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CHEMICAL KINETICS II: STOCHASTIC ASPECTS

In this c1chapter we delve into stochastic aspects of biomolecular reactions.
c2Stochasticity is often important in biological systems because of the small
number of molecules involved in fundamental biological processes. For example,
when a protein is expressed in bacteria there are often only of the order of one
to ten molecules of the corresponding mRNA. Since stochastic fluctuations typ-
ically scale as the square root of the number of molecules, stochastic effects can
be extremely significant.

We start by discussing the relationship between di↵usion and random walks
in one dimension. These sections c3serve as a general introduction to the theory
of stochastic processes. Di↵usion of molecules would also be of importance when
we take up formation of spatial pattern in the last chapter. c4c5We then show how
the techniques developed to study diffusion in space can be easily generalized to
study stochastic fluctuations in molecule number.

3.1 Molecules in solution and di↵usion
c6 Molecules in a liquid solution are constantly bombarded by other molecules.
If we track the trajectory of any single molecule over small time scales like
miliiseconds, the trajectory would appear to be a random walk. Thus, it is fruitful
to talk about the probability distribution of positions of individual molecules.
We will derive the evolution equation for this probability distribution in this
chapter. For completeness, some of the background material from probability
theory is reviewed in the Appendix.

c7The evolution of the probability distribution of particles in a liquid is gov-
erned by the diffusion equation. When there are many particles of the same
species, the density of particles satisfies the same evolution equation as the prob-
ability distribution of individual particle. The di↵usion equation has the form

@

@t
⇢(~x, t) = �~r ·~j(~x, t) = Dr2⇢(~x, t), (3.1)
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with ⇢(~x, t) the density of particles at position~x and time t and D the di↵usion
constant. The di↵usion equation is valid for macroscopic length scales much
larger than the mean-free path of the molecule under consideration. c8 The dif-
fusion equation is a consequence of Fick’s law for the local current of particles

~j(~x, t) = �D~r⇢(~x, t). (3.2)

c1Fick’s law and the diffusion equation are the mathematical statement that col-
lisions between molecules tends to homogenize the particle density Typically, dif-
fusion constants of molecules in solution depends upon its size. Bigger molecules
like proteins have di↵usion constants smaller than 1µm2s�1, whereas for ions
or small molecules, it could be of the order of 102µm2s�1. We will explore the
consequences of this equation and leave its derivation to the next section.

Armed with the di↵usion equation, we return to the discussion in the last
chapter on perfect enzymes and di↵usion limited kinetics. It is shown in the
appendix that a reaction, A+B ! C where the rate limiting step is the collision
of the two types spherical molecules A and B (with radii R

A

, R
B

and di↵usion
constants D

A

, D
B

), the reaction rate is given by 4⇡(R
A

+R
B

)(D
A

+D
B

)[A][B].
Note that in this formula the concentration is being expressed as number per
meter cube. To use Molar (=mole per liter), we need a conversion factor of
1000NAv m3 M�1, NAv being the Avogadro number (⇡ 6.023 ⇥ 1023). In the
context of enzymatic reactions where an enzyme E binds a substrate S, we can
assume a = (R

E

+ R
S

) to be roughly the size of the reactive pocket of the
enzyme. In cases where the substrate is a small molecule, its di↵usion constant
of the substrate will be much larger than that of the enyzme protein and therefore
D

E

+D
S

⇡ D
S

⌘ D.
To see why di↵usion limited rates are in the same range for a wide variety

of kinetically perfect enzymes, we need to develop a few more concepts. First,
we need the Einstein relation between di↵usion and temperatiure. Consider the
generalization of equation 3.1 to the case where there is an external potential
U(~x) exerting a force ~F (~x) = �~rU(~x) on each particle. Fick’s law generalizes to

~j(~x, t) = �D~r⇢(~x, t)� µ~F (~x)⇢(~x, t), (3.3)

where µ is the mobility and characterizes the average velocity of a particle in
the solution in response to an applied force. Consequently, in the presence of an
external potential the di↵usion equation becomes

@

@t
⇢(~x, t) = �~r ·~j(~x, t) = ~r(D~r⇢(~x, t) + µ~F (~x)⇢(~x, t)). (3.4)

A steady-state solution to the di↵usion equation (i.e. @

@t

⇢(~x, t) = 0) is obtained

by having ~j(~x, t) = 0. This implies that

c8 T satisfies this equation if Fick’s law for the current
c1
Pankaj: Text added.
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⇢(~x, t) ⇠ exp(� µ

D
U(~x)). (3.5)

. Comparing this to what is expected in thermal equilibrium, namely a Boltz-
mann distribution with ⇢(~x, t) ⇠ exp(� 1

k

B

T

U(~x)), where k
B

= 1.38 ⇥ 10�23N

m K�1 is the Boltzmann constant and T the temperature), yields the Einstein
relation between the di↵usion constant and the temperature,

D = µk
B

T. (3.6)

Second, we will need Stokes law. c1Stokes law relates the drag force experi-
enced by a particle to the viscosity of the medium it is moving in. In particu-
lar, a particle of radius R moving in a medium of viscosity ⌘ with velocity ~v

experiences a drag force of ~F
drag

= �6⇡⌘R~v. Thus, in the presence of an applied

force ~F particles settle down to a terminal velocity ~v determined by the no force
condition

~F + ~F
drag

= µ�1~v � 6⇡⌘R~v = 0. (3.7)

This yields a relationship between the motility and the viscosity µ = (6⇡⌘R)�1,
and through the Einstein relation the di↵usion constant and viscosity, D =
k
B

T/(6⇡⌘R).
Returning to enzyme substrate reaction, the relationships derived above im-

ply that for kinetically perfect enzymes,

kcat
K

M

⇡ 4⇡aD =
2k

B

Ta

3⌘R
⇡ 1.7⇥ 109

a

R
M�1s�1, (3.8)

where we have used the fact that the viscosity of water is about 1centiPoise
(= 10�3Nsm�2), T ⇡ 300K at room temperature, the conversion factor of
1000NAvm

�3 M�1). Now, if we make the reasonable assumption that a and
R are of the same order of magnitude, we see why enzymes with k

cat

/K
M

in the
ranges above are considered kinetically perfect.

3.2 Random walk
c2 Let us now focus on describing random walks of single molecules. For mathe-
matical simplicity, we start with a particle moving in one dimension on a lattice
(“Be wise, discretize!” as M. Kac is supposed to have advised). The lattice sites
are are specified by integers. Assume that at every discrete time step a particle
moves either to the left or to the right with equal probability. If the particle
starts, say at position 0, what is the probability distribution of its positions after
N such time steps?

A random walk can be described as an N letter word of the form “LRLR-
RRL...R” where a L or R at the i-th position indicates that the i-th move is

c1
Pankaj: Text added.

c2
Pankaj: Mostly minor stylistic/grammar tweaks here
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               Probability of jumping

                  Left                Right

                      1/2            1/2

n-2           n-1           n              n+1       n+2

Fig. 3.1. Random walk on a lattice

to the left or to the right, respectively. If after N steps, we have l left moves
and r = N � l right moves, our total displacement is q = r � l = N � 2l. The
number of moves with a fixed l (and, therefore, a fixed displacement q) is the
combinatorial factor NC

l

= N !/(l!(N� l)!). Since there are a total of 2N possible
walks, the probability of having a displacement q after N steps is just

P
q,N

=
NC

l

2N
=

N !

l!r!

1

2N
=

N !

(N+q

2

)!(N�q

2

)!

1

2N
(3.9)

Note that q only takes odd or even values depending upon whether number of
steps N is odd or even.

To simplify this equation, we make use of the Stirling approximation to the
factorial for large M ,

lnM ! = M lnM �M +
1

2
ln(2⇡M) +O(

1

M
) (3.10)

and 1 � m � M ,

ln(M +m)! = (M +m) ln(M +m)� (M +m) +
1

2
ln(2⇡(M +m)) +O(

1

M
)

= M lnM �M +
1

2
ln(2⇡M) +m lnM +

1

2

m2

M
+O(

m

M
). (3.11)

Using the equations 3.10 and 3.11 to expand the factorial in Eq. ?? and noting
1 ⌧ q ⌧ N , we have
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Fig. 3.2. An example of a random walk

P
q,N

=
N !

(N+q

2

)!(N+q

2

)!

1

2N
⇡ 1p

2⇡N
e�

q

2

2N ⇥ 2 (3.12)

This is just the gaussian approximation to a binomial distribution. Thus,

Prob[a  q  b] =
X

q2{a,a+2,...,b�2,b}

P
q,N

⇡
X

q2{a,a+2,...,b�2,b}

1p
2⇡N

e�
q

2

2N ⇥ 2

⇡
Z

b

a

dqp
2⇡N

e�
q

2

2N , (3.13)

where we have used the fact that as the lattice size goes to zero sums can be
replaced by integrals and changing l by 1 changes q by a factor of 2. Coming
back to continuous space and time, let us have the lattice spacing to be �x and
time steps to be �t. Then x = q�x and t = N�t. The approximate probability
distribution of x is then written as

p(x, t) ⇡ 1p
2⇡N

e�
q

2

2N
dq

dx
=

1p
4⇡Dt

e�
x

2

4Dt , (3.14)

where we have defined the di↵usion constant D = �x2/(2�t). To see that this
definition is consistent with the usual definition of D, we can directly derive the
evolution equation for p(x, t) starting with the recursion relation

P
q,N+1

=
1

2
[P

q�1,N

+ P
q+1,N

]. (3.15)
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Since P
q,N

is proportional to p(x, t) for x = q�x and t = N�t

p(x, t+�t) =
1

2
[p(x��x, t) + p(x+�x, t)] (3.16)

or

p(x, t) +�t@
t

p(x, t) +O(�t2) =
1

2
[p(x��x, t+�t) + p(x+�x, t+�t)]

=
1

2
[p(x, t)��x@

x

p(x, t) +
1

2
�x2@2

x

p(x, t)

+p(x, t) +�x@
x

p(x, t) +
1

2
�x2@2

x

p(x, t)] +O(�x4)

= p(x, t) +
1

2
�x2@2

x

p(x, t) +O(�x4) (3.17)

implying

@
t

p(x, t) ⇡ �x2

2�t
@2

x

p(x, t) = D@2

x

p(x, t). (3.18)

This is known as the Fokker-Planck equation.
If we have many particles with positions x

i

, the average density ⇢(x, t) =P
i

h�(x � x
i

(t))i = p(x, t) ⇥ Number of particles (see the Appendix for a dis-
cussion of the delta function). Thus ⇢(x, t) also satisfies equation 3.18. Thus we
derive the di↵usion equation, namely equation 3.1, in one dimension, with D
identified as the di↵usion constant. We leave the generalization to higher dimen-
sions as an exercise.

Excercise: Check that p(x, t) = exp(�x2/(4⇡Dt))/
p
4⇡Dt is the solution of

equation 3.18 with the initial condition p(x, 0) = �(x).

Excercise: Consider that case of a bias one-dimensional random walker where a
particle can hop to the left with probability 1/2+b and to the right with 1/2�b,
with 0 < b < 1/2.
a) Write down the evolution equation for P

q,N+1

and p(x, t).
b) Derive the appropriate di↵usion equation.

3.3 Langevin equation

Since di↵usion of a particle is such an important process, it worth solving the
problem in more than one way. c1In this section, we resolve the diffusion equation
using Langevin equations. The main purpose for introducing the Langevin equa-
tion is to familiarize you with the mathematics needed for analyzing fluctuations
in chemical kinetics.

c1
Pankaj: Solving the Langevin equation, which will be introduced in this section, is one of

them.
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Fig. 3.3. Gaussian distribution for di↵erent values of time.

c2To derive the Langevin equation, it is useful to start once again with a
diffusing particle on a lattice. Like before, at each time step the particle can hop
to the left or right with equal probability. We start by Introducing the variables
�
i

= ±1, with �
i

= �1 if the i-th move was to the left and �
i

= 1 if it was to the
right. The �

i

can be viewed as independent random variables with equal prob-
ability of being ±1. Consequently, the expectation value of �

i

is zero, h�
i

i = 0,
and c3 h�

i

�
j

i = �
i,j

, where the Kronecker delta is defined as follows:

�
i,j

= 1 when i = j,

= 0 otherwise. (3.19)

It is easy to calculate the first two moments of q
N

using these relations.

hq
N

i =
X

i

h�
i

i = 0 and hq2
N

i =
X

i,j

h�
i

�
j

i =
X

i,j

�
i,j

= N. (3.20)

In the continuum limit, N is large and the central limit theorem tells us that the
distribution of q

N

is going to be approximately gaussian. Since the mean and
the variance of a gaussian distribution is enough to specify it, knowing first two

c2
Pankaj: Text added.

c3
Pankaj: Going back to the discrete representation, one could write the displacement after

N steps to be qN =
PN

i=1 �i, where each �i = ±1, is an independent variable. If the i-th move
was to the left, �i = �1 and if it was to the right �i = 1. For unbiased random walks (equal
probability of going to the left or to the right), < �i >= 0. The independence leads to
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moments of q
N

is good enough for many applications. For example it tells us that
the probability density of q

N

is exp(�q2
N

/(2N))/
p
2⇡N , which in terms of con-

tinuum variables x lead to the desired result p(x, t) = exp(�x2/(4⇡Dt))/
p
4⇡Dt.

Can we do this directly in the continuum representation? Yes. We strat with
the recursion formula

q
N

� q
N�1

= �
N

. (3.21)

Multiplying by �x/�t and noting that in the continuum limist x(t) = �xq
N

and t = N�t yields

implies
x(t)� x(t��t)

�t
= ⌘(t) =

�x

�t
�
N

or
dx(t)

dt
= ⌘(t) (3.22)

with the conditions h⌘(t)i = 0 and

h⌘(t)⌘(t0)i =
⇣�x

�t

⌘
2

h�
N

�
N

0i = 2D

�t
�
N,N

0 = 2D�(t� t0), (3.23)

If you haven’t seen this kind of jugglery before, you may be understandably
uncomfortable. Just to see how to apply (3.22), let’s calculate the variance of
x(t):

hx(t)2i = h
Z

t

0

ds⌘(s)

Z
t

0

ds0⌘(s0)i

=

Z
t

0

ds

Z
t

0

ds0h⌘(s)⌘(s0)i

= 2D

Z
t

0

ds

Z
t

0

ds0�(s� s0)

= 2D

Z
t

0

ds = 2Dt. (3.24)

This is indeed the right answer, with the square of distance travelled being pro-
portional to time elapsed times the di↵usion equation. Note that these manipu-
lations are just the continuum version of the discrete calculation in the equation
3.20.

c1

Generalization of this equation to higher dimension in isotropic medium is

obvious: ~̇x(t) = ~⌘(t) with h~⌘(t)i = 0 and h⌘
i

(t)⌘
j

(t0)i = 2D�
i,j

�(t � t0). Each
coordinate behaves as an independent variable. If we start at the origin, that

c1
Pankaj: Made some minor tweaks below and checked Fourier transform conventions.
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Fig. 3.4. Displacement and the Langevin noise in random walk.

is p(~x, 0) = �(d)(~x) =
Q

i

�(x
i

), then after time t the probability distribution is
given by

p(~x, t) =
Y

i

1p
4⇡Dt

e�
x

2
i

4Dt =
1

(4⇡Dt)d/2
e�

~x

2

4Dt (3.25)

What happens to the Langevin equation in presence of an external force? You
might guess that now we have a biased random walk where the probability of
going left or right are not equal. Such biased walk can be represented by dx(t)/dt
having an average part proportional to the bias. Remembering that in a viscous
medium, the average velocity of a particle is proportional to applied force, and
the proportional constant is mobility µ, we have

d~x(t)

dt
= µ~F (~x) + ~⌘(t) = �µ~rU(~x) + ~⌘(t) (3.26)

With the statistics of ~⌘(t) as before.
It is possible to show that equation 3.28 is equivalent to the Fokker-Planck

equation for the probability density (equation 3.4 with ⇢(~x, t) replaced by p(~x, t)).
Why, then, do we bother to write down the alternate Langevin formulation? It



LANGEVIN EQUATION 41

turns out that some questions that relate to kinetics are often easier to answer
starting from the Langevin formulation.

For example, in a one dimensional harmonic potential U(x) = Kx2/2, we
know that the equilibrium probability distribution p

0

(x) is given by

p
0

(x) =
exp(��Kx

2

2

)
p
⇡�K

where � = 1/(k
B

T ). (3.27)

This result is derived easily from the Fokker-Planck equation by setting ~j(x, t) =
0 in Equation 3.1. However if we want to calculate equilibrium time lagged
correlation of the positions of the particle, the Langevin equation is a better
starting point,

dx(t)

dt
= �µKx(t) + ⌘(t). (3.28)

Understanding stochastic di↵erential equations like this is important. The �µKx
term is the restoring force trying to bring the particle to the potential minimum,
at x = 0, while the noise term ⌘(t) kicks it in random directions. The time
constant for deterministic dynamics is given by ⌧ = (µK)�1. This is just a linear
equation with an inhomogeneous term. To solve this equation we rewrite it as

d

dt
(e

t

⌧ x(t)) = e
t

⌧ ⌘(t) (3.29)

and integrate to get

x(t) = e�
t

⌧ x(0) +

Z
t

0

dt0e�
t�t

0
⌧ ⌘(t0) (3.30)

For times t much larger than ⌧ the e↵ect of the initial value if forgotten and the
position is determined mostly by noise in the immediate past. Thus, in practice
we make the approximation

x(t) ⇡
Z

t

�1
dt0e�

t�t

0
⌧ ⌘(t0). (3.31)

The lower limit of the integral can be changed because the contribution from
|t� t0| >> ⌧ is negligible due to the exponential surpression.

We are interested in the correlation between x(s) and x(s + t), where s is
arbitrary and time lag t is taken to be positive without loss of generality. The
correlation function C(t) then calculated as
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hx(s)x(s+ t)i ⇡ h
Z

s

�1
dt0e�

s�t

0
⌧ ⌘(t0)

Z
s+t

�1
dt00e�

t+s�t

00
⌧ ⌘(t00)i

=

Z
s

�1
dt0

Z
s+t

�1
dt00e�

s�t

0
⌧ e�

t+s�t

00
⌧ h⌘(t0)⌘(t00)i

= 2D

Z
s

�1
dt0

Z
s+t

�1
dt00e�

s�t

0
⌧ e�

t+s�t

00
⌧ �(t0 � t00)

= 2De�
t

⌧

Z
s

�1
dt0e�

2(s�t

0)
⌧ = D⌧e�

t

⌧ =
k
B

T

K
e�

t

⌧ (3.32)

Note that the correlation dies exponentially with a time constant set by ⌧ .

Excercise: Show that C(0) = hx(s)2i = k

B

T

K

= (�K)�1 is consistent with
the equilibrium distribution given by Equation (3.27).

A more sleek calculation can be performed via a related quantity: the power
spectrumc0. If we take Fourier transforms (see Appendix CHECK 2⇡� as con-
vention) we get

�i!x̂(!) = �µKx̂(!) + ⌘̂(!) ) x̂(!) =
⌘̂(!)

�i! + µK
. (3.33)

Excercise: Show that that h⌘̂(!)⌘̂(!0)⇤i = 4⇡D�(! � !0).

Thus,

hx̂(!)x̂(!0)⇤i = 4⇡D

!2 + (µK)2
�(! � !0) (3.34)

The power spectrum, N(!) is defined as the coe�cient of the delta function
above, and is

N(!) =
2D

!2 + (µK)2
=

2k
B

T

K

⌧

1 + (!⌧)2
. (3.35)

Excercise: Show that the correlation function C(t) is the Fourier transform of
the power spectrum N(!). Exploit the fact that x(t) is real.

Since C(t) is just the Fourier transform of power spectrum N(!), one has

C(t) =

Z
d!

2⇡
N(!)ei!t =

2k
B

T

K

Z
d!

2⇡

⌧ei!t

1 + (!⌧)2
=

k
B

T

K
e�

t

⌧ (3.36)

3.4 Poisson arrivals

Having our first taste of random processes in the context of di↵usion, let us move
on and discuss how we analyze stochastic aspects of chemical reaction. Let us

c0The importance of power spectrum becomes clear as we go on. See Appendix for definition



POISSON ARRIVALS 43

start with the simplest example. Imagine a molecule is synthesized at a certain
rate R. It could be a small molecule made by an enzyme or could be RNA being
made from a gene. Let us consider the case where the time required to make the
molecule is small compared to the typical time lag between the synthesis of two
consecutive molecules. In this limit we can consider synthesis as a point process:
random events that happen at a well-defined time, c1at some fixed rate, R, per
unit time.c2 c3Since the probability of synthesizing a molecule per unit time is
small, the production can be modeled as a Poisson process.

What is the distribution of the lag time t between the two consecutive events?
If P (t) is the probability of nothing happening in the time interval [0, t], then
P (t+�t) is the probability of nothing happening in the time interval [0, t] and
in the time interval [t, t+�t]. Independence of the last two events imply that

P (t+�t) = P (t)(1� Prob[ Something happens in the interval [t, t+�t]])
(3.37)

Probability of something happening in the small interval [t, t + �t] is approxi-
mately R�t. Expanding to first order in �t and noting that c1 P (0) = 1, yields
an expression for the cumulative distribution function (cdf) of a Poisson process,

P (t) = e�Rt. (3.38)

c2A fundamental quantity in the theory of Poisson processes is the waiting time
distribution. This is also sometimes referred to as the time lag distribution. The
waiting time distribution, p(t), is the probability density of the lengths of inter-
arrival times in a Poisson process. In particular, the probability that the time
between synthesis events falls in the the interval [t, t+ dt] is given by p(t)dt.
Since p(t) is just the probability of having no events in the interval [0, t] followed
by an event in the interval [t, t+ dt], one has

p(t) = Re�Rt. (3.39)

Equivalently, we can define the waiting time distribution as the negative rate of
change of P (t), p(t) = �dP (t)/dt.

Exercise: Show that for a Poisson process the mean waiting time is hti = R�1

and that the standard deviation is
p

Var(t) =
q
ht2i � hti2 = R�1.

c1
Pankaj: Text added.

c2
Pankaj: If the synthesis apparatus gets ready to produce the molecules at the same rate

very quickly (compared to typical lag, once more) then
c3
Pankaj: Text added.

c1
Pankaj: This fact along with the observation

c2
Pankaj: Text added.
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c3 How is the number of events in an interval distributed? We can borrow
tricks from the random walk calculation (remember “Be wise, discretize!”?). Let
us divide up the interval [0, t] into N subintervals, each of length �t (so that
t = N�t). Choose N large enough so that each subinterval is much smaller
than R�1. In this case, it is unlikely that there will be two or more events
happening in the same subintervalc3. Now we can ask what is the probability
of n events happening? We need to choose n or the N subintervals, providing a
factor NC

n

, and multiply by the probability of the n intervals being occupied
and the remaining N � n intervals being unoccupied, (R�t)n ⇤ (1 � R�t)N�n.
This yields

Prob[n events] =N C
n

(R�t)n(1�R�t)N�n. (3.40)

Hence, in the limit N ! 1 with n fixed,

Prob[n events] =
N(N � 1) · · · (N � n+ 1)

n!
N�n(Rt)n(1� Rt

N
)N (1� Rt

N
)�n

⇡ (Rt)ne�Rt

n!
. (3.41)

This is just the Poisson distribution with the mean ⌫ = Rt.

Excercise: Show that hni = ⌫ and the Var(n) = ⌫. Notice that the standard
deviation of the number is

p
⌫ and the relative fluctuation, the ratio of standard

deviation to mean, scale as ⌫�1/2, which becomes small as ⌫ becomes large.

c1 This is a good place to discuss the connections between the deterministic
description of the previous chapter and the stochastic description in this one.
As time grows, the number of molecules made becomes large. To give an exam-
ple not too far from reality, if the time period is such that, on the average, a
thousand molecules are made , we expect the fluctuation around the mean to
be about thirty(which is about 3% of the mean). In this case, the deterministic
approximation is a pretty good one. If, on the other hand, if we are dealing with
systems with an average of ten molecules, the relative fluctuation are about 30%
and the stochastic e↵ects can play an important role. To account for these fluc-
tuations, one possible approach is to use a continuum Langevin description as
an approximation to the Poisson process

dn(t)

dt
= R+ ⌘(t) (3.42)

c3
Pankaj: Tweaked presentation slightly

c3The probability of that happening goes as (R�t)2 and therefore the number of subintervals
with double events is expected to be N(R�t)2 = (Rt)2/N , something that tends to zero as N
goes to infinity.

c1
Pankaj: Added exercise and tweaked discussion slightly
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with h⌘(t)i = 0 and h⌘(t)⌘(t0)i = R�(t� t0)i.

Exercise: Show that the Langevin approximation reproduces the right mean
and variance for the Poisson process.

When time t and ⌫ = Rt become large, the poission distribution is well ap-
proximated by a gaussian with mean ⌫ and variance ⌫. In this limit, the Langevin
description becomes a good description of the Poisson process.

Excercise: In this problem, we consider a protein production from a single
mRNA molecule. Assume that proteins are produced by a Poisson process with
rate ↵

p

and that mRNA degradation is also a Poisson process with rate ⌧1
m

. Show
that the probability of producing b proteins from an mRNA molecule is given by
the Geometric distribution with mean b̄ = ↵

p

⌧
m

,

G(b) =
1

1 + b̄

✓
b̄

1 + b̄

◆
b

. (3.43)

3.5 Birth-death processes and the Gillespie Algorithm

So far we have only described a process in which a molecule is only made not
destroyed. In biological systems many molecules have dedicated enzymes for
destroying them. RNA and proteins are degraded by RNases and proteases, re-
spectively, and both play important roles in gene expression regulation. Proteins
like phosphodiesterase convert cyclic nucleotide monophosphate to nucleotide
monophosphate, and a↵ect signaling. For any posttranslational modification of
proteins, like phosporylation etc., there are enzymes like posphatases, that undo
the change.

In general, for each molecule the birth rate and the death rate can depend on
the number of other molecules present. We specify the state of the cell by a vector
of numbers for the di↵erent species of molecules, ~n = (n

1

, n
2

, ....., n
k

), the rate of
synthesis of species i, (n

1

, n
2

, ..., n
i

, ..., n
k

) ! (n
1

, n
2

, ..., n
i

+1, ..., n
k

), by f
i

(~n),
and the rate of degradation of species i,(n

1

, n
2

, ..., n
i

, ...n
k

) ! (n
1

, n
2

, ....., n
i

�
1, ......, n

k

), by g
i

(~n). For such a system, the deterministic equation describing
the way the average changes when the numbers are large is

d~n

dt
= ~f(~n)� ~g(~n). (3.44)

How does one deal with the stochastic aspects of this model? Is there a limit in
which one can apply the Langevin approximation to the system?

c1

Before proceeding to analytic approximations, it is useful to discuss how
to numerically simulate the chemical reactions like birth-death processes. One

c1
Pankaj: Added Gillespie into text. This is standard and must be here
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approach one can imagine to simulating these reactions is to choose a small
time step �t ⌧ 1, draw a uniform random number for each reaction, check if
a synthesis or degradation event occurs during the time step by determining if
the corresponding random number is smaller than f

i

(~n)�t ⌧ 1 or g
i

(~n)�t ⌧ 1,
updating the state of the cell, and then repeating the process. The problem
with such a naive approach is that since the probability of an event occurring
in any time step is extremely small. In fact, during most time steps nothing will
happen. Consequently, such simulations are extremely ine�cient and slow. One
can imagine speeding up the simulation by increasing �t. However, for larger �t
one quickly runs into the problem that there is a non-zero probability of having
multiple events during each time step.

An alternative approach, often termed the “Gillespie Algorithm”, circum-
navigates the problems discussed above and has quickly become the standard
technique for simulating stochastic chemical reactions in systems biology. We
now discuss how to use the Gillespie algorithm to simulate an arbitrary set of
chemical reactions. As before, denote the number of molecules present of all
species by ~n. Furthermore, index the possible reactions by P , with the rate of
reaction P , ~n ! ~n+~e

P

, given by r
P

(~n). For example for the the birth-death pro-
cesses discussed above, we can consider the reaction for the creation of a molecule
of species i. For this case, r

P

= f
i

(~n) we have that e
p

= (0, 0, . . . , 1, . . . , 0), the
vector with 1 at the i-th position and zero everywhere else. The key observation
behind the Gillespie algorithm is that each reaction is an independent Pois-
son process so we can explicitly calculate the waiting time distribution between
events. In particular, the probability that any event occurs is a Poisson pro-
cess with rate R =

P
P

r
P

. This suggests the following algorithm for simulating
chemical reactions:

• Initialize the simulation at some ~n = ~n
0

and time t = 0.

• Draw a random number x
1

uniformly distributed between 0 and 1.

• Explicitly calculate the waiting time ⌧ between events using Equation 3.39:
⌧ = � log (x

1

)/r. This step uses the usual Monte-Carlo sampling procedure
based on the cumulative distribution function (cdf) of a Poisson process,
P (t), derived in Eq. 3.38.

• Draw a second random number x
2

uniformly distributed between 0 and 1
to choose which of the reactions occurs. Reaction P occurs if

P
p�1

j=1

r
j

R
 x

2

<

P
p

j=1

r
j

R
(3.45)

.

• Update the time, t ! t+ ⌧ , and ~n using appropriate reaction.

We end this section by emphasizing that the Gillespie algorithm outlined
above is exact. No approximations of any kind were utilized. For this reason, the
Gillespie algorithm has become one of the workhorses of simulating biochemical
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reactions. We encourage the reader to simulate the various processes that occur
through out the remainder of the book.

Excercise: Use the Gillespie algorithm to simulate a simple birth-death pro-
cess for a single species where molecules are synthesized at a rate f(n) = R and
are degraded at a rate g(n) = ⌧�1n. Compare your results with those in Figure
3.6.

3.6 Noise in chemical reactions
c1

c2 We start our discussion with a detailed analysis in the context of a simple
birth-death process for a single species where molecules are synthesized at a
rate f(n) = R and are degraded at a rate g(n) = ⌧�1n. We will start with a
deterministic description and then consider the e↵ects of stochastic fluctuations
due small molecule numbers. Comparison of the deterministic and stochastic
modeling of this particular process will further our understanding of when and
how noise a↵ects biological systems as well as help explain thee analogy between
biased random walks and noise in chemical kinetics.

The deterministic description of the birth-death process can be written in
terms of a simple Ordinary Di↵erential Equation of the form

dn(t)

dt
= R� n(t)

⌧
. (3.46)

c3The first term just says that the change in n during a time dt is the difference

between the production rate, R, and the degradation rate n(t)

/

⌧ . It is easy to
obtain a closed-form, analytic solution to this equation. However, for pedagogic
reasons, it is useful to solve this equation in a di↵erent way. In particular, we will
solve the problem using methods that can also be used to solve more complicated
mon-linear system that frequently occur when modeling biological systems. c4

c5 We start by asking about the fixed points of this dynamical system. Setting
the left hand side of equation 3.47 to zero, we see that there is a single fixed point
at n̄ = R⌧ . Let us call this quantity ⌫. Next we ask whether this fixed point is
stable. To do so, we analyze small perturbations around n̄ = ⌫ and see if the they
die out in time. Departures from ⌫, �n = n� ⌫, satisfy the linearized equation,

d

dt
�n(t) = ��n(t)

⌧
(3.47)

In this case, the linearized equation is exact since the original problem is also
linear. However, for a general a non linear system, this equation is approximate

c1
Pankaj: STILL HAVE TO FIX SECTION

c2
Pankaj: Moved this from last section

c3
Pankaj: Text added.

c4
Pankaj: modified a little

c5
Pankaj: Minor tweaks of paragraph below
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since we have ignored all terms order �n2 and above. In any case, the last equation
implies that the perturbations die out exponentially with a time constant set by
⌧ and the fixed point is stable.

                   Rates of jumping

             Left (death)   Right (creation)

                      n/τ           R

n-2           n-1           n              n+1       n+2

Fig. 3.5. Random walk on the space of numbers.

What about the e↵ects of stochasticity? The state space of our system is
the number of molecules present which takes on values in the set of nonnegative
integers, . The dynamics of the system can be thought of as a random walk on
the space of nonnegative numbers with the bias of hoping left and right related to
the birth and death rates. The probability of hopping up in a small time interval
[t, t+�t] (i.e. from n to n+1) is R�t. The probability of hopping down during
the same interval (from n to n� 1) is n�t/⌧ . Notice this later rate depends on
the present state the system. If n < ⌫ the random walk the is biased towards
going up, and for n < ⌫, it is biased downward. In FIG. 3.6, we compare the
deterministic dynamics with a simulation of the random dynamics for a system
starting with no particles climbing up to roughly ⌫ in number. After a time order
⌧ the system settles down to its stationary state.

This analogy can be made more concrete by considering the Master equation
for this process. Let P (n, t) be the probability distribution of n at time t. This
is related to the probability distribution at a time t+�t, P (n, t+�t), through
the equation
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Fig. 3.6. Comparing deterministic and stochastic descriptions of reaction ki-
netics for a simple birth-death process.

P (n, t+�t)� P (n, t) = gain from jumps from n� 1

+ gain from jumps from n+ 1

� losses from jumps away from n

= R�tP (n� 1, t) +
n+ 1

⌧
�tP (n+ 1, t)� (R�t+

n

⌧
�t)P (n, t)

= �t[RP (n� 1, t)� (R+
n

⌧
)P (n, t) +

n+ 1

⌧
P (n+ 1, t)]. (3.48)

Taking the limit�t ! 0 and using a Taylor expansion yields the Master equation

d

dt
P (n, t) = RP (n�1, t)�(R+

n

⌧
)P (n, t)+

n+ 1

⌧
P (n+1, t) = J(n, t)�J(n+1, t)

(3.49)
where

J(n, t) = RP (n� 1, t)� n

⌧
P (n, t) (3.50)

is the overall probability current flowing between n and n � 1. When we come
to n = 0, we have

d

dt
P (0, t) = �RP (0, t) +

1

⌧
P (1, t) = J(0, t). (3.51)

Just as we asked about the fixed points of the deterministic dynamics, we can
ask about stationary distributions that describe the long time dynamics. To do
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so, we have to set dP/dt to zero in equation 3.49 and solve for time independent
P (n, t) = P

0

(n).
c1 One way to do this is to realize that stationarity implies that the cur-

rent J(n, t) is constant throughout the system and independent of n and t (i.e.
J(n, t) = J(n + 1, t) = J

c

with J
c

a constant). Furthermore, dP (0, t)/dt = 0
implies J

c

= 0. Taken together, this is simply the statement that a net current
to the left or right is inconsistent with a stationary distribution where there is
no flux at n = 0.

Excercise: Show that J
c

= 0 implies that the stationary distribution is a Poisson
distribution of the form

P
0

(n) = e�⌫

⌫n

n!
. (3.52)

Fig. 3.7. Poisson distribution for ⌫ = 7.

c2 For ⌫ >> 1, the stationary Poisson distribution is strongly peaked around ⌫
and one can gainfully apply the Langevin description to understand the stochas-

c1
Pankaj: Reworked next paragraph

c2
Pankaj: I have removed a lot of the technical detail below. It is confusing even to me, let

alone beginners
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tic dynamics. The ra deterministic equation (3.47) is supplemented by a noise
term ⌘(t) with n(t)-dependent noise strength,

dn(t)

dt
= R� n(t)

⌧
+ ⌘(t) (3.53)

with h⌘(t)i = 0 and h⌘(t)⌘(t0)i = (R+
n(

t+t

0
2 )

⌧

)�(t�t0). To see when the Langevin
description applies, note that in this system typical time scale for change of n(t)
is set by ⌧ . Let us choose a time interval [t, t0] so that (t0 � t) << ⌧ but R(t0 �
t) >> 1 and

R
t

0

t

dsn(s)/⌧ ⇡ n(t̄)/⌧ >> 1, with t̄ = (t + t0)/2. This is possible
when ⌫, n(t) >> 1. Since the time interval [t, t0] is much shorter than ⌧ , we
can assume n(t) is nearly constant over the interval. Within this approximation,
the birth and death are independent poisson processes with rate R and rate
n(t̄)/⌧ , respectively. c1 Since the variance of the sum of two independent Poisson
processes is the sum of the variances of each process, one has h⌘(t)⌘(t0)i =
(R + n(t̄)/⌧)�(t � t0). The choice of the midpoint t̄ as an argument of n has to
do with technicalities of interest to experts (see comments in the Appendix). For
most calculations that we will do, the choice of the midpoint is not crucial. A
special case of interest are stochastic fluctuations around the fixed point n̄ = ⌫.
In this case, the noise takes on the simpler form

h⌘(t)⌘(t0)i = (R+ ⌫/⌧)�(t� t0) = 2R�(t� t0) = 2⌫/⌧�(t� t0) (3.54)

The discussion above can also be generalized to more complicated systems.
The one subtlety is that one needs to be careful about which processes are inde-
pendent. Label the independent processes by an index p. Let process p happen
at rate f

p

(~n) with ~n to ~n+~e
p

. Then, the corresponding Langevin equation takes
the form

d~n(t)

dt
=

X

p

f
p

(~n(t))~e
p

+ ~⌘(t) (3.55)

with h~⌘(t)i = 0 and h⌘
i

(t)⌘
j

(t0)i =
P

p

e
pi

e
pj

f
p

(~n( t+t

0

2

))�(t� t0)�
ij

We will apply
this method in the next section to analyze fluctuations in gene expression.

3.7 Application to intrinsic fluctuation of gene expression

It would be good at this point to comeback to biology and jump in the middle
of current discussion on noise in gene expression. Gene expression consists of
two steps: transcription and translation. The first step make mRNA and the
second step makes a protein using the information from mRNA. A biologically
important quantity to understand are fluctuations in protein numbers to due to

c1
Pankaj: The fluctuation of the gain during the interval is the difference between the fluc-

tuation in birth and the fluctuation in death, and the last two are independent variables.
Therefore the variance of the fluctuation in net gain is some of the the variances from birth
and that from death.
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stochastic e↵ects. Our discussion will closely follow the treatment by Thattai
and Oudenaarden.

Our system is specified at any time t by the total number of mRNA molecules
r and protein molecules p present. We c2restrict ourselves to the case where
mRNA molecules are synthesized constitutively o↵ the template DNA strand
and are translated at some constant rate (FIG. 1). We treat transcription and
translation c3as independent processes that occur instantaneously. c4The kinetics
of gene expression can be represented as follows:

DNA
k
R

! mRNA
# 1/⌧

R

;

k
P

! protein,
# 1/⌧

P

;

(3.56)

with k
R

the transcription rate, k
P

the translation rate per mRNA molecule, ⌧
R

the mRNA lifetime, and ⌧
P

the protein lifetime.
The probability that the system is in a given state (r, p) is specified by the

time dependent joint probability distribution P (r, p; t). c1 Instead of using Master
Equations to analyze noise, we will start directly with the Langevin approxima-
tion and analyze fluctuation around the stationary state.

Fig. 3.8. Stochastic descriptions of gene expression kinetics. FIX CON-
STANTS

c2
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c3
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dr

dt
= k

R

� r

⌧
R

+ ⌘
R

dp

dt
= k

P

r � p

⌧
P

+ ⌘
P

(3.57)

The stationary solution c1for the mean mRNA number, r̄, and the mean protein
number, p̄, can be found from the equations above by setting the time deriva-
tives to zero and ignoring the noise terms. This yields r̄ = k

R

⌧
P

and p̄ = k
P

r̄⌧
P

.
Around this fixed point the noise spectrum is given by h⌘

R,P

i = 0 and

h⌘
R

(t)⌘
R

(t0)i = (k
R

+
r̄

⌧
R

)�(t� t0) = 2k
R

�(t� t0) (3.58)

h⌘
P

(t)⌘
P

(t0)i = (k
P

r̄ +
p̄

⌧
P

)�(t� t0) = 2k
R

k
P

⌧
R

�(t� t0) (3.59)

h⌘
R

(t)⌘
P

(t0)i = 0. (3.60)

c2In writing these expressions, we have used the fact that the birth and death of
mRNAs and proteins are independent Poisson processes with variance equal to
the their mean.

The departures for the stationary values, �r(t) = r(t)� r̄ and �p(t) = p(t)� p̄,
satisfy the matrix equation

✓
d

dt

+ 1

⌧

R

0
�k

P

d

dt

+ 1

⌧

P

◆✓
�r
�p

◆
=

✓
⌘
R

⌘
P

◆
. (3.61)

c3These equations can be derived by linearizing Eq. 3.57 c4around the fixed point.
Taking Fourier transformation

✓
�i! + 1

⌧

R

0
�k

P

�i! + 1

⌧

P

◆✓
�r̂(!)
�p̂(!)

◆
=

✓
⌘̂
R

(!)
⌘̂
P

(!)

◆
(3.62)

and inverting the matrix, we have

p̂(!) =
k
P

⌘̂
R

(!)

(�i! + 1

⌧

R

)(�i! + 1

⌧

P

)
+

⌘̂
P

(!)

�i! + 1

⌧

P

. (3.63)

The two terms in the right hand side of the equation 3.63 can be interpreted as
follows: the first term is the e↵ect of fluctuations in transcription and the second
is the e↵ect of fluctuation in translation.
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The Fourier space version of the noise correlations,

h⌘̂
R

(!)⌘̂
R

(!0)i = 4⇡k
R

�(! � !0) (3.64)

h⌘̂
P

(!)⌘̂
P

(!0)i = 4⇡k
R

k
P

⌧
R

�(! � !0) (3.65)

h⌘̂
R

(!)⌘̂
P

(!0)i = 0 (3.66)
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#
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Instantaneous fluctuation in �p(t), c1
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. (3.69)

c2 It is interesting to consider the results in the limit where protein lifetimes
are much longer than mRNA lifetimes, ⌧

P

>> ⌧
R

. In bacteria, ⌧
P

is often hours
whereas ⌧

R

is minutes. In this limit

h�p2i ⇡ p̄(1 + k
P

⌧
R

) ⌘ p̄(1 + b̄) (3.70)

The quantity b̄ = k
P

⌧
R

is the average number of proteins per mRNA, is called the
“burst size”. If b̄ is large (often tens of protein molecules are made from a single
mRNA molecule) the transcriptional noise dominates. c3A commonly used mea-
sure of the noise is the Fano factor, ⌫ =< �p2 > /p̄. For Poisson distributions,
the Fano factor is one. The fact that in our process the Fano factor is 1 + b̄
indicates the non Poissonian nature of the protein distribution.
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What is the experimental signature of c4bursty protein synthesis? Since the
Fano factor ⌫ depends upon the burst size, it should be una↵ected by tran-
scription rate, but should be a↵ected by translation rate. This was tested in
experiments done in Bacillus subtillis by Ozbudak et al. A reporter expressing
a Green Fluorescent Protein provided a way to measure relative levels of gene
expression. This provides protein numbers up to a scale factor. Ozbudak et al
played around with the strength of the sigma factor binding site which a↵ects
transcription rate as well as with the Shine Dalgarno sequence, i. e. the ribo-
some binding site, which a↵ects the translation rate. Mutations of the latter
kind a↵ected the Fano factor ⌫ strongly, whereas the mutations of the first kind
did not a↵ect ⌫ seriously. c5This is consistent with the idea that the dominant
source of noise is the amplification of mRNA fluctuations through bursty protein
synthesis.

c1 There has been some discussion on which is the better measure of noisi-
ness: the Fano factor

p
h�p2i/p̄ or

p
h�p2i/p̄? The first measure explicitly scales

out overall number/size of the system, the second has the advantage that it can
be estimated even if one knows protein abundances only up to a scale. However,
this measure explicitly depend upon the overall number. Defining a measure of
noisiness without any regard to what the purpose of having low noise is pointless.
For example, in particular contexts, like signaling, we know that the latter quan-
tity is related to the signal-to-noise ration and hence more meaningful whereas
the Fano factor may be more useful for interpreting certain experiments.

A more interesting question is whether gene expression noise is dominated
by intrinsic noise inherent to protein production or noise extrinsic to the process
such as fluctuations in cell size, ribosome number, RNA polymerase number, etc.
One might surmise that intrinsic noise is uncorrelated between two genes but the
extrinsic noise is correlated for two genes within the same cell. Using this tactics,
Elowitz et al. analyzed gene expression of two reporter Fluorescent proteins in
E. coli and showed that extrinsic noise is as large or larger than the intrinsic noise.

c2 Exercise: Use the Gillespie Algorithm to simulate the kinetics of gene ex-
pression depicted in Eq. 3.56. Choose reasonable parameters for the four rates.
Compare your results with results from the Langevin approximation in Eq. 3.69.

3.8 Fluctuation of gene expression in eukaryotes

Eukaryotic DNA is neatly spooled around proteins called histones. The combi-
nation of DNA and DNA bound histones is referred to as chromatin. Some times
positioning of the nucleosomes and/or the covalent modification of components
of it are such that initiation of transcription becomes unlikely. In those cases,

c4
Pankaj: this phenomenon

c5
Pankaj: Text added.

c1
Pankaj: made some minor changes

c2
Pankaj: added excercise



56 CHEMICAL KINETICS II: STOCHASTIC ASPECTS

the control of transcription in often have an additional layer, namely chromatin
remodeling.

inactive DNA
k
a

⌦
1/⌧

a

active DNA
k
R

! mRNA
# 1/⌧

R

;

k
P

! protein
# 1/⌧

P

;

(3.71)

c1 If the fluctuation between active and inactive DNA is much faster than
the rest of the gene expression process, the net e↵ect is to lower the ‘e↵ective’
k
P

by a factor proportional to the probability of the DNA being in the open
state. The rest of the analysis is very similar to what we did in the previous sec-
tion. However, if either the opening up inactive DNA or shutting of active DNA
is a slow process, qualitative di↵erences arise from the simple scenario consid-
ered in the last section. When both processes are slow, the cells divide into two
sub populations, a productive population with active DNA, and unproductive
population with inactive DNA. In this limit, the distribution of gene expression
can become bimodal, with a peak coming from each of the two sub-populations.
Such distributions show a large variance of protein from cell to cell. If by some
means, say by over-expressing and activator, we could tilt the balance in favor
of active DNA, then the average protein number would go up while the variance
would decrease since the distribution would no longer be bimodal. Note that
this is qualitatively di↵erent from the simpler model in the last section where in-
creasing the mean protein number always increased the variance. We will return
to bimodal gene expression profiles in the context of genetic switches in later
chapters.

Understanding e↵ects of noise on the function of biochemical networks as
well as the various sources of noise has drawn much attention, currently. We will
discuss some these topics in the chapters to come. Ability to record fluctuating
single cell measurements in real time is making the field productive and exciting.
There are many reviews on the subject and the reader is urged to consult them
for a deeper understanding of stochasticity in biological phenomena.

3.9 Post-transcriptional regulation by small RNAs
c2 Excercise: Small, non-coding RNAs (sRNAs) play important roles as genetic
regulators in prokaryotes. sRNAs act post-transcriptionally via complementary
pairing with target mRNAs to regulate protein expression. One major class of
prokaryotic sRNAs (antisense sRNAs) negatively regulate proteins by destabi-
lizing the target protein’s mRNA (Fig. 3.9). These ⇠ 100 bp antisense sRNAs

c1
Pankaj: Minor editorial changes

c2
Pankaj: added excercise/section
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prevent translation by binding to the target mRNAs in a process mediated by the
RNA chaperone Hfq. Upon binding, both the mRNAs and sRNAs are degraded.

Fig. 3.9. Genetic Regulation via sRNAs. Left: Small non-coding RNAs (sR-
NAs) regulate protein expression as part of a larger genetic network with a
specific biological task (e.g. quorum sensing in Vibrio bacteria). The sRNAs
(stem loops) regulate target proteins by destabilizing target-protein mRNAs
(wavy lines), a stoichiometric process mediated by the RNA chaperone Hfq
(hexagons). When the rate of sRNA transcription ↵

s

greatly exceeds the rate
of mRNA transcription ↵

m

, i.e. when ↵
s

� ↵
m

, nearly all the mRNAs are
bound by sRNAs and cannot be translated. By contrast, when ↵

m

� ↵
s

,
there are many more mRNAs than sRNAs, and protein is highly produced.

In this problem, post-transcriptional regulation via sRNAs is modeled us-
ing mass-action equations with three molecular species: the number of sRNA
molecules s, the number of target mRNA molecules m, and the number of reg-
ulated protein molecules p. The e↵ect of intrinsic noise is modeled by Langevin
terms, ⌘̂

j

, that describe the statistical fluctuations in the underlying biochemical
reactions. The kinetics of the various species are described by the di↵erential
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equations

ds

dt
= ↵

s

� ⌧�1

s

s� µms+ ⌘̂
s

+ ⌘̂
µ

dm

dt
= ↵

m

� ⌧�1

m

m� µms+ ⌘̂
m

+ ⌘̂
µ

dp

dt
= ↵

p

m� ⌧�1

p

p+ ⌘̂
p

. (3.72)

The terms can be interpreted as follows. sRNAs (mRNAs) are transcribed at a
rate ↵

s

(↵
m

), and are degraded at a rate ⌧�1

s

(⌧�1

m

). Additionally, sRNAs and
mRNAs are both stoichiometrically degraded by pairing via Hfq at a rate that
depends on the sRNA-mRNA interaction strength µ . Proteins are translated
from mRNAs at a rate ↵

p

and are degraded at a rate ⌧�1

p

. ⌘̂
s

, ⌘̂
m

, and ⌘̂
p

model
the noise in the creation and degradation of individual sRNAs, mRNAs, and
the regulated protein, respectively. ⌘̂

µ

models sRNA-mRNA mutual-degradation
noise.

a) Recall, that the Langevin terms are characterized within the linear-noise
approximation by two-point time-correlation functions (j = s,m, p, µ) , which
for steady states take the form

h⌘̂
j

(t)⌘̂
j

(t0)i = �2

j

�(t� t0) . (3.73)

What are the �
j

for the three processes?
b) Calculate the steady-state protein number as a function of the parameters?
Plot the steady-state as function of ↵

m

? Show that in the limit µ ! 1 limit
it has a “threshold-linear” form as a function of ↵

m

, with no expression when
↵
m

< ↵
s

, and linear dependence on ↵
m

for ↵
m

> ↵
s

.
c) Use the Gillespie algorithm to simulate this process for various values of ↵

m

?
Plot the noise �2

p

/p̄2 as function of ↵
m

. What happens around the threshold
↵
m

= ↵
s

? Use reasonable parameters for ↵
s

, ⌧
m

, ⌧
p

, ⌧
s

,↵
p

and µ = 2.
d) Solve for the noise using the Langevin approximation and compare with your
simulation results.


