Nα

37 molecules of channel type 37, and so on. This is
a bit implausible. More likely would be that the cell has some way of monitoring its
activity, asking “how close am I to doing the right thing?”, and generating an error signal
that could be used to drive changes in the expression of the channels or perhaps their
insertion into the membrane.

How can a neuron “know” whether it is exhibiting the desired pattern of electrical
activity? It would need some signal that couples voltage changes across the membrane,
which are quite fast, to the biochemical events regulating gene expression, which are
quite slow. One idea is to use the intracellular calcium concentration as an interme-
diary. We know that many cellular processes are regulated by calcium, so one end of
this mechanicsm is easy to imagine. But in the models described above the calcium
concentration is an explicit part of the dynamics, so we can calculate, for example, the
time-averaged calcium concentration as function of the parameters of the model. What
we see in Fig. 5.27 is that [Ca++]does an excellent job of tracing the pattern of electrical
activity in this cell. Thus, if the system needs to stabilize a pattern of rhythmic bursting,
it can do so by feedback mechanisms that try to hold the calcium concentration near a
target value of C0 ∼ 0.2 µM.

Let us suppose that the expression of each channel protein is regulated by calcium,
so that

τi
dNi

dt
= Nmax

i fi([Ca++]/C0) − Ni , (5.76)

where fi(x) is a sigmoidal function, such as

fi(x) = 1
1 + x±n

. (5.77)
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These equations have their steady state at Ni = Nmax
i fi([Ca++]/C0), but the calcium

concentration must be determined self-consistently through the full dynamics of the
channels and voltage. We should choose the signs of the calcium dependences to ensure
stability: channels that allow excitatory currents to flow will tend to drive increases
in [Ca++], and so they should be opposed by a decreasing function fi(x), whereas
channels that allow inhibitory currents to flow should be controlled by an increasing
function fi(x). Once the signs are chosen, if the regulation functions are steep (large
value of n in Eq. (5.77)), and the maximum possible numbers of channels (Nmax

i ) are
large, then the dynamics will always be pulled into regimes where [Ca++]≈ C0.

Problem 105: A simple example of a self-tuning neuron. Imagine a neuron with three
types of channels. Two of these are always open, and they have different reversal potentials V+
and V−; there are N+ and N− copies of these two types of channel, and they have the same
single-channel conductance. Further, there are channels that allow calcium to flow into the
cell, and these channels have a probability of opening that depends on voltage. Calcium flow
into the cell is opposed by a pump that would cause the internal calcium concentration to
relax exponentially if there were no influx.

(a) Write out the equation for the dynamics of the voltage in the cell. In the approximation
that calcium currents have a negligible impact on the voltage, show that there is a steady state
in which the voltage is a weighted average of the two reversal potentials.

(b) Write out equations for the dynamics of the internal calcium concentration and the
probability of the calcium channel being open. Feel free to hypothesize some simple activation
curve for the channel, or look in the literature for inspiration. Introduce calcium-dependent
dynamics for the N± as in Eq. (5.76) and Eq. (5.77). For simplicity, assume that the time
constants for relaxation of the channel numbers are the same for the two channels, as are
the maximal expression levels.

(c) What does your model predict? In particular, you have the choice of signs in Eq. (5.77);
try the case where N+ has the + in this equation, and conversely for N−. Is there a stable
steady state voltage, even when the numbers of channels are allowed to fluctuate? How does
this stability depend on the reversal potentials V±?

This example, where the voltage is stabilized at a steady state, is quite simple and misses
some crucial features of the dynamics of real neurons. Still, you can explore generalizations.
Can you, for example, solve a similar model with many different kinds of channels, still
neglecting their gating, and show that there is again a stable steady state voltage if the signs
of the calcium regulation functions in Eq. (5.77) are chosen in correct relation to the reversal
potential? How important are details, such as the assumption that the maximum numbers of
the different channels are the same? This is a deliberately open-ended problem; you should
try to see how far you can go without having to do simulations, which seem essential once we
include realistic channel dynamics.

How can we tell whether something like this sort of self-tuning really is happening?
If neurons “knew” how many of each kind of channel to make, then they would try
to make this number no matter what the conditions were. For example, inputs from
other neurons would drive changes in the electrical activity but not changes in channel
expression. However, if the cell is maintaining some mean calcium concentration, or
some other measure of activity, then changing the environment in which the neuron
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FIGURE 5.28
Changing intrinsic properties of the stomato-
gastric ganglion neurons. At left, an experiment
in which one cell is ripped from the network and
placed in isolation. At first (top) the electrical
activity shifts from rhythmic bursts to repeated
(“tonic”) firing of single action potentials. After
2 days in culture, the cell is silent but responds
to small positive currents with tonic firing; after
3 days the response consists of bursts not un-
like those in the native network environment.
At bottom, continuous recordings demonstrate
that this switch from tonic firing to bursting can
occur within an hour. At right, 1 hr of stimula-
tion with negative current pulses drives a shift
from bursting to tonic firing, which is reversed
after 1 hr of no stimulation. All these changes in
activity reflect changes in the numbers of differ-
ent types of ion channels in the cell membrane,
as predicted from the models discussed in the
text. From Turrigiano et al. (1994). Reprinted
with permission from AAAS.

operates will change channel expression. As an extreme example, if we rip the neuron
from its network and put it in a dish, the normal pattern of rhythmic bursting will go
(wildly) wrong, but the calcium-sensitive dynamics of the channel expression levels will
eventually bring the system back into something close to the original pattern. In this
new state, the channels are playing different roles in the dynamics, because the driving
forces for ionic current flow are different, but the final pattern of activity is the same. A
literal version of this rather dramatic scenario actually works experimentally, as shown
in Fig. 5.28.

We have noted already that, in invertebrates, such as flies and crabs, the structure
and function of neurons in many circuits is sufficiently reproducible from individual to
individual within a species that it makes sense to give these cells names and numbers.
This discussion of stabilizing patterns of activity rather than expression levels suggests
that such reproducibility of function can be achieved without exactly reproducing the
number of copies of each channel protein. Further, although the slice through parame-
ter space shown in Fig. 5.27 suggests that the region compatible with normal function is
convex, this geometry in fact is not general, and real models often have banana-shaped
volumes in parameter space that are consistent with particular patterns of electrical
activity. Again, such results are consistent with experiments, most impressively in ex-
periments that measure directly the number of copies of mRNA for several channel
types in single cells.

You might worry that we have replaced the tuning of channel copy numbers with
a fine tuning of the regulatory mechanisms on all channels. In fact, it is not plausible
that calcium acts directly on expression of genes. It is more likely that calcium binds
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to some protein, and when its binding sites are occupied, the protein can act, directly
or indirectly, as a transcription factor. Then the fact that all the genes have the same
calcium dependence of their steady state values reflects their common regulation by
the same calcium-binding protein. Exploring this scenario in more detail, we see that
the kinetics of binding and unbinding of calcium to the sensitive protein can span the
time scales of action potentials, bursts, and even the basic rhythm itself. By combining
signals from calcium-binding proteins with different kinetics, the more subtle details
in the pattern of electrical activity can be stabilized.

A model that explains the behavior of cells only when parameters are finely tuned
provokes suspicion that we are missing something. One possibility—often the most
plausible—is that the model simply is wrong. The models that we have for biological
systems are not like the Navier-Stokes equations for fluids or the standard model of
particle physics; we have many reasons to suspect that we are simply solving the wrong
equations. But the electrical dynamics of neurons are a special case. Our mathematical
models of channel dynamics emerged as accurate summaries of a huge body of data and
are nearly exact on the time scales that are experimentally accessible; it is for this reason
that we have gone into rather more detail here than in other sections of the text. Rather
than rejecting the models, we therefore must conclude that we are missing something,
presumably on time scales longer than the experiments that are used to characterize the
channel kinetics. In particular, what look like constant parameters must become dy-
namical variables on long time scales. The simplest implementation of this idea seems
to work, and it generates several dramatic experimental predictions that have subse-
quently been confirmed. Indeed, this theoretical work on the problem of parameter
determination has launched a whole subfield of experimental neurobiology, investigat-
ing the activity-dependent regulation of the intrinsic electrical properties of neurons.

5.3 The States of Cells
Cells have internal states. Sometimes these states are expressed in a very obvious way,
even to external observers, as when we see the alternating black and white stripes of
a zebra. In other cases, the states are hidden, as when a neuron stops responding to
a constant external stimulus but then rebounds when the stimulus is removed; the
amplitude of the rebound reflects the initial amplitude of the stimulus, which must have
been stored in some internal state, separate from the output. In these two examples, we
also see that these internal states can be (approximately) discrete or continuous. In many
cases, the states of cells are known to be encoded by the concentrations of particular,
identifiable molecules, and these concentrations in turn reflect a balance of multiple
kinetic processes. If we try to transcribe these qualitative ideas simply into quantitative
models, we will find that the states of cells depend on parameters. Most obviously,
these states will depend on absolute concentrations, and there is a widespread suspicion
that absolute concentrations are highly variable, making them poor candidates for the
markers of cellular state. More generally, it would seem that, unless we are careful, states
will depend sensitively on parameters, providing another example of the problem of fine
tuning versus robustness that we have been discussing.

When you tie your shoes in the morning, you can feel the pressure against the skin
of your foot, but very quickly this sensation dissipates. When you step outside on a


