
We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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STATISTICAL PHYSICS

Quantum thermalization through
entanglement in an isolated
many-body system
Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner*

Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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such a system can be difficult to simulate, often
because the resulting dynamics entail a large
amount of entanglement (2–5). Yet, remarkably,
this same isolated quantum system can thermal-
ize under its own dynamics, unaided by a reser-
voir (Fig. 1) (6–8), so that the tools of statistical
mechanics apply and challenging simulations
are no longer required. In this case, most observ-
ables of a quantum state coherently evolving
according to the Schrödinger equation can be
predicted from a thermal ensemble and ther-
modynamic quantities. Even with infinitely many
copies of this quantum state, these same observ-
ables are fundamentally unable to reveal whether
this is a single quantum state or a thermal en-
semble. In other words, a globally pure quantum
state is apparently indistinguishable from a mixed,
globally entropic thermal ensemble (6, 7, 9, 10).
Ostensibly, the coherent quantum amplitudes
that define the quantum state in Hilbert space
are no longer relevant, even though they evolve
in time and determine the expectation values
of observables. The dynamic convergence of the
measurements of a pure quantum state with the
predictions of a thermal ensemble, and the phys-
ical process by which this convergence occurs,
are the experimental focus of this work.
Theoretical studies have, in many regards,

clarified the role of quantum mechanics in sta-
tistical physics (6, 7, 9–13). The conundrum sur-
rounding the agreement of pure states with
extensively entropic thermal states is resolved
by the counterintuitive effects of quantum en-
tanglement. A canonical example of this point
is the Bell state of two spatially separated spins:
Although the full quantum state is pure, local
measurements of just one of the spins reveals a
statistical mixture with reduced purity. This local
statistical mixture is distinct from a superposi-
tion because no operation on the single spin can
remove these fluctuations or restore its quantum
purity. In such a way, the spin’s entanglement
with another spin creates local entropy, which
is called entanglement entropy. Entanglement
entropy is not a phenomenon that is restricted
to spins but exists in all quantum systems that
exhibit entanglement. And although probing en-
tanglement is a notoriously difficult experimental
problem, this loss of local purity or, equivalently,
the development of local entropy, establishes the
presence of entanglement when it can be shown
that the full quantum state is pure.
We directly observed a globally pure quantum

state dynamically lose local purity to entangle-
ment and, in parallel, become locally thermal.
Recent experiments have demonstrated anal-
ogies between classical chaotic dynamics and the
role of entanglement in few-qubit spin systems
(14), as well as the dynamics of thermalization
within an ion system (15). In addition, studies of
bulk gases have shown the emergence of thermal
ensembles and the effects of conserved quantities
in isolated quantumsystems throughmacroscopic
observables and correlation functions (16–19). We
are able to directly measure the global purity as
thermalization occurs through single-particle re-
solved quantummany-body interference. In turn,

we show that we can observe microscopically the
role of entanglement in producing local entropy
in a thermalizing system of itinerant particles,
which is paradigmatic of the systems studied in
statistical mechanics.
Below, we explore the equivalence between

the entanglement entropy that we measured
and the expected thermal entropy of an ensem-
ble (11, 12). We further address how this equiv-
alence is linked to the eigenstate thermalization
hypothesis (ETH), which provides an explanation
for thermalization in closed quantum systems
(6, 7, 9, 10). The ETH is typically framed in terms
of the small variation of observables (expectation
values) associated with eigenstates that are close
in energy (6, 7, 10), but the role of entanglement
in these eigenstates is paramount (12). Funda-
mentally, the ETH implies an equivalence of the
local reduced density matrix of a single excited
energy eigenstate and the local reduced density
matrix of a globally thermal state (20), an equiv-
alence which is made possible only by entangle-
ment and the impurity that it produces locally
within a globally pure state. The equivalence en-
sures thermalization of most observable quantities
after a quantum quench. Through parallel mea-
surements of the entanglement entropy and local
observables within a many-body Bose-Hubbard
system, we were able to experimentally study this
equivalence that lies at the heart of quantum
thermalization.

Experimental protocol

For our experiments, we used a Bose-Einstein
condensate of 87Rb atoms loaded into a two-
dimensional optical lattice positioned at the
focus of a high-resolution imaging system (21, 22).
The system is described by the Bose-Hubbard
Hamiltonian

^
H ¼ −ðJx

X
x;y

^a†x;y
^axþ1;yþ

Jy

X
x;y

^a†x;y
^ax;yþ1 þ h:c:Þþ

U

2

X
x;y

^nx;yð^nx;y −1Þ ð1Þ

where â†x;y , âx;y , and n̂x;y ¼ â†x;y âx;y are the
bosonic creation, annihilation, and number op-
erators at the site located at {x,y}, respectively
(h.c., hermitian conjugate). Atoms can tunnel be-
tween neighboring lattice sites at a rate Ji (where
i indicates the direction of tunneling) and ex-
perience a pairwise interaction energy U when
multiple atoms occupy a site. We had indepen-
dent control over the tunneling amplitudes Jx
and Jy through the lattice depth, which could be
tuned to yield from J/U ≪ 1 to J/U ≫ 1. In addi-
tion to the optical lattice, we were able to super-
impose arbitrary potentials by using a digital
micromirror device placed in the Fourier plane
of our imaging system (23).
To initiate the experiment, we isolated a pla-

quette of 2 × 6 sites from a larger low-entropy

Mott insulator with unity filling (Fig. 2A) (24),
which produced two copies of a six-site Bose-
Hubbard chain. At this point, each copy was in
a product state of single-atom Fock states on
each of the constituent sites. We then suddenly
switched on tunneling in the x direction, whereas
tunneling in the y direction was suppressed.
Each chain was restricted to the original six sites
by introducing a barrier at the ends of the chains
to prevent tunneling out of the system. These
combined steps quenched the six-site chains into
a Hamiltonian for which the initial state repre-
sents a highly excited state that has substantial
overlap with an appreciable number of energy
eigenstates. Each chain represents an identical
but independent copy of a quenched system of
six particles on six sites, which evolves in the
quenched Hamiltonian for a controllable duration.
We then measured the quantum purity or

on-site number statistics (Fig. 2C). For the for-
mer, we appended to the quench evolution a
beam splitter operation that interferes the two
identical copies by freezing dynamics along the
chain and allowing for tunneling in a projected
double-well potential for a prescribed time (25).
In the last step for both measurements, a po-
tential barrier was raised between the two copies,
and a one-dimensional time-of-flight in the direc-
tion transverse to the chain was performed to
measure the resulting occupation on each site
of each copy.
The ability to measure quantum purity is

crucial to assessing the role of entanglement in
our system. Tomography of the full quantum
state would typically be required to extract the
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Fig. 1. Schematic of thermalization dynamics in
closed systems. An isolated quantum system at
zero temperature can be described by a single pure
wavefunction jYi. Subsystems of the full quan-
tum state are pure, as long as the entanglement
between subsystems (indicated by the gray lines
between the particles) vanishes (upper panels). If
suddenly perturbed, the full system evolves uni-
tarily, developing considerable entanglement be-
tween all parts of the system (lower panels). The
bar graphs show the probability of an observable
before and after perturbation of the system. Al-
though the full system remains in a pure and in
this sense zero-entropy state, the entropy of entan-
glement causes the subsystems to equilibrate, and
local thermal mixed states appear to emerge with-
in a globally pure quantum state.
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global purity, which is particularly challenging
in the full 462-dimensional Hilbert space defined
by the itinerant particles in our system. Further-
more, whereas in spin systems global rotations
can be used for tomography (26), there is no
known analogous scheme for extracting the full
density matrix of a many-body state of itinerant
particles. The many-body interference described
here, however, allows us to extract quantities
that are quadratic in the density matrix, such as
the purity (25). After performing the beam split-
ter operation, we were able to obtain the quan-
tum purity of the full system and any subsystem
simply by counting the number of atoms on
each site of one of the six-site chains (Fig. 2C).

Each run of the experiment yielded the parity
PðkÞ ¼ Pip

ðkÞ
i , where i is iterated over a set of

sites of interest in copy k. The single-site par-
ity operator pðkÞ

i returns 1 (–1) when the atom
number on site i is even (odd). It has been
shown that the beam splitter operation yields
hPð1Þi ¼ hPð2Þi ¼ Trðr1r2Þ, where ri is the den-
sity matrix on the set of sites considered for
each copy (4, 25, 27). Because the preparation and
quench dynamics for each copy are identical,
yielding r1 = r2 ≡ r, the average parity reduces
to the purity: hPðkÞi ¼ Trðr2Þ. When the set of
sites considered constitutes the full six-site chain,
the expectation value of this quantity returns
the global many-body purity, whereas for smaller

sets it provides the local purity of the respective
subsystem.
Comparing measurements taken with and

without the beam splitter, our data immediately
illustrate the contrast between the global and
local behaviors and how thermalization is man-
ifest (Fig. 2B). Our observations show that the
global many-body state retains its quantum
purity over time, affirming the unitarity of its
evolution after the quench. This global mea-
surement also clearly distinguishes the quan-
tum state that we produced from a canonical
thermal ensemble with a purity that is orders
of magnitude smaller. Yet the number statis-
tics locally converge to a distribution of thermal
character, which can be faithfully modeled by
that same thermal ensemble. We next exper-
imentally explored the question suggested by
this observation: How does a pure state that
appears globally distinct from a thermal en-
semble possess local properties that mirror this
thermal state?
The growth of entanglement after a quench

is key to understanding how entropy forms with-
in the subsystems of a pure quantum state,
thereby facilitating thermalization (2, 4, 5, 28).
When two parts of a system are entangled, the
full quantum state r cannot be written in a
separable fashion with respect to the Hilbert
spaces of the subsystems (29, 30). As has been
shown theoretically (4, 27) and recently observed
experimentally (25), this causes the subsystems
rA and rB to be in an entropic mixed state even
though the full many-body quantum state is
pure (30). The mixedness of the subsystem can
be quantified by the second-order Rényi entropy
SA ¼ −log½Trðr2AÞ�, which is the natural logarithm
of the purity of the subsystem density matrix.
Although the von Neumann entropy is typically
used in the context of statistical mechanics, both
quantities grow as a subsystem density matrix
becomes mixed and increasingly entropic. In
the Rényi case, the purity in the logarithm quan-
tifies the number of states contributing to the sta-
tistical mixture described by the density matrix.

Entanglement entropy dynamics
and saturation

We first studied the dynamics of the entanglement
entropy immediately after the quench for vary-
ing subsystem sizes (Fig. 3). Initially, we observed
an approximately linear rise in the entropy with
time, with a similar slope among the subsystems
considered (Fig. 3, inset) (2). After an amount of
time that depended on the subsystem size, the
entanglement entropy saturated to a steady-state
value, about which there were small residual tem-
poral fluctuations. The presence of residual fluc-
tuations is attributable in part to the finite size of
our system. An exact numerical calculation of the
dynamics with no free parameters shows excel-
lent agreement with our experimental measure-
ments. Crucially, the data indicate that whereas
the subsystems acquire entropy with time (Fig. 3,
A to C), the entropy of the full system remains
constant and is small throughout the dynam-
ics (Fig. 3D) (24). The high purity of the full
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Fig. 2. Experimental sequence. (A) Using tailored optical potentials superimposed on an optical
lattice, we deterministically prepared two copies of a six-site Bose-Hubbard system, where each
lattice site is initialized with a single atom.We reduced the lattice depth along x (specified in units of
the lattice recoil energy Er) to enable tunneling and obtained either the ground state (adiabatic melt)
or a highly excited state (sudden quench) in each six-site copy. After a variable evolution time, we
froze the evolution and characterized the final quantum state by either acquiring number statistics or
the local and global purity. Even and odd refer to the atom number parity. (B) Site-resolved number
statistics of the initial distribution (left panel, showing a strong peak at one atom with vanishing
fluctuations) and the distribution at later times (middle panel), compared with the predictions of a
canonical thermal ensemble (red bars) of the same average energy as the quenched quantum state
[J/(2p) = 66 Hz; U/(2p) = 103 Hz]. Error bars are SEM. Measurements of the global many-body
purity show that it is static and high (right panel). This is in contrast to the vanishing global purity of
the canonical thermal ensemble, yet this same ensemble accurately describes the local number
distribution that we observed. (C) To measure the atom number locally, we allowed the atoms to
expand in half-tubes along the y direction while pinning the atoms along x. In separate experiments,
we applied a many-body beam splitter by allowing the atoms in each column to tunnel in a projected
double-well potential. The resulting atom number parity (even or odd) on each site encodes the
global and local purity.
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system allows us to conclude that the dynamical
increase in entropy in the subsystems originates
in the propagation of entanglement between
the system’s constituents. The approximately
linear rise at early times (Fig. 3, inset) is related

to the spreading of entanglement in the system
within an effective light cone (2, 31, 32). Further-
more, in analogy to the growth of thermody-
namic entropy in an equilibrating classical
mechanical system, such as a gas in a closed

container, we observed the growth of local en-
tropy in a closed quantum mechanical system.
In the quantum mechanical case, however, the
mechanism responsible for the entropy is entan-
glement, which is absent from a system modeled
by classical mechanics.
When a system thermalizes, we expect that

the saturated values of local observables should
correspond to the predictions of a statistical en-
semble. By analogy, if the entanglement entropy
plays the role of thermal entropy, then in a ther-
malized pure state, we expect extensive growth
in the entanglement entropy with subsystem vol-
ume. When the entanglement entropy in a quan-
tum state grows linearly with the size of the
subsystem considered, it is known as a volume
law. Theoretical work using conformal field the-
ory has shown that indeed, at long times, a
volume law is expected for a quenched, infinite,
continuous system, whereas only an area law
with a logarithmic correction is expected for the
ground state (2, 33, 34). Characterizing the large
amount of entanglement associated with a volume
law is particularly challenging because it results
in nearly every entry of the density matrix having
a small but, importantly, nonzero magnitude.
Using the techniques outlined here, we ob-

tained measurements showing a near-volume
law in the entanglement entropy (Fig. 4A). A
linear growth with volume in the entanglement
entropy occurs when each subsystem incoherently
populates a number of states that scales with
the size of the subsystem Hilbert space. This is
because, for the Bose-Hubbard model, the Hilbert
space is approximately exponential in the lattice
size, which results in a linear growth in SA ¼
−log½Trðr2AÞ�. The exact slope of the entangle-
ment entropy versus subsystem volume depends
on the average energy of the thermalized pure
state (35). In contrast, we can prepare the ground
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ground state, and themutual information is nearly vanishing (red arrow).When
probed on a scale near the system size, the highly entangled quenched state
exhibits much stronger correlations than the ground state. Throughout this
figure, the entanglement entropies from the last time point in Fig. 3 are
averaged over all relevant partitionings with the same subsystem volume; we
have also corrected for the extensive entropy unrelated to entanglement (24).
All solid lines represent numerical calculations with no free parameters (24).
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state of the quenched Hamiltonian by adiabati-
cally reducing the lattice depth. In this case, the
superfluid ground state of the Bose-Hubbard
model has suppressed entanglement, which
is predicted to incur slow logarithmic growth in
the entanglement entropy with subsystem vol-
ume (33). Our measurements clearly distinguish
the two cases. The back-bending of the entangle-
ment entropy as the subsystem surpasses half
the system size indicates that the state is globally
pure. In the quenched state, the high global pu-
rity is striking in a state that locally appears to be
completely dephased, which is behavior often as-
sociated with environmentally induced decoherence
or other noise sources.
We further observed near-quantitative agree-

ment between the measured dependence of the
entanglement entropy on subsystem volume and
the prediction of a thermal ensemble. We made
this comparison by computing a canonical ther-
mal ensemble rT (where T is temperature) with
an average energy equal to that of the quenched
quantum state that we produced experimentally
(35). The gray line in Fig. 4A is the Rényi (thermal)
entropy as a function of subsystem size for this
calculated thermal state. Although our limited
system size prevents comparison over a large
range of subsystem sizes, the initial rise of the
entanglement entropy with subsystem volume
mimics that of the thermal entropy. Despite their
similarity, it is worth emphasizing the disparate
character of the thermal and entanglement en-
tropies. The entanglement entropy (either Rényi
or von Neumann) is instantaneously present in
the pure quantum state after coherent unitary
evolution, arising from the nonseparability of
the quantum state between the subsystem and
traced-out degrees of freedom. On the other hand,
the von Neumann thermal entropy within a sub-
system of a mixed thermal state is the thermody-
namic entropy in statistical mechanics, which
could be extracted from irreversible heat flow
experiments on the subsystem (12). Therefore,
the similarity of the Rényi entropies that we de-
termined points to an experimental equivalence
between the entanglement and thermodynamic
entropies (35, 36).
The behavior of the entanglement entropy

provides a clean framework for understanding
the entropy within thermalizing closed quantum
systems. However, one of the most well-known
features of entanglement, the presence of non-
local correlations, appears inconsistent with what
one expects of thermalized systems. In particular,
the massive amount of entanglement implied by
a volume law suggests high correlation between
disparate parts of the system, whereas a key
feature of a thermal state is the absence of such
long-range correlations. A useful metric for cor-
relations, both classical (statistical) and quantum,
between two subsystems A and B is the mutual
information IAB = SA + SB – SAB (25, 37). Themutual
information demonstrates that the amount of
correlation in the presence of a volume law is
vanishing for subsystem volumes that sample
less than half the full system, which is where
the entropy growth is nearly linear (Fig. 4B).

Furthermore, even though the thermalized quan-
tum state carries more entanglement entropy
than the ground state, small subsystems display
smaller correlations in the thermalized quantum
state than they do in the superfluid ground state
(Fig. 4C). Once the subsystem volume is compa-
rable to the system size, which is where the en-
tanglement entropy deviates from the volume law,
the quantum correlations entailed by the purity
of the full system become apparent. The mutual
information therefore illustrates how the volume
law in the entanglement entropy yields an ab-
sence of correlations between sufficiently local

observables, even though the quantum state re-
tains a large amount of entanglement.

Local observables in the
thermalized pure state

Our comparisons between the entanglement
entropy and the thermal entropy suggest that
the pure quantum state that we studied has
thermalized properties. We further examined
the presence of thermalization by performing
a series of measurements of local observables
with which we can compare the predictions of
various thermal ensembles. As with the entan-
glement entropy, we can also contrast our ob-
servations of the quenched thermalized state
with the adiabatically prepared ground state.
In Fig. 5A, we show the in situ number density
distribution on the six sites for the saturated
quenched state and the (superfluid) ground state.
Whereas the ground state exhibits considerable
curvature, the quenched state exhibits a flat den-
sity distribution. This flat density distribution is
consistent with a situation in which the constit-
uents of the many-body system collectively ther-
malize, so that each site is in equilibrium with its
neighbors and physically similar.
We can perform a more rigorous test of

single-site thermalization by comparing the
measured density matrix of each site with the
reduced density matrix of a canonical thermal
ensemble rTA (Fig. 5B). Our measurements of
the probabilities of observing a given particle
number on a site completely characterize that
single-site density matrix because there are no
coherences between different number states,
thanks to superselection rules. With this mea-
sured density matrix, we can perform a quan-
titative comparison with a thermal ensemble by

using the trace distance

�
1
2TrðjrTA − rAjÞ

�
and

quantum fidelity (Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTA

p
rA

ffiffiffiffiffi
rTA

pq �
), both of

which quantify the similarity of two mixed quan-
tum states. After a short time, these quantities
show a quantum fidelity exceeding 99% and a
trace distance that fluctuates between 0 and 0.1,
indicating the similarity between the local den-
sity matrix of a verified pure state and the local
density matrix of a thermal state. The correspon-
dence between the observables of a pure state
and a thermal state depends on the equivalence
of their reduced density matrices within the
Hilbert space sampled by the observable. The
measurement in Fig. 5B therefore shows that
observables for the single-site Hilbert space
should agree with the predictions of thermal
ensembles.
We now focus on direct comparisons of ob-

servables with various thermal ensembles and
the theoretical justification for such compar-
isons. So far, we have focused on the role of
entanglement entropy in producing thermal
characteristics, but it is the eigenstate distri-
bution resulting from a quench (Fig. 6A) that
determines the dynamics of observables, as well
as their subsequent saturated values. Therefore,
these populated eigenstates should clarify the
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Fig. 5. Observation of local thermalization.
(A) After quenching to J/U = 2.6, the saturated
average particle number on each site (density) is
nearly equal among the sites of the system,which
resembles a systemat thermal equilibrium.Bycom-
parison, thegroundstate for thesameBose-Hubbard
parameters has appreciable curvature. (B) In mea-
suring the probabilities of observing a given par-
ticle number on a single site, we can obtain the
local single-site density matrix and observe the
approach to thermalization. Using two different
metrics—trace distance and fidelity—we compare
the observed state to themixed state derived from
the subsystem of a canonical thermal ensemble
after a quench to J/U = 0.64. The trace distance
provides an effective distance between the mixed
states in Hilbert space, whereas the fidelity is an
overlap measure for mixed states.The twometrics
illustratehow thepure state subsystemapproaches
the thermal ensemble subsystem shortly after
the quench.The starting value of these quantities
is given by the overlap of the initial pure state
with the thermal mixed state. Solid lines connect
the data points.
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origin of thermalization, which is the goal of the
ETH. The underlying explanation for the ETH is
that thermalizing, nonintegrable systems have
excited eigenstates that look like nearly ran-
dom vectors or, equivalently, are described by a
Hamiltonian that approximately conforms to ran-
dommatrix theory (6, 13)—that is, for most bases,
each eigenvector projects onto each basis vector
with random quantum amplitude. The diffuse
probability distribution of the eigenstates in most
bases, such as the Fock state basis, is analogous
to the chaotic dynamics of a closed classical me-
chanical system passing through every allowed
point of phase space, and in the quantum case
this has several consequences. Remarkably, this
chaotic eigenstate assumption can be adapted to
explain the saturation of measurement observ-
ables, the agreement of these saturated observ-
ables with thermal ensembles, and the presence
of a volume law in the entanglement entropy
(6, 13, 38, 39). So, whereas in classical mechanical

systems, it is the chaos in the temporal dynamics
that leads to entropy maximization and ther-
malization within thermodynamic constraints,
in quantum thermalizing systems, it is chaos in
the energy eigenstates that generates the anal-
ogous behavior in the entanglement entropy
and, in turn, causes thermalization.
In Fig. 6, C and D, we compare our mea-

surements to the predictions of thermal ensembles
that are illustrated in Fig. 6B. We also compare
our results to a grand-canonical ensemble trun-
cated to our total atom number (24); this en-
semble perhaps most closely models how well
the many-body state can act as a reservoir for
its constituent subsystems. For each single-site
and three-site observable, we show the atom num-
ber distributions for two different effective temper-
atures of 3.8J and 11J, which are achieved by
quenching to J/U = 0.64 and J/U = 2.6, respec-
tively. The data are averaged in the saturated
regime over times between 10 and 20 ms, and

the error bars are the standard deviation in the
measured probabilities. The agreement within
the error bars indicates that in this temporal
range, our observations remain near the thermal
predictions, despite the presence of temporal fluc-
tuations. For the single-site subsystem, the data
are in good agreement with all the ensembles
considered. Despite the fact that the quenched
state is in a large distribution of eigenstates, our
data show agreement for the case of a single
eigenstate ensemble; this illustrates a key prin-
ciple of the ETH, which holds that the reduced
density matrix and associated observables vary
slowly from eigenstate to eigenstate and are
therefore relatively insensitive to the breadth
of the distribution of populated states from the
quench. We show the same comparisons for
the three-site case in the bottom two panels. In
this case, there is also agreement with most en-
sembles, though there is relatively less agreement
with the single eigenstate and grand-canonical
ensembles, particularly for the lower-temperature
quench. This variation in agreement may indi-
cate that these ensembles are more sensitive to
how the size of the traced-out reservoir compares
with the size of the subsystem, which suggests
directions for further experiments (11, 40).
The above measurements were performed

on specific subsystems, but this technique al-
lows extraction of the average global interaction
energy (Fig. 6D). Because the interaction term in
Eq. 1 is diagonal in the Fock state basis, we can
use our measurements of the final particle con-
figurations to compute the expectation value
hH^ inti. For the T = 3.8J data, we show a time
series of the initial growth in this quantity, which
starts at zero because the initial state has a single
particle per site. At long times, these observa-
tions are in near agreement with the canonical
prediction. This measurement is sensitive to the
entire six-site system as opposed to some sub-
set of sites, which might suggest that it is global
and unlikely to thermalize. Yet hH^ inti undergoes
thermalization because it is a sum of local
operators, each of which thermalizes and is in-
sensitive to the global purity of the full system.
The observed agreement is consistent with the
idea that only a small set of operators, such as
the global purity that we measured or other spe-
cific fine-tuned state projectors, can truly dis-
tinguish the pure state that we produced from a
thermal state.

Discussion

Our observations speak to a natural mapping
between thermalizing quantum mechanical sys-
tems and classical mechanical systems composed
of itinerant particles. Classical statistical mechan-
ics relies on a fundamental assumption: A system
in thermal equilibrium can be found in any micro-
state that is compatible with the thermodynamic
constraints imposed on the system and, as such,
is described by an ensemble of maximal entropy
(41, 42). Although it is vastly successful, classical
statistical mechanics does not itself justify this
entropy maximization for closed systems (13, 41),
and an open-systems approach only defers the

SCIENCE sciencemag.org 19 AUGUST 2016 • VOL 353 ISSUE 6301 799

Fig. 6. Local observables in a globally pure quenched state. (A) In a quench, the ground state |gi
of the initial Hamiltonian (represented in its eigenbasis in the first panel) is projected onto many eigenstates
|ni of the new Hamiltonian. The full quantum state undergoes unitary evolution according to the eigenstate
amplitudes and energies, cn and En, respectively. hEi denotes the full system energy expectation value; ħ
is the reduced Planck’s constant. According to the ETH, the expectation value of observables at long
times can be obtained from a diagonal ensemble (illustrated by the probability weights in the eigenstates
of the quenched Hamiltonian), as well as from amicrocanonical ensemble. (B) Along with themicrocanonical
ensemble, several other closely related ensembles (colored lines) are compared to the data. The dashed
line indicates the expectation value of the full system energy. (C) Thermalization of local observables. For
the different temperatures and subsystems shown, the measured number statistics are in excellent
agreement with microcanonical and canonical thermal ensembles, verifying the thermal character of
the local density matrix (24). A grand-canonical ensemble reproduces the data very well, as long as the
subsystem is small compared with the full system. The error bars are the standard deviation of our
observations over times between 10 and 20 ms. (D) Thermalization occurs even for global quantities

such as the full-system interaction energy hH^inti. The thermalization dynamics as calculated from our
number-resolved images are in close agreement with exact numerical simulation and a canonical
prediction (24). Error bars are SEM.
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question of thermalization to the union of the
bath and the system (6). Although ergodicity
and time-averaging can provide a justification
for entropy maximization in closed classical
mechanical systems, ergodicity is not applica-
ble on the same scale at which statistical me-
chanics is successful, and time-averaging can
require exponentially long times (13, 41, 42).
The latter also obscures the fact that there is
in reality only one system, which, nevertheless,
is well modeled by an entropic ensemble (41).
Our study, as well as recent theoretical work
(11, 12, 35), hint at a microscopic origin for
entropy maximization in a single quantum state,
namely, that which is induced by the entangle-
ment that we have measured. Quantummechan-
ics does not require time-averaging; a single
quantum state yields thermalized local observ-
ables, and these observables cannot distinguish
this thermalized pure state from a mixed thermal
ensemble of the same thermodynamic character.
Our measurements open up several avenues

for further investigation. Instead of operating
with a fixed total system size, it is possible to
study how thermalization and fluctuations de-
pend on the size of the system considered (40).
Conversely, studying integrable Hamiltonians
where thermalization fails (43), as well as the
structure of the associated eigenstate spectrum
of such systems, could allow direct tests of the
relationship between conserved quantities and
thermalization of a quantum state. Lastly, the
application of these tools for characterizing the
presence of thermalization and entanglement
entropy could be powerful in studies of many-
body localization, where one of the key exper-
imental signatures is the logarithmic growth of
entanglement entropy at long times and the sup-
pression of precisely the thermalization that we
have measured in this work (20, 44–47).
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Northward migration of the eastern
Himalayan syntaxis revealed
by OSL thermochronometry
Georgina E. King,1,2* Frédéric Herman,1 Benny Guralnik3

Erosion influences the dynamical evolution of mountains. However, evidence for the impact of
surface processes on tectonics mostly relies on the circumstantial coincidence of rugged
topography, high stream power, erosion, and rock uplift. Using the optically stimulated
luminescence (OSL) thermochronometry technique, we quantified the spatial and temporal
exhumation of the eastern Himalayan syntaxis.We found increasing exhumation rates within the
pastmillion years at thenortheast endof theNamcheBarwa–GyalaPeri dome.Theseobservations
imply headward propagation of erosion in the Parlung River, suggesting that the locus of high
exhumation has migrated northward. Although surface processes influence exhumation rates,
they do not necessarily engage in a feedback that sets the location of tectonic deformation.

T
he topography of mountain ranges results
from the interplay between climate, tectonics,
and surface processes (1). A key aspect of this
interplay is considered to be that surface pro-
cesses may influence the dynamics of actively

deforming mountain ranges through a system
of positive feedbacks involving tectonics and
erosion [reviewed in (2)]. The efficacy of such a
system has been emphasized in analog and nu-
merical experiments (3–5), which predict that
erosion, rather than tectonics, can control the locus
of deformation and exhumation of rocks toward

Earth’s surface (6). However, field evidence that
supports such models is mostly circumstantial
(5–13) and is based on the observation of a spatial
coincidence between rugged topography, high
rates of rock uplift, high precipitation, high stream
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Quantum thermalization through entanglement in an isolated
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driving the thermalization was quantum entanglement.
in a pure state, but smaller subsets of two or three atoms conformed to a thermal distribution. The force 
and Sels). When tunneling along the strings was suddenly switched on, the strings as a whole remained
of six rubidium atoms confined in the wells of an optical lattice (see the Perspective by Polkovnikov 

 used their quantum microscope to study stringset al.quantum laws? To address this question, Kaufman 
is expected to remain so even after quenching. How do we then reconcile statistical mechanics with 

itwill evolve in a way that maximizes its entropy. If the system is in a pure, zero-entropy quantum state, 
Intuition tells us that an isolated physical system subjected to a sudden change (i.e., quenching)

To thermalize, or not to thermalize?
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