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These notes explain fundamental thermodynamic identity.

In these notes, we will derive the fundamental thermodynamic
identity and then apply it in some settings. This is a subtle topic
and much of what I will talk about follows the exposition in Anatoli
Polkovnikov’s paper "Microscopic diagonal entropy and its connec-
tion to basic thermodynamic relations" Annals of Physics 2011.

The basic idea behind the identity is to realize that there are two
basic ways that one can change the average internal energy of a sys-
tem: through the exchange of “heat” and through “work”. In what
follows, we will make no distinction between “heating” and the non-
adiabatic part of work. We will these two kinds of energy gain corre-
spond to very different microscopic processes:

• Heat: Heat is the label we give to changes in energy that come
from changes in the probability of occupying a micro-states.

• Work: Work is what we call changes in energy that come from
changing some external control parameter θα in the Hamilto-
nian H({θα}) without changing the probability of occupying a
microstate. Instead, the change in energy comes because changing
the parameters θα changes the energy associated with a microstate.

Heat

Let us see how this works in practice. Consider changing the energy
of a system by exchanging heat with a bath. A system with initial
energy E before contact with a heat bath ends up in a state with en-
ergy E + ∆E. The microstates accessible to the system before energy
exchange are just Ωθ(E). The subscript θ denotes that the the Hamil-
tonian parameters are fixed to be θ through out this exchange and do
not change. After absorbing ∆E of heat, we have that the accessible
microstates are those corresponding to Ωθ(E + ∆E). If ∆E � E, then
we have that

Ωθ(E + ∆E) ≈ Ωθ(E) +
∂Ωθ(E)

∂E
∆E (1)

Correspondingly, we have defining entropy as S = k−1
B log Ω(E) that

to leading order in ∆E:

Sθ(E + ∆E) = Sθ(E) +
(

∂S
∂E

)
θ

∆E (2)
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This implies that

∆Sθ = Sθ(E + ∆E)− Sθ(E) =
∆E
T

(3)

Hence, we find that the change in internal energy ∆E is

∆E = T∆Sθ = T(Sθ(E + ∆E)− Sθ(E)). (4)

Since by definition, the change in energy is due to heat, we can iden-
tify heat with T∆Sθ . Again, we emphasize that this is due to what
microstates are occupied/accessible to the system after it exchanges
energy.

Work

To think about work, we will imagine changing the parameters of
the system infinitesimally so that the probability of occupying a
microstate does not change (adiabatically). In particular imagine
we change the parameters θα → θα + δθα. In this way every state of
the system with energy E(θ) now has energy

E(θα + δθα) = E(θα) + δE (5)

δE = ∑α

(
∂E
∂θα

)
δθα (6)

If we look at a fixed energy window E, then we know that the num-
ber of microstates Ωθ+δθ(E + δE) much identical to Ωθ(E). In particu-
lar, this will also be true for entropies. So we have that

Sθ+δθ(E) = Sθ(E− δE) (7)

Taylor expanding, we have that

Sθ+δθ(E) = Sθ(E)− ∂Sθ(E)
∂E δE (8)

= Sθ(E)− δE
T . (9)

This implies that

−δE = T(Sθ+δθ(E)− Sθ(E)) (10)

or substituting Eq. 6 that

T(Sθ+δθ(E)− Sθ(E)) = −∑
α

(
∂E
∂θα

)
δθα = ∑

α

Fαδθα, (11)

where in the last line we have defined the generalized forces

Fα = −
(

∂E
∂θα

)
(12)

Thus, we can identify this change with the work.
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Performing work and exchanging heat

Now finally, we imagine we allow a reservoir to perform work and
exchange heat. Consider a system with micro-states i each with en-
ergy Ei. Then we know that the the average energy U of the system
can be written as

U = ∑
i

piEi. (13)

Thus, to first order, we can write any change in the average energy as
either a change in the Ei due to a change in parameters or a change
in the probability of occupying state i:

∆U = ∑
i

δpiEi + ∑
i

piδEi (14)

We identify the first term with heat and the second with the work
and hence

∆U = ∆E + δE

= T∆Sθ −∑
α

Fαδθα. (15)

We can now identify different terms with the total energy and forces.

Ideal Gas at Constant Pressure

We now want to consider an ideal gas at constant pressure and con-
stant volume. We know that we can think about the specific heats.
These are associated with change in energy with respect to tempera-
ture, either holding volume fixed or holding pressure fixed.

Through out the experiment, we can change the volume of the gas.
We also hold pressure fixed. We have that at fixed volume the second
term disappears so that

T
∆S
∆T

∆T = Cv∆T =
∆U
∆T

∆T (16)

So T∆S is the heat needed to change internal energy by ∆U.
So now, at constant pressure, we still want to change internal en-

ergy by ∆U. This means that the energy in the heat we absorb goes
to two processes: raising the internal energy of the gas and perform-
ing work. This is mathematically expressed in the thermodynamic
identity:

T∆S = ∆U + P∆V

= ∆U + nR∆T, (17)

where in the second line we have used differential of ideal gas law at
constant pressure P∆V = nR∆T. We now have

T
∆S
∆T

∆T = Cp∆T =
∆U
∆T

∆T + nR∆T. (18)
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Since infinitesimally, we need the same amount of energy to change
internal energy of gas whether we do work or not, we have that we
have

Cp = Cv + nR (19)
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