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Boundary- Value Problems in Cyli'ndrical Coordinates

The solution of the Laplace equation in cylindrical coordinates is & =
R(p)Q(d)Z(z), where the separate factors are given in the previous section. Con-
sider now the specific boundary-value problem shown in Fig. 3.9. The cylinder
has a radius a and a height L, the top and bottom surfaces being at z = L and
z = 0. The potential on the side and the bottom of the cylinder is zero, while the

. top has a potential ® = V(p, ¢). We want to find the potential at any point inside
the cylinder. In order that ® be single valued and vanish at z = 0,

o(¢) = A sinm¢ + B cosme |
Z(z) = sinhkz '

where v = m is an integer and k is a constant to be determined. The radial factor
is

R(p) = Cl (k) + DN, (k)

If the potential is finite at p =.O, D =.0. The requirement that the potential vanish
at p = a means that k can take on only those special values:
x
Kpn = = =1,2,3,...
o = (n=1,2,3,..)
where x,,, are the roots of J,.(x,,,) = 0.

Combining all these conditions, we find that the general form of the solution
is - : =

o

O, $2) = 3

m=0 n=

] . | (3.105a)
+ B, cosmae)

At z = L, we are given the potential as V(p, ¢). Therefore we have

Vb, ¢) = 2 Sinh(KunL )T n(KinP)(Aren i1 + B,y cOSMP)

2
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This is a Fourier series in ¢ and a Fourier-Bessel series in p. The coefficients
are, from (2.37) and (3.97),

_ 2 cosech(k,n,L) 27 J' ¢ .
Amn - Wazjgn+1(kmna) 4] d¢ 0 dp pV(p, ¢)Jm(kmnp) o m¢

and ‘ (3.105b)

2 cosech(k.L) 2

= X .
B 2T %, 1 (Kpntt) Jo ¢ L dp pV(p, ) m(kmnp) cOs P

with the proviso that, for m = 0, we use %BO,, in the’series.

The particular form of expansion (3.105a) is dictated by the requirement that
the potential vanish at z = 0 for arbitrary p and at p = a for arbitrary z. For
different boundary conditions the expansion would take a different form. An
example where the potential is zero on the end faces and equal to V(¢, z) on the
side surface is left as Problem 3.9 for the reader. -

The Fourier-Bessel series (3.105) is appropriate for a finite interval in p,
0 < p = a. If a > o, the series goes over into an integral in a manner entirely
analogous to the transition from a trigonometric Fourier series to a Fourier in-
tegral. Thus, for example, if the potential in charge-free space is finite for z = 0
and vanishes for z — o, the general form of the solution for z = 0 must be

- ®(p, P, 2) = '20 J:o dk e ] (kp)[A (k) sinm¢ + B,’"(k) cos m¢] (3.106)

If the potential is specified over the whole plane z = 0 to be V(p, ¢) the coeffi-
~ cients are determined by

Vo 6) = 3, || dk 1 An(0) sinm + B0) cosmo]

The variation in ¢ is just a Fourier series. Conseq‘henfly the coefﬁcfents A,.(k)
and B,.(k) are separately specified by the integral relations:

1™ sinme (7 JARED
L v ¢>{Cosm ¢} AT p){Bm(k,)} k' (3107)

These radial integral equations of the first kind can be easily solved, since they
are Hankel transforms: For our purposes, the integral relation,

f: T (kx) T ' %) dx = % 8k’ — k) (3.108)

can be exploited to invert equations (3.107). Multiplying both sides by pJ,.(kp)
and integrating over p, we find with the help of/(3.108) that the coefficients are
determined by integrals over the whole area of the plane z = 0:
An(k)
B,.(k)

k (* 2 .
} T L dpp | déVip, ¢>)Jm(kp){smm¢ (3.109)

cosme

As usual, for m = 0, we must use 3Bo(k) in series (3.106).
While on the subject of expansions in terms of Bessel functions, we observe
that the functions J,(kx) for fixed », Re(») > —1, form a complete, orthogonal
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(in k) set of functions on the interval, 0 < x < . For each m value (and fixed
¢ and z), the expansion in k in (3.106) is a special case of the expansion,

Ax) = fo " A(k),(kx) dk, where A(k) = k fo CxA@L(o) dx  (3110)

An important example of these expansions occurs in spherical coordinates, with
spherical Bessel functions ],(kr) 1=0,1,2,....For present purposes we merely

1‘:(5 = ﬁ Jz+1/;(Z) (3.111)

[Details of spherical Bessel functions may be found in Chapter 9.] The ortho-
gonality relation (3.108) evidently becomes

note the deﬁmtlon

fo ) 2 (kr)jk'r) dr = — 8(k — k") © (3.112)

2k2

The conipleteness relation has the same form, withr > k, k —>r, k' — r'. The
Fourier-spherical Bessel expansion for a given [ is then

oo i ) . 2 2 (oo L
A(r) = fo A(k)ji(kr) dk, where A(k) = 2 jo r’A(r)j(kr) dr (3.113)
. . :
Such expansions. are usefui for current decay in conducting media or time-

dependent magnetic diffusion for which angular symmetry reduces consideration
to one or a few ! values. See Problems 5.35 and 5.36.

3.9 Expansion of Green Functions in Spherical Coordinates

To handle problems involving distributions of charge as well as boundary values
for the potential (i.e., solutions of the Poisson equation), it is necessary to deter-
mine the Green function G(x, x’) that satisfies the appropriate boundary con-
ditions. Often these boundary conditions are specified on surfaces of some sep-
arable coordinate system (e.g., spherical or cylindrical boundaries). Then it is
convenient to express the Green function as a series of products of the functions
appropriate to the coordinates in question. We first illustrate the type of expan-
sion involved by considering spherical coordinates.

For the case of no boundary surfaces, except at infinity, we already have the
expansion of the Green function, namely (3.70):

1 < 4 f r< 12 12
— = 2 > S Y56, ¢')Yin(6, &)
Ix — x| o Wl 21 +1r

-Suppose that we wish to obtain.a similar expansion for the Green function ap-

propriate for the “exterior” problem with a spherical boundary at r = a. The
result is readily found from the i image form of the Green function (2.16). Using
expans1on (3 70) for both terms in (2.16), we obtain:

L 1/ 2\ .
20+ 1 [tﬂ T2 (a_> ]Y,m(e', ¢ Y56, $) (3.114)

a \rr

G(x, x)—4fn'2




