
MAKING SENSE OF 
LEGENDRE  TRANSFORM

Ben Huh ?
Gatsby Tea-talk    2013/10/18

Making sense of the Legendre transform
R. K. P. Zia
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Edward F. Redish
Department of Physics, University of Maryland, College Park, Maryland 20742

Susan R. McKay
Department of Physics and Astronomy, University of Maine, Orono, Maine 04469

!Received 27 September 2007; accepted 26 March 2009"

The Legendre transform is a powerful tool in theoretical physics and plays an important role in
classical mechanics, statistical mechanics, and thermodynamics. In typical undergraduate and
graduate courses the motivation and elegance of the method are often missing, unlike the treatments
frequently enjoyed by Fourier transforms. We review and modify the presentation of Legendre
transforms in a way that explicates the formal mathematics, resulting in manifestly symmetric
equations, thereby clarifying the structure of the transform. We then discuss examples to motivate
the transform as a way of choosing independent variables that are more easily controlled. We
demonstrate how the Legendre transform arises naturally from statistical mechanics and show how
the use of dimensionless thermodynamic potentials leads to more natural and symmetric
relations. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

The Legendre transform is commonly used in upper divi-
sion and graduate physics courses, especially in classical
mechanics,1 statistical mechanics, and thermodynamics.2,3

Most physics majors are first exposed to the Legendre trans-
form in classical mechanics, where it provides the connec-
tion between the Lagrangian L!q̇" and the Hamiltonian
H!p", and then in statistical mechanics, where it yields rela-
tions between the internal energy E and the various thermo-
dynamic potentials. Despite its common use, the Legendre
transform often appears in an ad hoc fashion, without being
presented as a general and powerful mathematical tool as is
done for the Fourier transform.

In this paper, we present a pedagogical introduction to the
Legendre transform, discuss it as a mathematical process,
and display some of its general properties. Because some
students prefer algebraic approaches and others prefer geo-
metric ones, we discuss the transform from both points of
view and relate them. We then motivate the transform in
terms related to physical conditions and constraints. We em-
phasize some of the symmetries and structures of the trans-
form and present a series of increasingly complex examples
beginning with classical mechanics and then in statistical
mechanics. We end with some remarks on more general ver-
sions of the Legendre transform as well as other areas in
which it is widely used.

II. THE LEGENDRE TRANSFORM AS AN
ALTERNATIVE WAY TO DISPLAY INFORMATION

Many students can manage the rules for generating a
Hamiltonian from a Lagrangian or switching between ther-
modynamic potentials, but express discomfort when asked
about the Legendre transform as a general mathematical tool.
One reason is that in introductory physics we often treat a
function as a relation between physical rather than math-
ematical quantities. When we think about physical functions,
we tend not to pay attention to the particular functional form

the mathematical function uses to encode physical
information.4 For example, if we are describing a position as
a function of time, we might write it as x!t". We do not
bother to change the symbol x if we decide to give t in
milliseconds instead of in seconds. If we write the tempera-
ture as a function of position as T!r!", we do not change the
symbol if we switch to a different coordinate system or mea-
suring scale. In contrast, the Legendre transform is explicitly
about how information is coded in the functional form.

Students are usually first introduced to the Legendre trans-
form as the transformation from the Lagrangian L to the
Hamiltonian H. This transformation involves the switch
from the velocity to the momentum variable in the nonrela-
tivistic kinetic energy T. In the context of nonrelativistic par-
ticle motion with velocity independent potentials, the trans-
form involves the kinetic energy, the most trivial function to
which the Legendre transform can be applied. The result
looks like a shift from v to mv as an independent variable, so
that it seems pointless. Because the position variable q plays
no role in the transform and typically appears only in the
potential energy V, the result is often regarded as a mysteri-
ous change of the sign of V: L=T−V versus H=T+V.

In the rest of this section, we motivate the Legendre trans-
form as a general mathematical transformation and describe
a method that displays its general properties and symmetries.

For simplicity, we begin with a single variable x. Gener-
ally, a function expresses a relation between two parameters:
an independent variable or control parameter x and a depen-
dent value F. This information is encoded in the functional
form of F!x". For later convenience, we will also denote such
a relation or “encoding” as %F ,x&.

In some circumstances, it is useful to encode the informa-
tion contained in the function F!x" differently. Two common
examples are the Fourier transform and the Laplace trans-
form. These transforms express the function F as sums of
!complex or real" exponentials and display the information in
F in terms of the amount of each component contained in the
function rather than in terms of the value of the function. We
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MATHEMATICS OF L-T

• F(x) is strictly convex

• p(x) is strictly monotonic

One-to-one relation between x and p

say that !F̃ ,k" encodes the same information as !F ,x". For

the Fourier transform, F̃#k$%&eikxF#x$dx is an explicit
“transformation” between the two encodings.

Given an F#x$, the Legendre transform provides a more
convenient way of encoding the information in the function
when two conditions are satisfied: #1$ The function #or its
negative$ is strictly convex #second derivative always posi-
tive$ and smooth #existence of “enough” continuous deriva-
tives$. #2$ It is easier to measure, control, or think about the
derivative of F with respect to x than it is to measure or think
about x itself.

Because of condition #1$, the derivative of F#x$ with re-
spect to x can serve as a stand in for x; that is, there is a
one-to-one mapping between x and dF /dx. #We remark on
relaxing this condition in Sec. VII.$ The Legendre transform
shows how to define a function that contains the same infor-
mation as F#x$ but as a function of dF /dx.

III. THE MATHEMATICS OF THE LEGENDRE
TRANSFORM

We first consider a single, smooth convex function of a
single variable. There are many equivalent ways to charac-
terize convex functions. The most convenient one is that the
second derivative d2F#x$ /dx2 is always positive. Another
characterization of this condition is that the slope function

s#x$ %
dF#x$

dx
#1$

is a strictly monotonic function of x #because this character-
ization also permits us to treat functions whose negative is
convex$.

A graphical way to see how the value of x and the slope of
a convex function can stand in for each other can be seen by
considering the example in Fig. 1, where the curve drawn to
represent F is convex. As we move along the curve to the
right #as x increases$, the slope of the tangent to the curve
continually increases. In other words, if we were to graph the
slope as a function of x, it would be a smoothly increasing
curve, such as the example in Fig. 2. If the second derivative
d2F#x$ /dx2 exists #everywhere within the range of x in which
F is defined; part of the condition for a smooth F$, there is a
unique value of the slope for each value of x, and vice versa.
The corresponding mathematical language is that there is a

one to one relation between s and x; that is, the function s#x$
is single-valued and can be inverted to give a single-valued
function x#s$.

In this way, we can then start with s as the independent
variable, use the inverse function to obtain an unique value
of x, and then insert that into F#x$ to obtain F as a function
of s. The standard notation for such a function is F#x#s$$. If
we insist on a new encoding of the information in F #in terms
of s instead of x$, this straightforward “function of a function
approach” would appear to be the most natural way.

Instead, the Legendre transform of F#x$ is defined differ-
ently and in a seemingly unnatural way:

G#s$ % sx#s$ − F#x#s$$ . #2$

Typically, this definition is presented with little motivation or
explanation, and leaves the students to ponder: Why? Why
the extra sx? Why the minus sign? Frequently, the instructor
or textbook invokes another magical relation to answer such
queries. Only with this peculiar definition can we have the
property that “the slope of G#s$ is just x”:

x#s$ =
dG

ds
. #3$

This result requires a careful calculation.

A. A graphic-geometric approach

Before providing ways to appreciate this definition of the
Legendre transform, as well as how never to forget “which
sign goes where,” we present a graphical route to the trans-
form. Consider the plot of F versus x in Fig. 3. Choose a
value of x, which is represented by the length of the horizon-
tal line labeled by x. Go up to the value on the function
curve, F#x$. This value corresponds to the length of the ver-
tical line labeled by F. Next, draw the tangent to the curve at
that point. The slope here is labeled s, as emphasized by the
call out bubble. Extend this tangent until it hits the ordinate
#the “F axis”$. In this example, the intercept is negative and
is labeled as −G, with G positive. This value corresponds to
the length of the thick vertical line labeled by G. This length
is reproduced #thin line$ just below the line labeled F. Be-
cause the slope of the tangent is s, the length of the dotted
vertical line is sx. From this picture, it is clear that sx=F
+G. In this interpretation, the peculiar definition of the Leg-
endre transform in Eq. #2$ appears natural. The minus sign in
the definition is seen as a way of retaining the symmetry and

F

x

Fig. 1. #Color online$ The graph of a convex function F#x$. The tangent line
at one point is illustrated.

s

x

Fig. 2. The graph of s#x$, the slope of a convex function.
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Typically, this definition is presented with little motivation or
explanation, and leaves the students to ponder: Why? Why
the extra sx? Why the minus sign? Frequently, the instructor
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cause the slope of the tangent is s, the length of the dotted
vertical line is sx. From this picture, it is clear that sx=F
+G. In this interpretation, the peculiar definition of the Leg-
endre transform in Eq. #2$ appears natural. The minus sign in
the definition is seen as a way of retaining the symmetry and

F

x

Fig. 1. #Color online$ The graph of a convex function F#x$. The tangent line
at one point is illustrated.
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Fig. 2. The graph of s#x$, the slope of a convex function.
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say that !F̃ ,k" encodes the same information as !F ,x". For

the Fourier transform, F̃#k$%&eikxF#x$dx is an explicit
“transformation” between the two encodings.

Given an F#x$, the Legendre transform provides a more
convenient way of encoding the information in the function
when two conditions are satisfied: #1$ The function #or its
negative$ is strictly convex #second derivative always posi-
tive$ and smooth #existence of “enough” continuous deriva-
tives$. #2$ It is easier to measure, control, or think about the
derivative of F with respect to x than it is to measure or think
about x itself.

Because of condition #1$, the derivative of F#x$ with re-
spect to x can serve as a stand in for x; that is, there is a
one-to-one mapping between x and dF /dx. #We remark on
relaxing this condition in Sec. VII.$ The Legendre transform
shows how to define a function that contains the same infor-
mation as F#x$ but as a function of dF /dx.

III. THE MATHEMATICS OF THE LEGENDRE
TRANSFORM

We first consider a single, smooth convex function of a
single variable. There are many equivalent ways to charac-
terize convex functions. The most convenient one is that the
second derivative d2F#x$ /dx2 is always positive. Another
characterization of this condition is that the slope function

s#x$ %
dF#x$

dx
#1$

is a strictly monotonic function of x #because this character-
ization also permits us to treat functions whose negative is
convex$.

A graphical way to see how the value of x and the slope of
a convex function can stand in for each other can be seen by
considering the example in Fig. 1, where the curve drawn to
represent F is convex. As we move along the curve to the
right #as x increases$, the slope of the tangent to the curve
continually increases. In other words, if we were to graph the
slope as a function of x, it would be a smoothly increasing
curve, such as the example in Fig. 2. If the second derivative
d2F#x$ /dx2 exists #everywhere within the range of x in which
F is defined; part of the condition for a smooth F$, there is a
unique value of the slope for each value of x, and vice versa.
The corresponding mathematical language is that there is a

one to one relation between s and x; that is, the function s#x$
is single-valued and can be inverted to give a single-valued
function x#s$.

In this way, we can then start with s as the independent
variable, use the inverse function to obtain an unique value
of x, and then insert that into F#x$ to obtain F as a function
of s. The standard notation for such a function is F#x#s$$. If
we insist on a new encoding of the information in F #in terms
of s instead of x$, this straightforward “function of a function
approach” would appear to be the most natural way.

Instead, the Legendre transform of F#x$ is defined differ-
ently and in a seemingly unnatural way:

G#s$ % sx#s$ − F#x#s$$ . #2$

Typically, this definition is presented with little motivation or
explanation, and leaves the students to ponder: Why? Why
the extra sx? Why the minus sign? Frequently, the instructor
or textbook invokes another magical relation to answer such
queries. Only with this peculiar definition can we have the
property that “the slope of G#s$ is just x”:

x#s$ =
dG

ds
. #3$

This result requires a careful calculation.

A. A graphic-geometric approach

Before providing ways to appreciate this definition of the
Legendre transform, as well as how never to forget “which
sign goes where,” we present a graphical route to the trans-
form. Consider the plot of F versus x in Fig. 3. Choose a
value of x, which is represented by the length of the horizon-
tal line labeled by x. Go up to the value on the function
curve, F#x$. This value corresponds to the length of the ver-
tical line labeled by F. Next, draw the tangent to the curve at
that point. The slope here is labeled s, as emphasized by the
call out bubble. Extend this tangent until it hits the ordinate
#the “F axis”$. In this example, the intercept is negative and
is labeled as −G, with G positive. This value corresponds to
the length of the thick vertical line labeled by G. This length
is reproduced #thin line$ just below the line labeled F. Be-
cause the slope of the tangent is s, the length of the dotted
vertical line is sx. From this picture, it is clear that sx=F
+G. In this interpretation, the peculiar definition of the Leg-
endre transform in Eq. #2$ appears natural. The minus sign in
the definition is seen as a way of retaining the symmetry and

F

x

Fig. 1. #Color online$ The graph of a convex function F#x$. The tangent line
at one point is illustrated.
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Fig. 2. The graph of s#x$, the slope of a convex function.
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GEOMETRIC INTERPRETATION

simplicity of the geometrical statement: In the triangle, the
slope !tangent" times the adjacent side equals the opposite
side, which is the sum of F and G.

B. Symmetric representation of the Legendre transform

This symmetric geometrical construction allows us to dis-
play a number of useful and elegant relations that shed light
on the workings of the Legendre transform. In particular, we
consider the symmetries associated with the inverse
Legendre transform, extreme values, and derivative relations.

Ordinarily, the inverse of a transformation is distinct from
the transform itself. For example, an inverse Laplace trans-
form is not given by the same formula. The Legendre trans-
form distinguishes itself in that it is its own inverse. In this
sense, it resembles !geometric" duality transformations.
Symbolically, we may denote this relation as:

#F,x$ ⇔ #G,s$ . !4"

Specifically, if we perform the Legendre transform a second
time, we recover the original function. !If the restriction of
convexity is relaxed, this statement must be revised, as re-
marked in Sec. VII." In other words, suppose we start with
the function G!s" and calculate its Legendre transform. As
we will see, G!s" satisfies our conditions: convex and
smooth. So, we start with

y!s" =
dG

ds
, !5"

and invert the monotonic function y!s" to s!y". Next, we
construct

H!y" = ys!y" − G!s!y"" , !6"

which can be rewritten as

G = sy − H . !7"

If we compare Eqs. !7" and !2", we see that we can identify
#H ,y$ with #F ,x$. Thus, the Legendre transform of G is the
original function F, leading to the statement: the Legendre
transform is its own inverse. This duality of the Legendre
transform, shown symbolically in Eq. !4", is best displayed
by the symmetric form

G!s" + F!x" = sx . !8"

This equation should be read carefully. Despite its appear-
ance, there is only one independent variable: either s or x.
Referred to as a conjugate pair, these two variables are re-
lated to each other, through either x!s"=dG!s" /ds or s!x"
=dF!x" /dx. A careful writing of Eq. !8" would read either
G!s"+F!x!s""=sx!s" or G!s!x""+F!x"=s!x"x. To check the
consistency with Eqs. !1" and !3", we can start with, say, the
first of these equations and differentiate with respect to s. By
applying the chain rule for dF /ds= !dF /dx"!dx /ds", we re-
cover dG /ds=x.

C. Properties of the extrema

The example in Fig. 3 shows a convex function F!x" with
a unique minimum. Let us denote this point by Fmin
=F!xmin". The slope of the tangent vanishes here, that is,
s!xmin"=0. If we substitute this point into Eq. !2", we find
that the minimum value of F is

Fmin = − G!0" . !9"

It is straightforward to show that a dual relation exists,
namely, the minimum value of G is Gmin=−F!0". To appre-
ciate the geometric meaning of this relation, we need only to
inspect Fig. 3 and see that −G the y-intercept of the tangent
to the curve F!x" never reaches beyond F!0".

By exploiting Eq. !8", both this example and the case of
general extrema can be cast in an easy-to-remember symmet-
ric form. Suppose F takes on its extremal value at xext. Then
we have a horizontal tangent line and by definition, s!xext"
=0. Similarly, if G is at its extremum at sext, we have
x!sext"=0 due to Eq. !3". In either case, the right side of Eq.
!8" vanishes and we have

G!0" + F!xext" = 0 and G!sext" + F!0" = 0. !10"

D. Symmetric representation of the higher derivatives

Because the Legendre transform is a dual relation, we can
expect manifestly symmetric relations beyond the ones we
have seen so far:

G!s" + F!x" = sx !11"

and

dG

ds
= x and

dF

dx
= s . !12"

From Eq. !12" we can obtain an infinite set of relations !if F
and G are infinitely differentiable" linking G and F, by tak-
ing derivatives of G+F=sx with respect to s or x. Because
each function depends on only one variable, the differentials
can be easily identified. Thus, differentiating the relations in
Eq. !12" with respect to s or x as appropriate, we find

d2G

ds2 =
dx

ds
and

d2F

dx2 =
ds

dx
. !13"

Because !dx /ds"!ds /dx"=1, we have

x

F

G

sx

slope s

G

Fig. 3. !Color online" Graphic representation of the Legendre transform,
G!s", of F!x" !Ref. 5". See the text for an explanation of the various
quantities.

616 616Am. J. Phys., Vol. 77, No. 7, July 2009 Zia, Redish, and McKay

Symmetry!
6

Figure 2: Illustration of the duality property for supporting lines: points of f are trans-
formed into slopes of f ⇤, and slopes of f are transformed into points of f ⇤.

2.3. Supporting line duality106

We now answer our first question (Q1): How is the shape of f ⇤(k) determined by the107

shape of f (x), and vice versa? A partial answer is provided by the following result:108

Theorem 4. If f admits a supporting line at x with slope k, then f ⇤ at k admits a109

supporting line with slope x .110

This theorem is illustrated in Figure 2. The next theorem covers the special case of111

strict convexity.112

Theorem 5. If f admits a strict supporting line at x with slope k, then f ⇤ admits a113

tangent supporting line at k with slope f ⇤0(k) = x . (Hence f ⇤ is differentiable in this114

case in addition to admit a supporting line.)115

2.4. Inversion of LF transforms116

The answer to Q2 ( f ?= f ⇤⇤) is provided by the following result:117

Theorem 6. f (x) = f ⇤⇤(x) if and only if f admits a supporting line at x .118

Thus, from the point of view of f (x), we have that the LF transform is involutive at119

x if and only if f is convex at x (in the sense of supporting lines). Changing our point of120

view to f ⇤(k), we have the following:121

Theorem 7. If f ⇤ is differentiable at k, then f = f ⇤⇤ at x = f ⇤0(k).122

We’ll see later with a specific example that the differentiability property of f ⇤ is123

sufficient (as stated) but non-necessary for f = f ⇤⇤. For now, we note the following124

obvious corollary:125

self-inverse (involutive)

say that !F̃ ,k" encodes the same information as !F ,x". For

the Fourier transform, F̃#k$%&eikxF#x$dx is an explicit
“transformation” between the two encodings.

Given an F#x$, the Legendre transform provides a more
convenient way of encoding the information in the function
when two conditions are satisfied: #1$ The function #or its
negative$ is strictly convex #second derivative always posi-
tive$ and smooth #existence of “enough” continuous deriva-
tives$. #2$ It is easier to measure, control, or think about the
derivative of F with respect to x than it is to measure or think
about x itself.

Because of condition #1$, the derivative of F#x$ with re-
spect to x can serve as a stand in for x; that is, there is a
one-to-one mapping between x and dF /dx. #We remark on
relaxing this condition in Sec. VII.$ The Legendre transform
shows how to define a function that contains the same infor-
mation as F#x$ but as a function of dF /dx.

III. THE MATHEMATICS OF THE LEGENDRE
TRANSFORM

We first consider a single, smooth convex function of a
single variable. There are many equivalent ways to charac-
terize convex functions. The most convenient one is that the
second derivative d2F#x$ /dx2 is always positive. Another
characterization of this condition is that the slope function

s#x$ %
dF#x$

dx
#1$

is a strictly monotonic function of x #because this character-
ization also permits us to treat functions whose negative is
convex$.

A graphical way to see how the value of x and the slope of
a convex function can stand in for each other can be seen by
considering the example in Fig. 1, where the curve drawn to
represent F is convex. As we move along the curve to the
right #as x increases$, the slope of the tangent to the curve
continually increases. In other words, if we were to graph the
slope as a function of x, it would be a smoothly increasing
curve, such as the example in Fig. 2. If the second derivative
d2F#x$ /dx2 exists #everywhere within the range of x in which
F is defined; part of the condition for a smooth F$, there is a
unique value of the slope for each value of x, and vice versa.
The corresponding mathematical language is that there is a

one to one relation between s and x; that is, the function s#x$
is single-valued and can be inverted to give a single-valued
function x#s$.

In this way, we can then start with s as the independent
variable, use the inverse function to obtain an unique value
of x, and then insert that into F#x$ to obtain F as a function
of s. The standard notation for such a function is F#x#s$$. If
we insist on a new encoding of the information in F #in terms
of s instead of x$, this straightforward “function of a function
approach” would appear to be the most natural way.

Instead, the Legendre transform of F#x$ is defined differ-
ently and in a seemingly unnatural way:

G#s$ % sx#s$ − F#x#s$$ . #2$

Typically, this definition is presented with little motivation or
explanation, and leaves the students to ponder: Why? Why
the extra sx? Why the minus sign? Frequently, the instructor
or textbook invokes another magical relation to answer such
queries. Only with this peculiar definition can we have the
property that “the slope of G#s$ is just x”:

x#s$ =
dG

ds
. #3$

This result requires a careful calculation.

A. A graphic-geometric approach

Before providing ways to appreciate this definition of the
Legendre transform, as well as how never to forget “which
sign goes where,” we present a graphical route to the trans-
form. Consider the plot of F versus x in Fig. 3. Choose a
value of x, which is represented by the length of the horizon-
tal line labeled by x. Go up to the value on the function
curve, F#x$. This value corresponds to the length of the ver-
tical line labeled by F. Next, draw the tangent to the curve at
that point. The slope here is labeled s, as emphasized by the
call out bubble. Extend this tangent until it hits the ordinate
#the “F axis”$. In this example, the intercept is negative and
is labeled as −G, with G positive. This value corresponds to
the length of the thick vertical line labeled by G. This length
is reproduced #thin line$ just below the line labeled F. Be-
cause the slope of the tangent is s, the length of the dotted
vertical line is sx. From this picture, it is clear that sx=F
+G. In this interpretation, the peculiar definition of the Leg-
endre transform in Eq. #2$ appears natural. The minus sign in
the definition is seen as a way of retaining the symmetry and

F

x

Fig. 1. #Color online$ The graph of a convex function F#x$. The tangent line
at one point is illustrated.

s

x

Fig. 2. The graph of s#x$, the slope of a convex function.
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Symmetry!

Figure 2: Illustration of the duality property for supporting lines: points of f are trans-

say that !F̃ ,k" encodes the same information as !F ,x". For

the Fourier transform, F̃#k$%&eikxF#x$dx is an explicit
“transformation” between the two encodings.

Given an F#x$, the Legendre transform provides a more
convenient way of encoding the information in the function
when two conditions are satisfied: #1$ The function #or its
negative$ is strictly convex #second derivative always posi-
tive$ and smooth #existence of “enough” continuous deriva-
tives$. #2$ It is easier to measure, control, or think about the
derivative of F with respect to x than it is to measure or think
about x itself.

Because of condition #1$, the derivative of F#x$ with re-
spect to x can serve as a stand in for x; that is, there is a
one-to-one mapping between x and dF /dx. #We remark on
relaxing this condition in Sec. VII.$ The Legendre transform
shows how to define a function that contains the same infor-
mation as F#x$ but as a function of dF /dx.

III. THE MATHEMATICS OF THE LEGENDRE
TRANSFORM

We first consider a single, smooth convex function of a
single variable. There are many equivalent ways to charac-
terize convex functions. The most convenient one is that the
second derivative d2F#x$ /dx2 is always positive. Another
characterization of this condition is that the slope function

s#x$ %
dF#x$

dx
#1$

is a strictly monotonic function of x #because this character-
ization also permits us to treat functions whose negative is
convex$.

A graphical way to see how the value of x and the slope of
a convex function can stand in for each other can be seen by
considering the example in Fig. 1, where the curve drawn to
represent F is convex. As we move along the curve to the
right #as x increases$, the slope of the tangent to the curve
continually increases. In other words, if we were to graph the
slope as a function of x, it would be a smoothly increasing
curve, such as the example in Fig. 2. If the second derivative
d2F#x$ /dx2 exists #everywhere within the range of x in which
F is defined; part of the condition for a smooth F$, there is a
unique value of the slope for each value of x, and vice versa.
The corresponding mathematical language is that there is a

one to one relation between s and x; that is, the function s#x$
is single-valued and can be inverted to give a single-valued
function x#s$.

In this way, we can then start with s as the independent
variable, use the inverse function to obtain an unique value
of x, and then insert that into F#x$ to obtain F as a function
of s. The standard notation for such a function is F#x#s$$. If
we insist on a new encoding of the information in F #in terms
of s instead of x$, this straightforward “function of a function
approach” would appear to be the most natural way.

Instead, the Legendre transform of F#x$ is defined differ-
ently and in a seemingly unnatural way:

G#s$ % sx#s$ − F#x#s$$ . #2$

Typically, this definition is presented with little motivation or
explanation, and leaves the students to ponder: Why? Why
the extra sx? Why the minus sign? Frequently, the instructor
or textbook invokes another magical relation to answer such
queries. Only with this peculiar definition can we have the
property that “the slope of G#s$ is just x”:

x#s$ =
dG

ds
. #3$

This result requires a careful calculation.

A. A graphic-geometric approach

Before providing ways to appreciate this definition of the
Legendre transform, as well as how never to forget “which
sign goes where,” we present a graphical route to the trans-
form. Consider the plot of F versus x in Fig. 3. Choose a
value of x, which is represented by the length of the horizon-
tal line labeled by x. Go up to the value on the function
curve, F#x$. This value corresponds to the length of the ver-
tical line labeled by F. Next, draw the tangent to the curve at
that point. The slope here is labeled s, as emphasized by the
call out bubble. Extend this tangent until it hits the ordinate
#the “F axis”$. In this example, the intercept is negative and
is labeled as −G, with G positive. This value corresponds to
the length of the thick vertical line labeled by G. This length
is reproduced #thin line$ just below the line labeled F. Be-
cause the slope of the tangent is s, the length of the dotted
vertical line is sx. From this picture, it is clear that sx=F
+G. In this interpretation, the peculiar definition of the Leg-
endre transform in Eq. #2$ appears natural. The minus sign in
the definition is seen as a way of retaining the symmetry and

F

x

Fig. 1. #Color online$ The graph of a convex function F#x$. The tangent line
at one point is illustrated.

s

x

Fig. 2. The graph of s#x$, the slope of a convex function.
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WHERE IS IT USEFUL?
• Lagrangian - Hamiltonian

• Spring (length - force)
capacitor (charge - voltage)
gas (volume - pressure)

• Motor control 
(movement duration - drive motivation)

• Thermodynamics
(energy - temperature)

• Dual optimization problem

• Extensive variables - additive
(length, charge, volume, duration, energy)

• Intensive variables 
- share common value across systems
- easier to control
(force, voltage, pressure, drive, temperature)



THERMODYNAMICS

Although U is the usual potential energy associated with the
particle at x, V is a kind of potential associated with the
control f . In ordinary classical mechanics, such an approach
seems unnecessarily cumbersome for describing the simple
problem we posed. For this reason it is rightfully ignored in
a course on classical mechanics. We include the example
here only as a stepping stone to the Legendre transform in
statistical mechanics and thermodynamics. There, multiple
potentials are essential.

V. THE LEGENDRE TRANSFORM IN STATISTICAL
THERMODYNAMICS

The Legendre transform appears frequently in statistical
thermodynamics when different variables are “traded” for
their conjugates.2 Often, one of the variables is easy to think
about, and the other is easy to control in physical situations.

The difficulty with making sense of the Legendre trans-
form in thermodynamics arises from two causes: !1" For his-
torical reasons, Legendre transform variables are not always
chosen as conjugate pairs. !2" Many variables in thermody-
namics are not independent and are constrained by equations
of state, for example, PV=NkBT.

As an example of the first point, the conjugate to the total
energy E of a system is the inverse temperature !=1 /kBT.
Yet, our daily experience with the temperature T is so perva-
sive that T is used in most of the relations. Thus, the familiar
equation

F = E − TS , !22"

which relates the Helmholtz free energy F to the entropy S,
obscures the symmetry between ! and E, as well as the
dimensionless nature of the Legendre transform. If we define
the dimensionless quantities

S # S/kB and F # !F , !23"

the duality between them can be beautifully expressed as

F!!" + S!E" = !E . !24"

To elaborate the second point, we typically encounter a
bewildering array of thermodynamic functions !for example,
entropy, Gibbs and Helmholtz free energies, and enthalpy", a
slew of variables !energy, temperature, volume, and pres-
sure", as well as a jumble of thermodynamic relations !with
multiple partial derivatives". Because of the multiple con-
strained variables, none of these examples is as simple as
those we have considered, compounding the difficulty of
both teaching and learning this material.

Before discussing the generation of the standard thermo-
dynamic potentials, we briefly summarize the basics of sta-
tistical mechanics. We will show how the Legendre trans-
form enters thermodynamics through the Laplace transform
of partition functions in statistical mechanics.

Equilibrium statistical mechanics is based on the
hypothesis2 that for an isolated system, every allowed mi-
crostate is equally probable. The high probability of finding a
particular equilibrium macrostate is due to a predominance
of the number of microstates corresponding to that mac-
rostate. The classic example is a gas of N identical, free,
nonrelativistic structureless particles, confined in a
D-dimensional box of volume LD. For this system, a mi-
crostate is specified by the 2DN variables corresponding to
the positions and momenta of each particle, $r!i , p! i%, with i

=1, . . . ,N. Because the total energy E is a constant for an
isolated system, the fundamental hypothesis can be repre-
sented as

P!$r!i,p! i%" " #!E − H!$r!i,p! i%"" , !25"

where P!$r!i , p! i%" is the probability of finding the configura-
tion of positions and momenta $r!i , p! i%. In this case, the
Hamiltonian H is explicitly given by

H = &
i

h!r!i,p! i" = &
i
' p! i

2

2m
+ U!r!i"( , !26"

where m is the mass of each particle and U is the confining
potential, which is zero for each component of r!" )0,L* and
infinite otherwise.

The normalization factor for P is

$!E" = +
r,p

#!E − H!$r!i,p! i%"" , !27"

where the integral is over all $r!i , p! i% from −% to %. !The
infinite values of U restrict the actual position integrations to
the volume of the box." We have also suppressed the other
variables that $ depends on for now: L and m. Note that $ is
just the volume of phase space available to the system and is
the microcanonical partition function.

The standard approach evaluates the integral in Eq. !27" as
follows. The position integrals can be done explicitly be-
cause the only dependence of the Hamiltonian on position is
the confinement of the position integrals to the allowed vol-
ume. These integrals yield a factor of LND. The momentum
integrals are done by computing the surface area of a sphere
in DN dimensions.

The entropy is introduced by the definition S#kB ln $.
We exploit the dimensionless entropy S and write

S!E" # ln $!E" . !28"

To proceed, we have two choices: the route that emphasizes
the mathematics or the physics.

A. The route of mathematics

Our task is straightforward: evaluate integrals with a con-
straint such as Eq. !27". Often, such integrals are not easy to
perform. However, exploiting the Laplace transform typi-
cally renders the integrand factorizable. For example, the DN
integrations in Eq. !27" become products of a single integral.
Specifically, we consider the Laplace transform of $!E",

Z!!" # + $!E"e−!EdE . !29"

If we substitute Eq. !27" for $!E", the delta function permits
us to do the E integral giving

Z!!" = +
r,p

e−!H. !30"

Because H is a sum over the individual components, the
integrand factorizes, and we have
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Although U is the usual potential energy associated with the
particle at x, V is a kind of potential associated with the
control f . In ordinary classical mechanics, such an approach
seems unnecessarily cumbersome for describing the simple
problem we posed. For this reason it is rightfully ignored in
a course on classical mechanics. We include the example
here only as a stepping stone to the Legendre transform in
statistical mechanics and thermodynamics. There, multiple
potentials are essential.

V. THE LEGENDRE TRANSFORM IN STATISTICAL
THERMODYNAMICS

The Legendre transform appears frequently in statistical
thermodynamics when different variables are “traded” for
their conjugates.2 Often, one of the variables is easy to think
about, and the other is easy to control in physical situations.

The difficulty with making sense of the Legendre trans-
form in thermodynamics arises from two causes: !1" For his-
torical reasons, Legendre transform variables are not always
chosen as conjugate pairs. !2" Many variables in thermody-
namics are not independent and are constrained by equations
of state, for example, PV=NkBT.

As an example of the first point, the conjugate to the total
energy E of a system is the inverse temperature !=1 /kBT.
Yet, our daily experience with the temperature T is so perva-
sive that T is used in most of the relations. Thus, the familiar
equation

F = E − TS , !22"

which relates the Helmholtz free energy F to the entropy S,
obscures the symmetry between ! and E, as well as the
dimensionless nature of the Legendre transform. If we define
the dimensionless quantities

S # S/kB and F # !F , !23"

the duality between them can be beautifully expressed as

F!!" + S!E" = !E . !24"

To elaborate the second point, we typically encounter a
bewildering array of thermodynamic functions !for example,
entropy, Gibbs and Helmholtz free energies, and enthalpy", a
slew of variables !energy, temperature, volume, and pres-
sure", as well as a jumble of thermodynamic relations !with
multiple partial derivatives". Because of the multiple con-
strained variables, none of these examples is as simple as
those we have considered, compounding the difficulty of
both teaching and learning this material.

Before discussing the generation of the standard thermo-
dynamic potentials, we briefly summarize the basics of sta-
tistical mechanics. We will show how the Legendre trans-
form enters thermodynamics through the Laplace transform
of partition functions in statistical mechanics.

Equilibrium statistical mechanics is based on the
hypothesis2 that for an isolated system, every allowed mi-
crostate is equally probable. The high probability of finding a
particular equilibrium macrostate is due to a predominance
of the number of microstates corresponding to that mac-
rostate. The classic example is a gas of N identical, free,
nonrelativistic structureless particles, confined in a
D-dimensional box of volume LD. For this system, a mi-
crostate is specified by the 2DN variables corresponding to
the positions and momenta of each particle, $r!i , p! i%, with i

=1, . . . ,N. Because the total energy E is a constant for an
isolated system, the fundamental hypothesis can be repre-
sented as

P!$r!i,p! i%" " #!E − H!$r!i,p! i%"" , !25"

where P!$r!i , p! i%" is the probability of finding the configura-
tion of positions and momenta $r!i , p! i%. In this case, the
Hamiltonian H is explicitly given by

H = &
i

h!r!i,p! i" = &
i
' p! i

2

2m
+ U!r!i"( , !26"

where m is the mass of each particle and U is the confining
potential, which is zero for each component of r!" )0,L* and
infinite otherwise.

The normalization factor for P is

$!E" = +
r,p

#!E − H!$r!i,p! i%"" , !27"

where the integral is over all $r!i , p! i% from −% to %. !The
infinite values of U restrict the actual position integrations to
the volume of the box." We have also suppressed the other
variables that $ depends on for now: L and m. Note that $ is
just the volume of phase space available to the system and is
the microcanonical partition function.

The standard approach evaluates the integral in Eq. !27" as
follows. The position integrals can be done explicitly be-
cause the only dependence of the Hamiltonian on position is
the confinement of the position integrals to the allowed vol-
ume. These integrals yield a factor of LND. The momentum
integrals are done by computing the surface area of a sphere
in DN dimensions.

The entropy is introduced by the definition S#kB ln $.
We exploit the dimensionless entropy S and write

S!E" # ln $!E" . !28"

To proceed, we have two choices: the route that emphasizes
the mathematics or the physics.

A. The route of mathematics

Our task is straightforward: evaluate integrals with a con-
straint such as Eq. !27". Often, such integrals are not easy to
perform. However, exploiting the Laplace transform typi-
cally renders the integrand factorizable. For example, the DN
integrations in Eq. !27" become products of a single integral.
Specifically, we consider the Laplace transform of $!E",

Z!!" # + $!E"e−!EdE . !29"

If we substitute Eq. !27" for $!E", the delta function permits
us to do the E integral giving

Z!!" = +
r,p

e−!H. !30"

Because H is a sum over the individual components, the
integrand factorizes, and we have
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particular equilibrium macrostate is due to a predominance
of the number of microstates corresponding to that mac-
rostate. The classic example is a gas of N identical, free,
nonrelativistic structureless particles, confined in a
D-dimensional box of volume LD. For this system, a mi-
crostate is specified by the 2DN variables corresponding to
the positions and momenta of each particle, $r!i , p! i%, with i
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infinite otherwise.
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where the integral is over all $r!i , p! i% from −% to %. !The
infinite values of U restrict the actual position integrations to
the volume of the box." We have also suppressed the other
variables that $ depends on for now: L and m. Note that $ is
just the volume of phase space available to the system and is
the microcanonical partition function.

The standard approach evaluates the integral in Eq. !27" as
follows. The position integrals can be done explicitly be-
cause the only dependence of the Hamiltonian on position is
the confinement of the position integrals to the allowed vol-
ume. These integrals yield a factor of LND. The momentum
integrals are done by computing the surface area of a sphere
in DN dimensions.

The entropy is introduced by the definition S#kB ln $.
We exploit the dimensionless entropy S and write

S!E" # ln $!E" . !28"

To proceed, we have two choices: the route that emphasizes
the mathematics or the physics.

A. The route of mathematics

Our task is straightforward: evaluate integrals with a con-
straint such as Eq. !27". Often, such integrals are not easy to
perform. However, exploiting the Laplace transform typi-
cally renders the integrand factorizable. For example, the DN
integrations in Eq. !27" become products of a single integral.
Specifically, we consider the Laplace transform of $!E",

Z!!" # + $!E"e−!EdE . !29"

If we substitute Eq. !27" for $!E", the delta function permits
us to do the E integral giving

Z!!" = +
r,p

e−!H. !30"

Because H is a sum over the individual components, the
integrand factorizes, and we have
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!
r,p

e−!H = !
r,p

"
i

e−!h#r!i,p! i$ = %! dr!dp!e−!h#r!,p!$&N

. #31$

The expression in '…( is much easier to handle and is
LD#2"m /!$D/2. An attentive reader will have noticed from
Eq. #30$ that Z is the canonical partition function and can
appreciate the statement: The two partition functions are re-
lated to each other by a Laplace transform.

To return to our goal, ##E$, we need to perform an inverse
Laplace transform, that is,

##E$ = !
C

Z#!$e!Ed! , #32$

where C is a contour in the complex ! plane #running parallel
to and to the right of the imaginary axis$. We define

F#!$ ) − ln Z#!$ , #33$

and write the integral as

eS#E$ = !
C

e−F#!$+!Ed! . #34$

To continue, it is necessary to inject some physics. In this
case, we expect to be considering many particles, that is,
large N. From Eq. #31$ we have F$N, leading us to expect
that the range of E of interest is also O#N$. The standard tool
for evaluating integrals with large exponentials as integrands
is the saddle point #or steepest decent$ method. Thus, we
seek the saddle point in !, which is defined by setting the
first derivative of !E−F#!$ to zero:

* d'!E − F(
d!

*
!0

= 0. #35$

In other words, we have

* dF
d!
*

!0

= E . #36$

We emphasize that !0 should be regarded as a function of E
here.

In this approach, the integral in Eq. #29$ is well approxi-
mated by evaluating the integrand at the saddle point, so that

##E$ + exp'!0E − F#!0$( , #37$

or using Eq. #28$
S#E$ + F#!0$ = !0E , #38$

with the understanding that !0 and E are related through Eq.
#36$. There is nothing significant about the subscript on !,
and Eq. #38$ is identical to Eq. #24$. In other words, S and F
are Legendre transforms of each other. Thus, we see that #for
situations involving a large parameter, N in this case$ the
Laplace and Legendre transforms, Eqs. #29$ and #38$, respec-
tively, are related to each other as a result of the thermody-
namic limit.

B. The route of physics: Interpretation of the equilibrium
condition

Under what conditions does the internal energy move from
one object to another and under what conditions can it be
converted to work? Part of the answer lies in understanding

which way the energy will move if we bring two systems
into thermal contact. Why does it not go always from the
system with more energy to the one with less? Considering
this question leads us to the Legendre transform.

When two systems #not necessarily of the same size or
energy$ are brought together and the combined system iso-
lated, Etot)E1+E2 will remain a constant and can be re-
garded as the control parameter. The individual Ej’s are not
fixed, and we ask: Starting at some initial values, how do
they end up at the final equilibrium partition ,E1

* ,E2
*-? The

answer lies with Stot#Etot .E1 ,E2$, the entropy of the com-
bined system subject to the specific partition of Etot into
,E1 ,E2-. The idea is that eStot counts the number of allowed
microstates associated with a particular partition and carries
information of how probable that partition is. Calculating
this quantity is usually not easy. However, if we focus on
systems with extensive entropies, then we may write to a
good approximation: Stot=S1+S2 with S1=S1#E1$ and S2
=S2#E2$. These statements are not trivial: We are injecting
the physics that for the specified conditions, the entropies of
each system do not depend on the energy of the other.

Given these assumptions, we ask: For what partition will
Stot be a maximum, or equivalently, which partition is the
most probable? If we write E2=Etot−E1 and recall that Etot is
fixed, this task is easy. The maximum occurs at E1

*, which is
defined by

* dStot

dE1
*

E
1
*

= 0. #39$

Because dE1=−dE2, we have

* dS1

dE1
*

E
1
*

= * dS2

dE2
*

E
2
*
, #40$

where E2
*=Etot−E1

*. This result is significant, because each
side does not depend on the parameters of the other system.
Thus, if we associate a quantity with dS /dE, which we de-
fine by

!#E$ )
dS
dE

, #41$

then Eq. #40$ becomes

!1#E1
*$ = !2#E2

*$ . #42$

In other words, the most probable partition occurs when the
! of one system equals the ! of the other. This condition
does not depend on the details of the two systems, such as
composition, size, or state #gas, liquid, or solid$. When the
two systems are brought into contact, energy will be trans-
ferred between them until they settle at values given by this
condition: the equality of !)dS /dE, associated with each of
them separately. It is natural, therefore, to use this quantity
for describing our daily experience; namely, two systems,
one hot and one cold, will equilibrate at a common tempera-
ture T when brought in contact with each other. Historically,
many arbitrary scales were used for T. Their relation to the
more natural quantity ! was clarified later.

Besides providing a natural scale to describe “hot” and
“cold,” can the variable ! be exploited further? For a given
system we can write S#E#!$$, but is that useful? The answer
is connected to the canonical ensemble, the #Helmholtz$ free
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# of accessible state Partition function

Entropy Helmholtz free energy

Laplace transform

inverse temperature

in thermodynamic limit
 (Laplace approximation)



Geometric Interpretation
Consider the following primal problem P:

Primal Problem P

minimise f (x),
subject to:
g(x) ≤ 0,
x ∈ X ,

where f : Rn → R and
g : Rn → R.

X
x

G

(g, f )

y

z

[g(x), f (x)]

Define the following set in R2:

G = {(y, z) : y = g(x), z = f (x) for some x ∈ X},

that is, G is the image of X under the (g, f ) map.
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Then, the primal problem consists in finding a point in G with y ≤ 0
that has minimum ordinate z.
Obviously this point is (  y,  z).
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Geometric Interpretation

Lagrangian Dual
Problem D

maximise θ(u),
subject to:
u ≥ 0,

where (Lagrangian dual
subproblem):

θ(u) = inf{f (x)+ug(x) : x ∈ X}.

X
x

G

(g, f )

y

z

[g(x), f (x)]

(  y,  z)

α

Slope −u
z + uy = α

Given u ≥ 0, the Lagrangian dual subproblem is equivalent to
minimise z + uy over points (y, z) in G. Note that z + uy = α is the
equation of a straight line with slope −u that intercepts the z-axis
at α.

Centre of Complex Dynamic
Systems and Control

Geometric Interpretation

G = {(y, z) : y = g(x), z = f (x) for some x ∈ X},

Primal Problem P

minimise f (x),
subject to:
g(x) ≤ 0,
x ∈ X .

X
x

G

(g, f )

y

z

[g(x), f (x)]

(  y,  z)

Then, the primal problem consists in finding a point in G with y ≤ 0
that has minimum ordinate z.
Obviously this point is (  y,  z).

Centre of Complex Dynamic
Systems and Control

Geometric Interpretation

G = {(y, z) : y = g(x), z = f (x) for some x ∈ X},

Primal Problem P

minimise f (x),
subject to:
g(x) ≤ 0,
x ∈ X .

X
x

G

(g, f )

y

z

[g(x), f (x)]

(  y,  z)

Then, the primal problem consists in finding a point in G with y ≤ 0
that has minimum ordinate z.
Obviously this point is (  y,  z).

Centre of Complex Dynamic
Systems and ControlLegendre transform (w/ wrong sign)



Geometric Interpretation

Lagrangian Dual
Problem D

maximise θ(u),
subject to:
u ≥ 0,

where (Lagrangian dual
subproblem):

θ(u) = inf{f (x)+ug(x) : x ∈ X}.

X
x

G

(g, f )

y

z

[g(x), f (x)]

(  y,  z)

θ(u) Slope −u
z + uy = α

In order to minimise z + uy over G we need to move the line
z + uy = α parallel to itself as far down as possible, whilst it
remains in contact with G. The last intercept on the z-axis thus
obtained is the value of θ(u) corresponding to the given u ≥ 0.
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Finally, to solve the dual problem, we have to find the line with
slope −u (u ≥ 0) such that the last intercept on the z-axis, θ(u), is
maximal. Such a line has slope −  u and supports the set G at the
point (  y,  z). Thus, the solution to the dual problem is  u, and the
optimal dual objective value is  z.
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The solution of the Primal problem is  z, and the solution of the
Dual problem is also  z.
It can be seen that, in the example illustrated, the optimal
primal and dual objective values are equal. In such cases, it is
said that there is no duality gap (strong duality).
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Weak Duality

The figure shows an example of the geometric interpretation of the
primal and dual problems.

Optimal dual objective

Optimal primal objective

Duality gap

X
x

G

(g, f )

y

z

[g(x), f (x)]

Notice that, in the
case shown in the
figure, there exists
a duality gap due to
the nonconvexity of
the set G.

We will see, in the Strong Duality Theorem, that if some suitable
convexity conditions are satisfied, then there is no duality gap
between the primal and dual optimisation problems.

Centre of Complex Dynamic
Systems and Control
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Figure 3: Function having a nondifferentiable point; its LF transform is affine.

• Differentiable points of f : Each point (x, f (x)) on the differentiable branches of173

f (x) admits a strict supporting line with slope f 0(x) = k. From the results of174

the previous section, we then know that these points are transformed at the level175

of f ⇤(k) into points (k, f ⇤(k)) admitting supporting line of slopes f ⇤0(k) = x .176

For example, the differentiable branch of f (x) on the left (branch a in Figure177

3) is transformed into a differentiable branch of f ⇤(k) (branch a0) which extends178

over all k 2 (�1, kl]. This range of k-values arises because the slopes of the left-179

branch of f (x) ranges from�1 to kl . Similarly, the differentiable branch of f (x)180

on the right (branch b) is transformed into the right differentiable branch of f ⇤(k)181

(branch b0), which extends from kh to +1. (Note that, for the two differentiable182

branches, the LF transform reduces to the Legendre transform.)183

• Nondifferentiable point of f : The nondifferentiable point xc admits not one but184

infinitely many supporting lines with slopes in the range [kl, kh]. As a result, each185

point of f ⇤(k) with k 2 [kl, kh] must admit a supporting line with constant slope186

xc (branch c0). That is, f ⇤(k) must have a constant slope f ⇤0(k) = xc in the187

interval [kl, kh]. We say in this case that f ⇤(k) is affine or linear over (kl, kh).188

(The affinity interval is always the open version of the interval over which f ⇤ has189

constant slope.)190

The case of functions having more than one nondifferentiable point is treated simi-191

larly by considering each nondifferentiable point separately.192

3.3. Affine function193

Since f (x) in the previous example is convex, f (x) = f ⇤⇤(x) for all x , and so the roles194

of f and f ⇤ can be inverted to obtain the following: a convex function f (x) having an195
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Figure 4: Nondifferentiable points are transformed into affine parts under the action of
the LF transform and vice versa.

affine part has a LF transform f ⇤(k) having one nondifferentiable point; see Figure 4.196

More precisely, if f (x) is affine over (xl, xh) with slope kc in that interval, then f ⇤(k)197

will have a nondifferentiable point at kc with left- and right-derivatives at kc given by xl198

and xh , respectively.199

3.4. Bounded-domain function with infinite slopes at boundaries200

Consider the function f (x) shown in Figure 5. This function has the particularity to be201

defined only on a bounded domain of x-values, which we denote by [xl, xh]. Further-202

more, f 0(x) ! 1 as x ! xl + 0 and x ! xh � 0 (the derivative of f blows up near at203

the boundaries). Outside the interval of definition of f (x), we formally set f (x) = 1.204

To determine the shape of f ⇤(k), we use again what we know about supporting lines205

of f and f ⇤. All points (x, f (x)) with x 2 (xl, xh) admit a strict supporting line with206

slope k(x). These points are represented at the level of f ⇤ by points (k(x), f ⇤(k(x)))207

having a supporting line of slope x . As x approaches xl from the right, the slope of f (x)208

diverges to �1. At the level of f ⇤, this implies that the slope of the supporting line of209

f ⇤ reaches xl as k ! �1. Similarly, since the slope of f (x) goes to +1 as x ! xh ,210

the slope of the supporting line of f ⇤ reaches the value xh as k ! +1; see Figure 5.211

Note, finally, that f = f ⇤⇤ since f is convex. This means that we can invert the roles212

of f and f ⇤ in this example just like in the previous one to obtain the following: the LF213

transform of a convex function which is asymptotically linear is a convex function which214

is finite on a bounded domain with diverging slopes at the boundaries.215

3.5. Bounded-domain function with finite slopes at boundaries216

Consider now a variation of the previous example. Rather than having diverging slopes217

at the boundaries xl and xh , we assume that f (x) has finite slopes at these points. We218

denote the right-derivative of f at xl by kl and its left-derivative at xh by kh .219

For this example, everything works as in the previous example except that we have220

to be careful about the boundary points. As in the case of nondifferentiable points, f at221
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Figure 8: Structure of the LF transform for nonconvex functions.

To summarize, note that, as a result of Point 2 above, we have256

( f ⇤⇤)⇤ = ( f )⇤ = f ⇤. (26)

Also, for the example considered, we have257

( f ⇤)⇤ = f ⇤⇤ 6= f. (27)

Overall, this means that the LF transform has the following structure:258

f ! f ⇤ ⌦ f ⇤⇤, (28)

where the arrows stand for the LF transform; see Figure 8. This diagram clearly shows259

that the LF transform is non-involutive in general. For convex functions, i.e., functions260

admitting supporting lines everywhere, the diagram reduces to261

f ⌦ f ⇤. (29)

That is, in this case, the LF transform is involutive (see Theorem 2.4).262

4. Important results to remember263

• The LF transform yields only convex functions: f ⇤ = ( f )⇤ is convex and so is264

f ⇤⇤ = ( f ⇤)⇤.265

• The shape of f ⇤ is determined from the shape of f by using the duality relation-266

ship which exists between the supporting lines of f ⇤ and those of f .267

– Points of f are transformed into slopes of f ⇤, and slopes of f are trans-268

formed into points of f ⇤.269

– Nondifferentiable points of f are transformed, through the action of the LF270

transform, into affine branches of f ⇤.271


