Introduction:
Long Flexible Chains

Linear Polymers

This book discusses the statistical properties of long, flexible
objects, polymer chains being the fundamental example. The following is a
short list of chains which are currently used in physical studies:

.. .“CHz“CHg“CHz— .. or I_CH2_|N polyethylene
~-|—CH,—CH—-- polystyrene
CIH;,
—— —CH2—(|:— - poly(methyl methacrylate)
C
d oly
/
CH,
- l_C Hz_CHz—O—I—N—— poly(oxyethylene)
CH,
|
- —0—~S|i— ——— poly(dimethyl siloxane)
CH, |,
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The number of repeat units, N, in one chain is often called the *‘degree
of polymerization’’ (DP) and can be amazingly large. (For example, it is
possible to reach N > 10° with polystyrene.) The fabrication of such long
chains without error in a sequence of 10° operations is a remarkable
chemical achievement. However, there are many difficulties. Two are
particularly important for physical studies: polydispersity and branching.

Polydispersity

Most preparation schemes give chains with a very broad distribution of
N values.! It is possible, however, to obtain relatively narrow distributions
either by physical selection (via precipitations, gel permeation, chromatog-
raphy, etc.?) or through special methods of synthesis, such as anionic
polymerization.?

Branching

Many parasitic reactions occurring during the synthesis can lead to a
chain which is not perfectly linear but which contains branch points. For
example, industrial polyethylene has many three-functional branch points
of the type

A4
%

where the zigzag lines represent different chain portions.

- When the fraction of branch points in the structure is not too small,
these points can be detected by various physical methods, such as infrared
spectroscopy. On the other hand, if a long chain has accidentally acquired
one or two branch points, it is extremely hard to demonstrate their exis-
tence or absence (they show up mainly in certain mechanical studies on
concentrated systems, discussed in Chapter VIII).

In some cases we encourage branching. For example, model molecules
can be synthesized with the geometry of ‘‘stars’’ or ‘‘combs’’ (Fig. 0.1).
More often, branching takes place statistically. It may lead either to
tree-like molecules, or, at a higher level, to network structures (discussed
in Chapter V). In summary, we can obtain chains that are strictly linear
(when N is not too large); we can also insert on a chain a controlled number
of branch points.
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Figure 0.1.

Flexibility

Flexibility can be understood either in a static or in a dynamic
sense.

Static flexibility

As a simple example, consider a carbon-carbon chain such as poly-
ethylene. The angle 6 between successive C—C bonds is essentially fixed,
but when we build up successive units with the carbon atoms (n — 3,
n — 2, n — 1) fixed, and add carbon (n), we have one angle ¢, (Fig. 0.2).
The energy between successive groups depends on the angle ¢, as shown
on Fig. 0.3. There are three minima, corresponding to three principal
conformations (called trans and gauche). In this figure we see two essen-
tial energy parameters: 1) the energy difference between minima Ae,* and
2) the energy barrier separating the minima AE.

For the moment, we focus on Ae. When Ae is smaller than the thermal
energy T,1 we say that the chain is statically flexible. This has striking
consequences if we look not at one monomer but at the whole chain.
Because the relative weight of gauche/trans conformations is of order
unity, the chain is not fully stretched. It appears rather as a random coil
(Fig. 0.4).

Note the difference in magnification between Fig. 0.2 and Fig. 0.4.
Fig. 0.2 deals with distances of order 1 A. Fig. 0.4 deals with hundreds of
Angstroms.

The case of Ae < T defines a limit of extreme flexibility. If we go to

*In polyethylene Ae (as defined in the figure) is positive: the trans state is lower in energy

than the gauche states.
tRecall that we use units where the Boltzmann constant is unity.
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Figure 0.4.

slightly higher values of Ae/7, there will be a definite preference for the
trans state; locally the chain will be rigid. However, if we look at it on a
scale which is large enough, it will again appear as a flexible coil. This is
illustrated in Fig. 0.5.

More generally, when we ignore details smaller than a certain charac-
teristic length [,, we see a continuous, flexible chain. The parameter /, is
called the persistence length of the chain* and can be calculated from the
microscopic energies. For the polyethylene chain of Figs. 0.1 and 0.2 [, is a
rapidly increasing function of the energy difference Ae

L =1, exp(i;) (Ae > 0)

where [, is of order a few Angstréms.

Whenever [, is much smaller than the total length L of the chain, we
can choose a magnification which is weak, so that the rigid portions
(of size ~ I,) are too small to be seen, but which is still strong enough to
ensure that the whole chain is not reduced to a point. Then we may say that
the molecule is still flexible at large scales. On the other hand, if I, is
larger than the overall chain length, the picture is a rigid rod at all scales.

We see that the essential parameter controlling global flexibility is the
ratio

A
X = -i"- =N exp(—Te)

Flexible behavior can be observed only at small x.
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Figure 0.5.
Dynamic flexibility

Successive carbon-carbon links can be in one of two states: trans and
gauche. One important question is related to the time 7, required for a
transition between these two states. This depends mainly on the height AE
of the barrier separating them in the energy diagram of Fig. 0.3. If AE is
not much larger than the thermal energy 7, the barrier is not important,
and the trans-gauche isomerization can take place in times 7 ~ 107! sec.
We say then that the chain is dynamically flexible. On the other hand, if
the barrier AE is high, 7, becomes exponentially long

(%)
Tp = To €XP —T-

It is sometimes useful to call 7, a persistence time.
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Our discussion on spatial scales and static flexibility can be extended to
temporal scales and dynamic flexibility. If we are interested in large scale
motions of the molecule, involving frequencies w smaller than 1/7,, we can
still say that the chain is dynamically flexible.

One can find molecules which are flexible from a static point of view but
which have high barriers AE (with certain flexible backbones carrying
bulky side groups). This situation corresponds to a random coil which is
essentially frozen in one conformation, like a piece of twisted wire. A
molecule of this type in dilute solution could be called a ‘‘single chain
glass,’’ and should have some remarkable mechanical properties.

This book does not discuss any of these rigid molecules. It assumes both
static and dynamic flexibility in the strongest form. Then /,, for example,
reduces to a monomer size [currently designated by (a)] and no other char-
acteristic length is involved; this simplification will be helpful.

Global versus Local Properties

Fig. 0.5 illustrates a fundamental distinction between two aspects
of polymer science:

(i) Strong magnification or local properties: conformations and motions
of one monomer inside the chain, and their dependence on chemical
substitutions in the side groups.

(ii) Weak magnification: global properties: dependence of physical
properties observables on chain length, on concentration, and on a few
basic interaction parameters.

The local features are essential whenever we want to choose an optimal
polymer for a given practical application. If we want to improve the
fabrication of rubbers, we need a good understanding of the local motions
of a rubber chain—i.e., how they depend on temperature, the influence of
steric constraints between neighboring monomers, and so forth. The ex-
perimental methods for local probing of a polymer chain are not very
different from those used for small molecules (such as infrared and Raman
measurements). Similarly, the theoretical methods are (or will become)
related to those which are used for conventional liquids: molecular dy-
namics, Monte Carlo methods, etc.

The global point of view is completely different. Here we try to omit
the details of the chain structure as much as possible and to extract
simple, universal, features which will remain true for a large class of
polymer chains. An example will make this statement more precise: Con-
sider a dilute solution of separate coils in a good solvent. The radius of
gyration of one coil R; depends on the degree of polymerization, N, and
we know from Flory that
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R; = (constant) aN? ©.1n

where v is close to 3/5. What is universal in this law is the exponent v; it
is the same for all coils (in three-dimensional solutions) provided that the
solvent is good. What is nonuniversal here is the prefactor. It depends on
the detailed monomer structure and on the solvent chosen. If we want to
understand the properties of polymer coils in good solvents, the first step is
to explain the existence and the value of the exponent v. The second step
is to account for the constant that multiplies a, and this involves delicate
studies on local properties. In the present book we are concerned with the
first step.

Eq. (0.1) is a good example of a scaling law. It tells us that if we double
the chain length, the size is increased by a factor 2. The theorist using
such a scaling law can be compared with the chemist seeking comparisons
in homologous series: finding the exact value of R; for a given chain
and solvent is extremely difficult. In a first stage, what we can and must do
is to measure R for different values of N and compare them. This is the
spirit of the present text.

A law such as R(N) above holds only for large N, with flexible chains,
and for good solvents. Later we make these statements more precise, but
we see already that a scaling law is always defined only in a certain lzmzt
which must be specified in each case.

Notation

. If we compute a quantity exactly (within a certain model), includ-
ing all numerical coefficients, we can use an equals sign—i.e., write
A = B. If we state only a scaling law, ignoring all numerical coefficients
but keeping all dimensional factors, we use the symbol, = (e.g., R =
aN3%). If we go to a further reduction and want to stress only the power
law involved in R(N), we use the symbol ~ (e.g., R ~ N°3),
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A Single Chain

1.
The Notion of an Ideal Chain

1.1.1. Simple random walks

One of the simplest idealizations of a flexible polymer chain con-
sists in replacing it by a random walk on a periodic lattice, as shown in Fig.
I.1. The walk is a sucession of N steps, starting from one end () and
reaching an arbitrary end point (w). At each step, the next jump may
proceed toward any of the nearest-neighbor sites, and the statistical weight
for all these possibilities is the same. The length of one step will be
called a.

This description was apparently initiated by Orr in 1947.' It is con-
venient from a pedagogical point of view: all chain properties are easy to
visualize. For instance, the entropy S(r) associated with all chain con-
formations starting from an origin (r = 0) and ending at a lattice point r, is
simply related to the number of distinct walks Jty(r) going from (0) to (r)
in N steps*

S(r) = In[Np(r)] (1)

The main features of the number ¥iy(r) are discussed now. First, the
total number of walks is simple to compute; if each lattice site has z
neighbors, the number of distinct possibilities at each step is z, and the total
number is

*We always use units where Boltzmann’s constant kg is unity.

29
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Figure 1.1.
% RNp(r) = 2¥ a2
r

(where 2 denotes a sum over lattice points)
r

The end-to-end vector r is the sum of N “‘jump vectors”’

r=a1+a2+...+aN=2a,. a.3)
n

where each of the a terms is a vector of length @ with z possible orienta-
tions. Different a vectors have completely independent orientations, and
this has many consequences:

(i) the average square end-to-end distance is linear in N

(™) = S (ayan = 3 (ad) = Na* (= R) 14)

since all cross-products vanish. Qualitatively, we shall say that a random
walk has a size R, ~ N2 q.
(ii) the distribution function for r, defined by

P =Ry /(S Ry (1) i E)

has a gaussian shape as soon as the number of independent jump vectors
a, is large (N > 1). For example, if we are in three dimensions
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p (x,y,z) = constant N2 exp(z—(fz)> N2 CXP(E_—(%)

~1/2 =22 \ = n-32 —3r
N~V2 exp 35 = N3 exp I Na 1.6)

The factors N~V2 arise from normalization conditions. We purposely do
not write the complete numerical value of the constant in front of eq. (1.6);
these constants would obscure our arguments. They can be found in
standard textbooks on statistics.?

Eq. (1.6) gives a formula for the entropy of the chain at fixed elongation

S(r) = S(0) — (three dimensions) an

ZR%

The entropy decreases when the elongation increases. It is often convenient
to rewrite eq. (1.7) in terms of free energy

Fr)=E - TS

In the Orr model the energy E is a constant (independent of the chain
conformation), and we have simply

3 Tr2
2R

F(r) =

a.8)

This is a fundamental formula, giving the ‘‘spring constant’’ of an ideal
chain. We return to it in eq. (I.11) and use it frequently.

1.1.2. More general models for ideal chains

The model in Fig. 1.1 is crude but convenient. More accurately, it is
possible to build up the chain by successive steps, taking into account all
valence angles, the correct weights for trans/gauche conformations (or
their generalization) and even statistical deviations from the ideal trans or
gauche states. This type of calculation is described fully in the second book
by P. Flory.?

The crucial approximation involved in this “progressnve buildup’’
amounts to taking into account only the interactions between each unit (n)
and its neighbor (n+1) [or possibly between (n) and (n+1, n+2, n+p)
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with p fixed and finite]. Let us accept this for the moment. We can
define the ‘‘backbone’’ of the chain by a sequence of vectors b, + b, + . ..
+ by = r, each of the vectors b, linking two consecutive monomers. In the
Orr model these vectors are now correlated. For example, the average

(b, - by = Ynm 1.9

is nonzero even for m # n. It is, however, a decreasing function of the
chemical interval [m — n|, and it decays exponentially at large [n — m|.
Thus the correlations are of finite range. We now show that, in this case,
the global properties are not affected seriously.

Let us put g consecutive vectors b into one subunit. In Fig. 1.2 we show
the case for g = 3. If g is much larger than the range of the correlations
Cnm» the new vectors ¢ will be uncorrelated, and we face the problem of
N/g independent variables ¢,, ¢, . .. , leading again to gaussian statistics
provided that N/g is large; this is what we call ideal chain behavior. The
mean square end-to-end distance is linear in N

" =i;’-(cx) = Na? ‘ (.10)

where a = ((c?/g)'? is now an effective length per monomer. Thus, what-
ever the microscopic structure of the chain, if we take into account only the
interactions between neighboring units on the chemical sequence, we
always get an ideal chain if N is large enough.

The single (but important) weak point in this approach is the neglect of
interactions between monomers n and m with [n — m| very large. Fig. 1.3
shows an interaction which is omitted. When these ‘‘large loop inter-
actions’’ are included, the chain is not gaussian. We discuss this exten-
sively later in this chapter.

Figure 1.2.



A Single Chain 33

Figure 1.3.

1.1.3. ldeal chains under external actions

It is of interest to study the response of a chain to external perturbations.
With an ideal chain, this response is particularly easy to derive. We are
concerned here with two main situations: pulling and squeezing.

PULLING A CHAIN AT BOTH ENDS (Fig. |.4)

We apply forces f and —f at both ends and dsk for the average elonga-
tion (r), of the chain. For an f that is not too large the answer is derived
from the “‘spring constant equation’’ (I.8). The force f is 3F/dr taken at
r = (r);, and thus

(r); = f—3R—‘2’T (L.11)

I
Eq. (1.9) holds whenever (r) is much smaller than Na (chain not fully
stretched). This corresponds to f < T/a. 2

N0 ,

Figure1.4. ~ f



34 STATIC CONFORMATIONS

We rederive eq. (I.11) here through a scaling argument, which is good
training for later problems. This derivation is based on the following
points: ‘

(i) Since the tension f is the same all along the chain, the elongation
{r) must be a linear function of N.

(ii) We expect (r) to depend only on f, on temperature, and on the
unperturbed size R, = N'? a. This leads to

ol = &, (L)

where x is fixed by requirement (i)—namely, R,'*® ~ N. Thus x = 1,
and the elongation is a linear function of the force.
Eq. (I.11) is the basis of rubber elasticity, and we shall use it often.

Exercise: consider an ideal chain carrying charges *e at both ends
(e is one electron charge). What will be its relative elongation in a field
E = 30,000V/cm?

Answer: we have r/lR, = R,eE/3 T. Take N = 10* anda = 2 A (giving
R, =200 A). The voltage dropon alength R, is 3.10* X 2.10°4=0.06 V.

At room temperature T = 1/40 eV and thus r/R, ~ 0.8. g4

AN IDEAL CHAIN TRAPPED IN A TUBE

The chain is captured in a cylindrical tube of diameter D < R, (Fig. 1.5).
On the other hand, we want-D > a, so that the chain still retains some

(LLLIL L0

/f7///77///////////.l//
| R,

Figure L.5.
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lateral wiggling. We assume that the tube walls repel the chain strongly (no
trend towards adsorption).

We ask first, what is the length of tube (R,) occupied by the chain? The
answer is Ry = R,; that is, confinement does not affect the components
of the random walk parallel to the tube axis.

Second, we discuss the energy required to squeeze the chain, starting
from a dilute solution in the same solvent and assuming that chain entropy
is the only significant factor (no long-range van der Waals force in the
tube). We try to estimate the reduction in entropy AS due to confinement:

(i) The leading term in AS will be a linear function of N.

(ii) AS is dimensionless and depends only on the length ratio R,/D.

This leads to AS = — (R,/D)¥ ~ N¥2, and from (i) we must have
y = 2. The corresponding free energy is

F= T% 1.12)

The argument holds equally for a confinement in a slit or in a hollow
sphere; only the coefficients differ. They have been computed first by
Cassasa and co-workers*® (see Chapter IX for more details).

WEAK ADSORPTION OF AN IDEAL CHAIN

The situation is represented in Fig. 1.6. The chain sticks slightly to the
wall and has large loops extending up to an average distance D. Exact
calculations on this system have been performed in the past.®”8 Here we
present a simple scaling argument that relates D to the strength of the
adsorption.® The starting point is a free energy per chain of the form

7777777 77777777777

Figure L.6.
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=7 R _
F=T—r3 - TofpN (1.13)

The first term is the confinement energy (eq. 1.12), and the second term
describes the contact interactions with the surface; T8 is the effective
attraction seen by a monomer adsorbed at the surface (a balance between
an attractive energy and a loss of entropy), and f; is the fraction of bound
monomers. Since the monomer density is spread over a thickness D, we
expect

f,=a/D . (1.14)

Inserting this in eq. (I.13) and minimizing the sum with respect to D, we
reach a thickness

D = q67! é<1,D<R) 1.15)

and a free energy of binding
F=—-TN® (d1.16)

The conditions required for the adsorption of separate chains are never
realized in practice, but they provide a useful framework for future dis-
cussions of many chain adsorption.

I.1.4. Pair correlations inside an ideal chain

A pair correlation function g(r) may be defined as follows. We pick one
monomer at random in the chain, and we place it at the origin. Then we
ask, what is the number density of other monomers at a distance r from
the first, and we average the result over all choices of the first monomer.

The Fourier transform of g(r)

glq) = f g(r)drear

is directly measured in many scattering experiments (light, X-rays, neu-
trons), q being the scattering wave vector. (In terms of wavelength A and
scattering angle @ we have ¢ = 4 7 A1 sin 6/2.)

The function g(r) has an integral which is just the total number of mono-
mers per chain N :

fg(r)dr =N=g(qg=0
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The functions g(r) and g(q) obey simple scaling rules:
g(r) = Ng(r/R,)

where £ is an universal function. ,

The structure of g(q) for ideal chains was discussed first by Debye,!? and
thus we call g(q) the Debye function gp(q).

Focusing on the limit r < R,, we can reach the form of g(r) by a
simple argument. In a sphere of radius » we have a certain number of
monomers 7, related to r by the random walk scaling law: na*? ~ r2. The
function g(r) scales like the density of monomers in the sphere:

gp(r) =n/r’ = alzr (r<R,) (L.17)

The exact coefficient is displayed in Fig. 1.7; for its complete derivation
see Chapter IX. The Fourier transform of 1/r is 47r/g?, and the scattering
function is

gnlq) = (gR, > 1) (1.18)

q2a2
It is not easy to measure this gp(g) on dilute chains directly; in light
scattering g is too small, and in X-rays or neutron experiments the signals
from dilute systems are weak. However, the result [eq. (I.18)] will be
useful for more complicated systems.

gl

Figure L.7.

Pair correlation between all monomers in an ideal chain. The
correlations decrease like 1/r at distances r, smaller than the
chain size R,. They fall off sharply for r > R,,.
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I.1.5. Summary

Ideal chains are characterized by: 1) gaussian statistics; 2) size propor-
tional to N'2; 3) large domain of linear relation between force and
elongation; and 4) scattering law of the g~2 type. We now see how these
properties are altered when we switch from ideal to real chains.

1.2.
A “Real” Chaln In a Good Solvent

1.2.1. The main experiments

The size of real chains in dilute solutions can be determined by
various standard experimental methods:
(i) Measurements on scattered light intensity versus angle give us the
radius of gyration Rg.?
(ii) More simply, a study of the viscosity 7 of dilute solutions measures
a certain hydrodynamic radius R,'"!

n=ns[1+25£4—"1€%] (c—>0) a1.19)

Here 75 is the solvent viscosity, and ¢ is the concentration; we do not
define it by weight but rather as a number of monomers per unit volume.
Similarly ¢/N is the number of chains per cm®. The numerical factors in
eq. (I.15) correspond to a rigid sphere of radius R,. On the experimental
side this provides an excellent determination of R,. However the interpre-
tation of R, is delicate. We return to this question in Chapter VI.

(iii) Photon beat measurements give us the diffusion coefficient D, for a
single coil. This coefficient may be related to another effective radius Rp,
defined through the Stokes relation for a sphere

T
p—y 1.20)
Summarizing a vast literature, we may say that the light scattering experi-
ments (i) give a radius R; ~ N while the hydrodynamic studies (ii) and
(iii) give a slightly weaker power R ~ N or N°57, This discrepancy
reflects some subtle corrections involved in dynamical experiments and is
discussed in Chapter VI.
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1.2.2. Numerical data on self-avoiding walks

We see that the direct data on coils are not quite conclusive. It is then
helpful to return to theoretical calculations. There do exist rather accurate
numerical studies on real chains on a lattice. The chain is still represented
by a random walk as in Fig. (I.1), but the main difference is that now this
walk can never intersect itself. We call it a self-avoiding walk (SAW).

The mathematical properties of simple random walks are trivial, but the
mathematical properties of SAWs are complex. Two numerical methods
have been used to study the SAWs:

(i) Exact counting of walks for finite N (typically up to N ~ 10) plus
extrapolation methods allowing us to extend the results toward N — .12

(ii) Monte Carlo methods, where the computer generates a certain
(manageable) fraction of all SAWs of N steps and performs averages on
these.!3

All these studies have been performed on three-dimensional lattices and
in other dimensionalities, d. The case for d = 1 corresponds to chains
along a line and is simple. The case ford = 2 may physically correspond
to chains adsorbed at an interface. Higher dimensionalities (d = 4, 5...)
are also of interest for the theorist, although they do not correspond to
realizable systems. One important advance (during the past 10 years) has
been to recognize the interest of discussing any statistical problem in
arbitrary dimensions and to classify systems according to their behavior as
a function of d. Thus, we shall often keep d as a parameter in our dis-
cussion of polymer chains.

The results of numerical studies on SAWs are usefully summarized in a
recent review by McKenzie.!? Qur presentation, however, is slightly
different since the physical meaning of the essential exponents has be-
come more apparent in the recent years.

The total number of SAWs of N steps has the asymptotic form (at large N)

Ny (tot) = constant ¥ N*~} ] a1.2n

The first factor Z¥ is reminiscent of the z¥ which we had for ideal chains,
but Z is somewhat smaller than z. For the three-dimensional simple cubic
lattice, z = 6 and Z = 4.68. The second factor, N”~!, is more unexpected
and will be called the enhancement factor. The exponent y depends only
on the dimensionality, d:

for all three-dimensional lattices y = y3 = 7/6 (1.22a)
for all two-dimensional lattices y = 7y, = 4/3 (1.22b)
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We say that +y is a universal exponent; this is in contrast to Z, which does
depend not only on d but also on the particular lattice chosen (e.g., face-
centered cubic/simple cubic). Note that ford = 1, Ny (or) = 2, indepen-
dently of N. Thus 2, = 1 and y, = 1.

The end-to-end distance r has a mean square average which we shall call

RZ, and which scales as

Rr=aN’ (1.23)

Here v is another universal exponent (v = 3/5, v, = 3/4, v, = 1)
The distribution law for r depends on r only through the ratio r/Ry

pu(r) = R_lpd Lo (R—rp) (a < r < Na) 1.24)

1. . —
The prefactor R s required to ensure the normalization
F

[putor = 1

The general structure of the reduced distribution f,(x) is shown in Fig.
1.8 for d = 3. There is a very strong drop at large x

lim, -, » fo{x) = exp(— %) fi(x) 1.25)
9 0}
exp (- xs)
\ o
Ko) x
Figure 1.8.

Distribution of the end-to-end distance r in a self-avoiding
walk of N steps; x is equal to r/Ry, where Ry is the root mean
square value.
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where f, varies as a power of x. The exponent & controls most of the
chain properties for strong stretching and is given by:!4-15-16

5=( - (1.26)

We present a simplified derivation of eq. (I.26) later in this chapter (see
eq. (1.47) and the discussion following it).

At small x, f, decreases sharply; it is exceptional for a self-avoiding
walk to return close to its starting point

lim,, _, o fo(x) = constant x* 1.27)

In three dimensions g = g3 = 1/3. We relate g to other exponents below.

Let us consider the SAWs that return to a terminal site adjacent to the
origin (Fig. 1.9). In closing the « ~ w link we may say that each of these
SAWs is associated with a closed polygon of N + 1 edges (and self-
avoiding). The number of such polygons is of the f?nn

Ry = @) =2 () o am

F

The factor R? is natural since the terminal points  of all SAWs of N
steps are spread over a d-dimensional volume R:®. What is remarkable in
eq. (1.28) is the absence of the enhancement factor (N”~*) which was
present in Ny (tot) {eq. (1.21)]. This absence also reflects the difficulty for
a SAW to return near its starting point.

Figure 1.9.
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Eq. (1.28) is proved later by two independent methods (Chapters X and
XI). If we accept it for the moment, we can predict simply what is the

exponent g in eq. (1.27). The distribution function py (r) taken for a
terminal point adjacent to the origin (» = a) is from eqs. (I.24 and 1.27)

p (@) = -1 (L)" =L Nw 1.29)
v R \R) ~ R '
On the other hand, it is (by definition) related to Ny (a) [eq. (1.28)]

o ma Jnla) _ 1
v (@) =a g ion ~ R N

Comparing this with eq. (I.29), we obtain:

g=21"1 (1.30)
a result first derived by des Cloiseaux.!’

A REMARK ON HIGHER DIMENSIONALITIES

We have presented numerical data concerning d = 3, 2, and 1 (the latter
being trivial). What would happen for larger d? The answer is simple:
for d > 4, all exponents return to the ideal chain value (v = 1/2, ¥ = 1).
This did not show up very clearly in the early numerical work but is a general
theorem and is explained in Section 1.3.2.

1.2.3. Correlations inside a swollen coil

Let us discuss briefly the changes in the pair correlation function g(r)
that occur when we incorporate the effects of excluded volume. First,
2(r) and its Fourier transform g(q) follow simple scaling laws. For instance

8(@) = N2(gRy)

where (x) is a dimensionless function and 2(0) = 0.

Second, we may still follow the approach of Chapter I and write g(r) =
n/r? (in three dimensions). However, now the number n of units inside the
radius r is related to r by the excluded volume exponent r*> a-< n. This

gives o ] R 53
@)
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glr) = 4/31 573 (r< RF) (d=3) (I.31a)

i.e., a more rapid decrease than for ideal coils. The Fourier transform is

glg) = )5,3 (gRr>1) (d = 3) (1.31b)

(qa

These power laws were derived first by S. F. Edwards.!® They have been
verified directly on dilute chains with X-rays.!®* They have also been
checked by neutron scattering experiments on semi-dilute systems (see
Section I11.2.5).

1.2.4. Summary

Real chains in good solvents have the same universal features as self-
avoiding walks on a lattice. These features are described by two *‘critical
exponents,’’ y and v. All other exponents of interest can be expressed in
terms of these two. The exponent vy is related to chain entropy, and the
exponent v is related to chain size. A real chain has a size R ~ N"),
which is much larger than an ideal chain (R, ~ N"2). For three dimen-
sions the exponent v is very close to 3/5.

1.3. .
The Flory Calculation of the Exponent v

1.3.1. Principles

Long ago, Flory devised a simple and brilliant scheme for com-
puting the exponent v, which gives excellent values for all dimension-
alities.2? We briefly describe his method and the approximations involved.
The starting point is a chain, with a certain unknown radius R and an
internal monomer concentration

Cont = % 1.32)
(Note that we present the argument for an arbitrary dimensionality d).

There is a certain repulsive energy in the chain due to monomer mono-
mer interactions. If ¢ is the local concentration of monomers, the repulsive
energy per cm?® is proportional to the number of pairs present—i.e., to ¢2.
We write it (per unit volume) as:
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1
Frep = 71‘0 (T)c? (1.33)

where v has the dimension of a (d dimensional) volume and is positive.
We call v the excluded volume parameter. [In the Flory notation v =
(1-2x) a® where a? is the monomer volume and y is an interaction pa-
rameter. For good solvents y < 1/2 and v > 0.]

One essential approximation is to replace the average of ¢ (inside the
coil) by the square of the average

() = () ~ ciud® 1.34)

Eq. (I.34) is typical of a mean field approach: all correlations between
monomers are ignored. The overall repulsive energy after integration over
a volume R, scales as:

Frepltot = To(T)cind R* = TU% (1.35)

This tends to favor large values of R (i.e., to swell the chain). However
if the distortion is too large, the chain entropy becomes too small, and this
is unfavorable. Flory includes this through an elastic energy term derived
from the ideal chain result [eq. (I.8)]

R2

Fa=TNg

(1.36)

Eq. (I.36) is also a very strong approximation; as shown later, the spring
constant of a real chain is much smaller than that suggested by eq. (I.36).
However, let us accept eqs. (I.35) and (I.36) and add them:

F_ N R
T =vpa t (1.37)

Eq. (I1.37) has a minimum for a well defined radius R = Rjy. Omitting
all numerical coefficients, we find

Ry#2 = pa2N? (1.38)

or Ry ~ N¥ with*

*Eq. (I.39) was written by Flory ford = 3. For general d, it was first quoted by M. Fisher,
J. Phys. Soc. Japan 26 (Suppl.) 44 (1969).
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=7+2 (1.39)

Eq. (1.39) is amazingly good; it gives the correct value ford = 1 (v, = 1).
The values for d = 2 and d = 3 are within a percent of the most accurate
numerical results.!>2! For most practical applications the Flory formula
can be considered exact.

I.3.2. Chains are ideal above four dimensions

Eq. (1.39) tells us that v = 1/2 for d = 4. This is precisely the ideal
chain exponent. We can understand this better if we return to the repulsive
energy [eq. (I.35)]. We expect R > R,, and thus the repulsive energy is at
most of order

N2 v .
Frep. maz = 0T pg= T—g N*= (1.40)

while the elastic energy [eq. (I.30)] is at least of order T. We see then that
the ratio

Frp _ po-
Srep < N2-di2 141
i (1.41)

For dimensionalities of d > 4 we conclude that repulsions between mono-
mers represent only a weak perturbation; the local concentration in an ideal
chain is so low that excluded volume effects become negligible.

The idea of calculating the effects of repulsions by perturbation methods
(treating the excluded volume v as infinitesimally small) is relatively old.?
When this is done, to first order in v, one finds*

R_Ro.._,,Frep.ma.r

R = A = (constant) { + 0 ({?)

L= —vTi N2-di2 ' 1.42)

S)

Thus the real, dimensionless, expansion parameter is {. When { is small,
the chain is ideal. When { is large, the chain shows strong excluded
volume effects. (For intermediate { values a precise interpolation formula

*For the most simplified models R/R, is a function of { only. This point will be discussed
more in Chapter XI.
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has been worked out by Domb and Barrett.23) Note that for the usual case
d = 3, the parameter

[ = ZU?NW (1.42")

is always large for large N; eq. (I.42) has a very limited range of validity.
The self-consistent method of Flory is clearly much more powerful, but the
characteristic parameter { will be of frequent use in this book.

1.3.3. Why is the Flory method successful?

It is important to realize that the self-consistent calculation of egs. (I.35,
1.36) benefits from a remarkable cancellation of two errors:

(i) The repulsive energy is enormously overestimated when correlations
are omitted.

(ii) The elastic energy is also largely overestimated; if we think for
example of the end-to-end elongation of the chain, since the distribution
function py(r) [eq. (I.19)] is a function of (r/RF) only, this implies that the
entropy at fixed r is also a function of /Ry only. Finally the elastic energy
should be written Tr2/R;? rather than Tr2/RZ. Again this brings in a large
reduction.

As often happens in self-consistent field calculations (e.g., in the Har-
tree theory of atoms) the two errors (i) and (/i) cancel each other to a large
extent. Many post-Flory attempts, which tried to improve on one term, (i)
or (ii), leaving the other unaltered, led to results that were poorer than
eq. (1.39).

In fact, another problem exists in chain statistics, where the self-con-
sistent method does not benefit from the same cancellations. This is the
case of a charged chain (polyelectrolyte) for which a self-consistent ap-
proach was attempted very early.?*2> Here the neglect of correlations is
not too serious because most of the repulsion comes from very distant
monomers. Thus point (i) is improved, but point (ii) remains weak; the net
result is a formula for v in charged systems which gives incorrect values
for 3 < d < 6.2 We return to this problem in Chapter XI.

1.4.
Constrained Chains

We now turn to a discussion of real chains in good solvents, when
external constraints are applied. The basic situations are listed in Section
I.1. in connection with ideal chains. We shall see that all exponents are
modified strongly by excluded volume effects, and that most of them can



A Single Chain 47

be related directly to the exponent ». To simplify the notation, we set
v = 3/5 (the Flory value) for three-dimensional systems.

1.4.1. A chain under traction (Fig. |.4)

The external energy due to the force f, when the end-to-end distance is
r, issimply —f-r. Thus, we may write a partition function for the chain in the
form

Z = j dr py (r) exp(f-r/T) (1.43)

and using the results from Section (I.2) on p,(r), we can compute all aver-
ages involving r.'? Here, however, we use a simpler approach due to Pin-
cus.?” The only characteristic lengths entering into eq. (I.43) are: 1) the
Flory radius, Ry = aN®?, and 2) the length ¢, = T/f.

Let us now consider the elongation r(f). We may write

)| = Re o, (%) = Rrer (%) (L.44)

where ¢, is a dimensionless function. For small f we expect |(r)] to be linear
inx, and thus ¢, (x > 0) = x

\ O F‘
~ R?
nl==f (Re<T) (1.45)

Note that (r) is not linear in N at small f. This means that the tension f is
transmitted not only through the backbone (as in the ideal case) but also
through contacts between certain pairs of monomers (n, m) (with [n—m|
large).

Consider now the limit of large tensions (x > 1). What happens here
can be idealized as shown in Fig. 1.10. The chain breaks up into a series

<—;p->

BLOB
Figure 1.10.
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of ‘‘blobs’’ each of size ¢,. Inside a blob (i.e., for spatial scales r < £,) the
force f (measured by the dimensionless number fr/T) is a weak perturba-
tion. Thus, each blob retains the local correlations of a Flory chain, but at
larger scales r > £, we have a string of independent blobs.

The number of monomers per blob, g,, is related to §,, by the Flory
law of real chains [eq. (I.39)], giving

& =a g
or
T 513 .
& = () (L46)

and the total number of blobs is N/g,. The chain elongation is then

Ke)| g_gl%g,, = Na(—fTﬁ)Z'a (i;- < 1) 1.47)

Eq. (1.47) deserves some discussion. We see that a real chain has an
elastic response which is significantly more nonlinear than an ideal chain.
This appears on the plot of ¢(x) shown qualitatively in Fig. I.11.

The high f limit could have been obtained directly on the scaling form
[eq. (1.44)] by imposing the restriction that [r)| becomes linear in N at high
f.«The reason for this linearity is that at high f, separate blobs do not
interact; thus, we return to an ideal string of blobs.

Eq. (I1.47) allows us to derive the exponent & defined in connéc;ion with
the strongly stretched limit [eq. (I.25)]. At large r the probability distribu-

}

<

Re

x 2/3

Figure 1.11.
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tion is essentially proportional to exp — (r/Ry)®, and the entropy for fixed
elongation S(r) has the form

S(r) = constant + In py (r)

constant (—) (_kr__)a (1.48)
F

The corresponding elastic free energy is — 7.5, and the overall energy is

. P8
Fy = T(?;‘) - fr

The physically realized elongation corresponds to the minimum of F:*

)

Comparing eq. (1.49) with (1.47) we see that 8 = 5/2 (when » = 3/5).
Keeping a more general value of » would lead to eq. (1.26).

Apart from the longitudinal elongation (r) (parallel to f) it is of interest to
ascertain the lateral spread of the chain r, in strong elongation. The pro-
jection of the string of blobs on a plane normal to f is an ideal string, and
thus

n

13
(ri® =— fp = Naq? (fi) ' (fRp > T) (1.50)

Thus the chain not only elongates but also shrinks in its lateral dimensions.

No experimental verifications of the laws [eqs. (1.47, 1.50)] seem to be
available at present. For the future, studies on strong distortions in flows of
dilute solutions, and also in gels, may become relevant.

1.4.2. Squeezing a real chain in a tube

In one dimension, excluded volume effects are very strong. Thus it is of
interest to consider a chain trapped in a thin tube of diameter D < Ry
(but D still larger than a). Situations of this sort may become available in
the future. What is the length of tube R, occupied by the chain? What is the
energy required to squeeze the chain in?

Let us start with the length R;; it must have the scaling form

*The mathematically inclined reader will recognize that this describes a saddle point inte-
gration in Eq. (1.43).
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R, = Rr ®, (R¢/D) (L51)

where @, (x) — 1 for x — 0 (thick tube) and @, (x) — x™ when x — o (thin
tube). To determine the exponent m, we notice that for a thin tube we have
a one-dimensional problem, and R, must therefore be a linear function of
N. Since Rp ~ N"3 this requirement means that

Nll3(+m) gN
1.52)
m=v;' = 1=2/3
Thus the formula for the length of the chain is®®
213
R, = Na ( D) (@ <D < Ry) (1.53)

Note that R, is larger than Rr. The chain is extended by squeezing, and
this behavior is very different from an ideal chain. Further, the concentra-
tion inside the chain is interesting. It scales according to:

- N 1 a\43
Cing = D—TR,, = (-D-) (1.54)

and is independent of N.

Another derivation of eq. (I.53) is based on a ‘‘blob’’ picture. The chain
behaves as a sequence of blobs of diameter D. Inside each blob the effects
of the boundaries are weak. The number g, of monomers per blob is
still given by the three-dimensional law: g,3* = D/a. Successive blobs
act as hard spheres and pack into a regular one-dimensional array. Thus
R, = N/gp D in agreement with eq. (I.53).

ll MONOMERS

EXS )6

BLOBS
Figure 1.12.
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Let us now turn to the confinement energy. In the strong confinement
limit (D < Rp) we see from Fig. 1.12 that the energy must be linear in
N; doubling N simply doubles the number of blobs. On the other hand, the
energy must be of the form

R
Fons =T or () = Tr ()
lim s Feons = Ta™ (1.55)
Thus R? must be linear in N, and n = 5/3.

a 5/3
Fopy = IN (—D-) (1.56)

Note first the difference in behavior from the ideal chain [eq. (1.12)].
The confinement energy (at given D and N) is larger for the real chain.
Note also the analogy between eq. (I.56) and the energy for strong elonga-
tion of a chain in free space [eq. (1.48)] 1/T (Feny) = (R,/Rp)*?. Thus R,
plays the role of the total elongation (r) in the Pincus problem.

GENERALIZATIONS

This analysis can be extended to chains that are squeezed in slits and to
other geometries provided that the confining object is characterized by a
single length D. One such case has been recently studied by numerical
methods.?®3° This corresponds to a two-dimensional lattice, where we
allow the chains to explore only a finite strip of width D. Then a similar
argument suggests R, ~ Na (a/D)'3; this dependence on N and
especially on D seems well confirmed by the data.

1.4.3. Weak adsorption of a single chain

This situation is again described by Fig. 1.6. To determine the thickness
of the adsorption layer D, we write, instead of eq. (I.13), an energy per
chain of the form

F=1N (—g—) " Tsf,N (157)

where the first term is the confinement energy in a slit of thickness D and
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has the scaling structure of eq. (1.56), while the second term is unaltered
(fy ~ a/D). After minimization we find

D ~ a§732 (1.58)
Faqs ~ NT8%? (1.59)

These equations should apply for 1 > & > N2/ (the latter inequality
corresponding to D < Rp).

Monte Carlo studies on chains near an adsorbing surface have been
carried out,3!32 but the small 8 limit is not very well known.

On the physical side, there are many complications. As mentioned,
single-chain adsorption is never observed. One always reaches a situation
where many chains compete for the same portion of surface. Furthermore
the single-chain problem may be modified by the existence of long range
van der Waals forces between the surface and each monomer. The cor-
responding potential decreases relatively slowly (as D~3) and the attraction
energy may not be cast into the form used in eq. (I.57).
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