
Introduction to Probability: Expectations, Bayes The-
orem, Gaussians, and the Poisson Distribution.1

1 Read: This will introduce some ele-
mentary ideas in probability theory that
we will make use of repeatedly.Pankaj Mehta

September 6, 2021

In this worksheet, we will review some basic concepts in probability
theory. We will start with some basic ideas about probability and
define various moments and cumulants. We will then discuss how
moments and cumulants can be calculated using generating functions
and cumulant functions. We will then focus on two widely occurring
“universal distributions”: the Gaussian and the Poisson distribution.
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Probability distributions of one variable

Consider a probability distribution p(x) of a single variable where X
can take discrete values in some set x ∈ A or continuous values over
the real numbers2. We can define the expectation value of a function 2 We will try to denote random vari-

ables by capital letters and the values
they can take by the corresponding
lower case letter.

of this random variable f (X) as

〈 f (X)〉 = ∑
x∈A

p(x) (1)

for the discrete case and

〈 f (X)〉 =
∫

dx f (x)p(x), (2)

in the continuous case. For simplicity, we will write things assuming
x is discrete but it is straight forward to generalize to the continuous
case by replacing by integrals.

We can define the n-th moment of x as

〈Xn〉 = ∑
x

p(x)xn. (3)

The first moment is often called the mean and we will denote it as
〈x〉 = µx. We can also define the n-th central of x as

〈(X− 〈X〉)n〉 = ∑
x

p(x)(x− 〈x〉)n. (4)

The second central moments is often called the variance of the dis-
tribution and in many cases “characterizes” the typical width of the
distribution. We will often denote the variance of a distribution by
σ2

x = 〈(X− 〈X〉)2.

• Exercise: Show that the second central moment can also be written
as 〈X2〉 − 〈X〉2.

Example: Binomial Distribution

Consider the Binomial distribution which describes the probability
of getting n heads if one tosses a coin N times. Denote this random
variable by X. Note that X can take on N + 1 values n = 0, 1, . . . , N.
If probability of getting a head on a coin toss is p, then it is clear that

p(n) =
(

N
n

)
pn(1− p)N−n (5)
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Let us calculate the mean of this distribution. To do so, it is useful to
define q = (1− p).

〈X〉 =
N

∑
n=0

np(n)

= ∑
n

n
(

N
n

)
pnqN−n

Now we will use a very clever trick. We can formally treat the above
expression as function of two independent variables p and q. Let us
define

G(p, q) = ∑
n

(
N
n

)
pnq(N−n) = (p + q)N (6)

and take a partial derivative with respect to p. Formally, we know the
above is the same as

〈X〉 = ∑
n

n
(

N
n

)
pnqN−n

= p∂pG(p, q)

= p∂p(p + q)N

= pN(p + q)N−1 = pN, (7)

where in the last line we have substituted q = 1− p. This is exactly
what we expect 3. The mean number of heads is exactly equal to the 3 When one first encounters this kind

of formal trick, it seems like magic
and cheating. However, as long as the
probability distributions converge so
that we can interchange sums/integrals
with derivatives there is nothing wrong
with this as strange as that seems.

number of times we toss the coin times the number probability we
get a heads.

Exercise: Show that the variance of the Binomial distribution is just
σ2

n = Np(1− p).

Probability distribution of multiple variables

In general, we will also consider probability distributions of M vari-
ables p(X1, . . . , XM). We can get the marginal distributions of a single
variable by integrating (summing over) all other variables 4 We have 4 In this section, we will use continuous

notation as it is easier and more com-
pact. Discrete variables can be treated
by replacing integrals with sums.

that

p(Xj) =
∫

dx1 . . . dxj−1dxj+1 . . . dxM p(x1, x2, . . . , xM). (8)

Similarly, we can define the marginal distribution over any subset of
variables by integrating over the remaining variables.
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We can also define the conditional probability of a variable xi which
encodes the probability that variable Xi takes on a give value given
the values of all the other random variables. We denote this probabil-
ity by p(Xi|X1, . . . Xi−1, Xi+1, . . . , XM).

One important formula that we will make use of repeatedly is
Bayes formula which relates marginals and conditionals to the full
probability distribution

p(X1, . . . , XM) = p(Xi|x1, . . . Xi−1, Xi+1, . . . , XM)p(X1, . . . Xi−1, Xi+1, . . . , XM).
(9)

For the special case of two variables, this reduces to the formula

p(X, Y) = p(X|Y)p(Y) = p(Y|X)p(Y). (10)

This is one of the fundamental results in probability and we will
make use of it extensively when discussing inference in our discus-
sion of early vision.5 5 Bayes formula is crucial to under-

standing probability and I hope you
have encountered it before. If you have
not, please do some exercises that use
Bayes formula that are everywhere on
the web.

Exercise: Understanding test results.6. Consider a mammogram to

6 This is from the nice website https:

//betterexplained.com/articles/

an-intuitive-and-short-explanation-of-bayes-theorem/

diagnose breast cancer. Consider the following facts (the numbers
aren’t exact but reasonable).

• 1% of women have breast cancer.

• Mammograms miss 20% of cancers when that are there.

• 10% of mammograms detect cancer even when it is not there.

Suppose you get a positive test result, what are the chances you have
cancer?

Exercise: Consider a distribution of two variables p(x, y). Define a
variable Z = X + Y 7 7 We will make use of these results

repeatedly. Please make sure you can
derive them and understand them
thoroughly.

• Show that 〈Z〉 = 〈X〉+ 〈Y〉

• Show that σ2
z = 〈Z2〉− 〈Z〉2 = σ2

x + σ2
y + 2Cov(X, Y) where we have

defined the covariance of X and Y as Cov(x, y) = 〈(X − 〈X〉)(Y −
〈Y〉)〉.

https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
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• Show that if x and y are independent variables than Cov(x, y) = 0
and σ2

z = σ2
x + σ2

y .

• Not let 〈Z〉 = aX + bZ with a and b constants. Calculate 〈Z〉 and
σ2

z .1

Law of Total Variance

This section is optional but this is often a result that is missing from
physics education and worth knowing. An important result often
used in statistics is the law of total variance. Consider two random
variables X and Y. We would like to know how much the variance
of Y is explained by the value of X. In other words, we would like to
decompose the variance of Y into two terms: one term that captures
how much of the variance of Y is “explained” by X and another term
that captures the “unexplained variance”.

It will be helpful to define some notation to make the expectation
value clearer

EX [ f (X)] = 〈X〉x =
∫

dxp(x) f (x) (11)

Notice that we can define the conditional expectation of a function Y
given that X = x by

EY[ f (Y)|X = x] =
∫

dyp(y|X = x) f (y). (12)

For the special case when f (Y) = Y2 we can define the conditional
variance which measures how much does Y vary is we fix the value of
X

VarY[Y|X = x] = EY[Y2|X = x]− EY[Y|X = x]2 (13)

We can also define a different variance that measures the variance of
the EY[Y|X] viewed as a random function of X:

VarX [EY[Y|X]] = EX [EY[Y|X]2]− EX [EY[Y|X]]2. (14)

This is a well defined probability distribution since p(y|x) is the
marignal probability distribution over y. Notice now, that using
Bayes rule we can write

EY[ f (y)] =
∫

dyp(y) f (y) =
∫

dxdyp(y|x)p(x) f (y)

=
∫

dxp(x)
∫

dyp(y|x) f (y) = EX [EY[ f (Y)|X]] (15)
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So now notice that we can write

σ2
Y = EY[Y2]− EY[Y]2

= EX [EY[Y2|X]]− EX [EY[Y|X]]2

= EX [EY[Y2|X]]− EX [EY[Y|X]2] + EX [EY[Y|X]2]− EX [EY[Y|X]]2

= EX [EY[Y2|X]− EY[Y|X]2] + VarX [EY[Y|X]]

= EX [VarY[Y|X]] + VarX [EY[Y|X]] (16)

The first term is often called the unexplained variance and the second
term is the explained variance.

To see why, consider the case where the random variable Y are
related by a linear function plus noise Y = aX + ε, where ε is a third
random variable with mean 〈ε〉 = b and 〈ε2〉 = σ2

ε + µ2. Furthermore,
let EX [X] = µx. Then notice, that in this case all the randomness of Y
is contained in ε. Notice that

E[Y] = aµx + b (17)

and
Eε[Y|X] = aX + Eε[ε] = aX + b (18)

We can also write

VarX [EY[Y|X]] = EX [EY[Y|X]2]− EX [EY[Y|X]]2

= EX [(aX + b)2]− (aµx + b)2

= a2EX [X2] + 2abµx + b2 − (aµx + b)2

= a2σ2
X (19)

This is clearly the variance in Y “explained” by the variance in X.
Using the law of total variance, we see that in this case

EX [VarY[Y|X]] = σ2
Y − a2σ2

X (20)

is the unexplained variance.

Generating Functions and Cumulant Generating Functions

We are now in the position to introduce some more machinery. These
are the moment generating functions and cumulant generating func-
tions. Consider a probability distribution p(x). We would like an
easy and efficient way to calculate the moments of this distribution. It
turns out that there is an easy way to do this using ideas that will be
familiar from Statistical Mechanics.
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Generating Functions

Given a discrete probability distribution, p(X) we can define an
moment-generating function G(t) for the probability distribution as

G(t) = 〈etX〉 =
∫

dxp(x)etx (21)

Alternatively, we can also define an (ordinary) generating function
for the distributions

G(z) = 〈ZX〉 = ∑
x

p(x)zx (22)

If the probability distribution is continuous, we define the moment-
generating function as 8 8 If x is defined over the reals, this is

just the Laplace transform.

G(t) = 〈e−tX〉 =
∫

dxp(x)etx. (23)

Notice that G(t = 0) = G(z = 1) = 1 since probability distributions
are normalized.

These functions have some really nice properties. Notice that the
n − th moment of X can be calculated by taking the n-th partial
derivative of the moment generating function evaluated at t = 0:

〈XN〉 = ∂nG(t)
∂tn |t=0 (24)

Alternatively, we can write in terms of the ordinary generating func-
tion

〈XN〉 = (z∂z)
nG(z)|z=0 (25)

where (z∂z)n means apply this operator n times.

Example: Generating Function of the Binomial Distribution
Let us return to the Binomial distribution above.The ordinary

generating function is given by

G(z) = ∑
n

(
N
n

)
pnqN−nzn = (pz + q)N = (pz + (1− p))N (26)

Let us calculate the mean using this

µX = z∂zG(z) = [zNp(pz + (1− p))N−1]|z=1 = Np (27)

We can also calculate the second moment

〈X2〉 = z∂z(z∂zG(z))

= [zNp(pz + (1− p))N−1]|z=1 + ∂z[Np(pz + (1− p))N−1]|z=1

= Np + N(N − 1)p2 = Np(1− p) + N2 p2 (28)



introduction to probability: expectations, bayes theorem, gaussians, and the poisson

distribution. 8

and the variance

σ2
X = 〈X2〉 − 〈X〉2 = Np(1− p). (29)

Example: Normal Distribution
We now consider a Normal Random Variable X whose probability

density is given by

p(x) =
1√

2πσ2
e
(x−µ)2

σ2 . (30)

Let us calculate the moment generating function

G(t) =
∫

dx
1√

2πσ2
e
(x−µ)2

σ2 etx. (31)

It is useful to define a new variable u = (x− µ)/σ 9. In terms of this 9 Notice that u is just the “z-score” in
statistics.variable we have that

G(t) =
1√
2π

∫
due−u2/2+t(σu+µ)

= eµt+t2σ2/2 1√
2π

∫
due−

(u−σu/2)2
2

= eµt+t2σ2/2 (32)

Exercise: Show that the n− th moment of a Gaussian with mean zero
(µ = 0) can be written as

〈Xp〉 =

0 if p is odd

(p− 1)!σp if p is even
(33)

This is one of the most important properties of the Gaussian/Normal
distribution. All higher order moments can be expressed solely in
terms of the mean and variance! We will make use of this again.

The Cumulant Generating Function

Another function we can define is the Cumulant generating function
of a probability distribution

K(t) = log 〈etX〉 = log G(t). (34)

The n − th derivative of K(t) evaluated at t = 0 is called the n-th
cumulant:

κn = K(n)(0). (35)

Let us not look the first few cumulants. Notice that

κ1 =
G′(0)
G(0)

=
µX
1

= µX . (36)
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Figure 1: "Whatever the form of the
population distribution, the sampling
distribution tends to a Gaussian, and
its dispersion is given by the Central
Limit Theorem" (figure and caption
from Wikipedia)

Similarly, it is easy to show that the second cumulant is just the vari-
ance:

κ2 =
G′′(0)
G(0)

− [G′(0)]2

G(0)2 = 〈X2〉 − 〈X〉2 = σ2
X (37)

Notice that the cumulant generating function is just the Free Energy
in statistical mechanics and the moment-generating function is the
partition function.

Central Limit Theorem and the Normal Distribution

One of the most ubiquitous distributions that we see in all of physics,
statistics, and biology is the Normal distribution. This is because
of the Central Limit theorem. Suppose that we draw some random
variables X1, X2, . . . , XN identically and independently from a distri-
bution with mean µ and variance σ2. Let us define a variable

SN =
X1 + X2 + . . . + XN

N
. (38)

Then as N → ∞, the distribution of SN is well described by a Gaus-
sian/Normal distribution with mean µ and variance σ2/N. We will
denote such a normal distribution by N (µ, σ2/N). This is true re-
gardless of the original distribution (see Figure 1). The main thing
we should take away is that the variance decreases as 1/N with the
number of samples N that we take!

Example: The Binomial Distribution We can ask how the sample
mean changes with the number of samples for a Bernoulli variable
with probability p = 1/2 for various N. This is shown in Figure 2

from Wikipedia.

The Poisson Distribution

There is a second “universal” distribution that occurs often in Biol-
ogy. This is the distribution that describes the number of rare events
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Figure 2: Means from various N sam-
ples drawn from Bernoulli distribution
with p = 1/2. Notice it converges more
and more to a Gaussian. (figure and
caption from Wikipedia)

we expect in some time interval T. The Poisson distribution is appli-
cable if the following assumptions hold:

• The number of events is discrete k = 0, 1, 2, . . ..

• The events are independent, cannot occur simultaneously, occur at
a constant rate per unit time r.

• Generally the number of trials is large and probability of success is
small.

Examples of things that can be described by the Poisson distribu-
tion include:

• Photons arriving in a microscope (especially at low intensity)

• The number of mutations per unit length of DNA

• The number of nuclear decays in a time interval

• “The number of soldiers killed by horse-kicks each year in each
corps in the Prussian cavalry. This example was made famous by
a book of Ladislaus Josephovich Bortkiewicz (1868-1931) ”(from
Wikipedia)

• "The targeting of V-1 flying bombs on London during World War
II investigated by R. D. Clarke in 1946".

Let us denote the mean number of events that occur in a time t by
λ = rT. Then, the probability that k events occurs is given by

p(k) = e−λ λk

k!
. (39)
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Figure 3: Examples of Poisson distribu-
tion for different means.. (figure from
Wikipedia)

It is easy to check that ∑k p(k) = 1 using the Taylor series of the
exponential. We can also calculate the mean and variance. Notice we
can define the generating function of the Poisson as

G(t) = ∑
z

e−λ etk(λ)k

k!
= eλ(1+et). (40)

The cumulant-generating function is just

K(t) = log G(t) = λ(1 + et) (41)

From this we can easily get the all cumulants since this is just differ-
entiating the expression above n times

κn = K(n)(0) = λ. (42)

In other words, all the higher order cumulants of the Poisson distri-
bution are the same and equal to the mean.

Another defining feature of the Poisson distribution is that it has
“no memory”. Since things happen at a constant rate, there is no
memory. We will see that in general to create non-Poisson distri-
butions (with memory), we will have to burn energy! More on this
cryptic statement later.
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