CHAPTER

SIX
ASYMPTOTIC EXPANSION OF INTEGRALS

In five minutes you will say that it is all so absurdly simple.

—Sherlock Holmes, The Adventure of the Dancing Men
Sir Arthur Conan Doyle

6.1 INTRODUCTION

The analysis of differential and difference equations in Chaps. 3 to S is pure local
analysis; there we predict the behavior of solutions near one point, but we do not
incorporate initial-value or boundary-value data at other points. As a result, our
predictions of the local behavior usually contain unknown constants. However,
when the differential or difference equation is soluble, we can use the boundary
and initial data to make parameter-free predictions of local behavior.

Example 1 Effect of initial data upon asymptotic behavior. The solution to the initial-value prob-
lem y” = y [y(0) = 1, y'(0) = 0] is y(x) = cosh x. Local analysis of the differential equation y” = y
at the irregular singular point at x = co gives two kinds of possible behaviors for y(x) as
X — 400 y(x)~ Ae* (x > + o0), where 4 is some nonzero constant, or, if 4 =0, y(x) ~ Be™*
(x > 4 00), where B is some constant. Since the equation is soluble in closed form, we know from
the initial conditions that 4 = 4. Similarly, if the initial conditions were y(0) =1, y'(0)= —1, we
would find that 4 =0and B= 1.

In very rare cases, it is possible to solve a differential equation in closed form.
There, as we have seen in Example 1, it is easy to incorporate initial or boundary
conditions. Among those equations that are not soluble in terms of elementary
functions, it is sometimes possible (though still very rare) to find a represen tation
for the solution of the equation as an integral in which the independent variable x
appears as a parameter. Typically, this integral representation of the solution
contains all of the initial-value or boundary-value data. In this chapter we will
show how to perform a local analysis of integral representations containing x as a
parameter. We will see that the local behavior of the solution y(x) is completely
determined by this analysis of the integral and contains no arbitrary constants.

Example 2 Integral representation of a solution to an initial-value problem. The solution to the
initial-value problem y'=xy+1 [y(0)=0] can be expressed as the integral y(x)=
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€' 5 ™2 dr. This integral representation implies that y(x) ~ \/7/2 €%/ (x —» + c0) because
lim,. ., [se ™ dt = |9 e dt = /n/2. Note that a direct local analysis of the differential
equation y' = xy + 1 predicts only that y(x) ~ Ae*/? (x > + o0) (Where 4 is unknown) because it
does not utilize the initial condition y(0) = 0.

Here is a more striking example of the usefulness of integral representations.

Example 3 Integral representation of a solution to a boundary-value problem. Consider the
boundary-value problem

xy” +2y=0, y(0)=1, y(+o0)=0. (6.1.1)

The problem is to find the behavior of y(x) as x — + c0. Using the techniques of Chap. 3, local
analysis gives three possible behaviors of y(x) for large positive x: y(x) ~ Ax!3¢™3wx/2
(x = + o), where w is one of the cube roots of unity: 1, (-1 £ i\/g)/Z. The condition y(+ o) =0
implies that we must choose w = 1 to avoid the exponentially growing solutions. Therefore, the
solution to (6.1.1) satisfies

P(x) ~ Ax1Be 3 x o 4 oo, (6.1.2)

Here A is a constant that cannot be determined by the methods of Chap. 3.
However, this problem is rigged; there is a delightful integral representation for the solution
of the boundary-value problem (6.1.1):

© x .
X)= exp|—t ——=|dt. 6.13
w9={"exp( -~ ) (6.13)
Notice that this integral satisfies the boundary conditions y(0) = 1 (set x = 0 and evaluate the
integral) and y(+c0) = 0. (Why?) To prove that (6.1.3) satisfies the differential equation when
x > 0, we differentiate three times under the integral sign and integrate the result by parts once
(see Prob. 6.1).

The integral representation (6.1.3) can be used to evaluate the constant 4 in the asymptotic
behavior (6.1.2) of the solution y(x). Laplace’s method (see Sec. 6.4 and Prob. 6.31) gives
A= 7[”222/33—1/2.

Example 4 Integral representation for n!. The factorial function a, = (n — 1)! satisfies the first-
order difference equation a,, , = na, (a, = 1). The direct local analysis of this difference equation
in Sec. 5.4 gives the large-n behavior of a, (the Stirling formula) apart from an overall multi-
plicative constant: a, ~ Cn"e™"n" /2 (n — c0). The constant C is determined by the initial condi-
tion a, = 1 which cannot be used in the analysis of the difference equation at n = co.

The integral representation (2.2.2) for a,, a, = [§ t"~'e™" dt, is equivalent to both the differ-
ence equation and the initial condition. When n is large, the asymptotic behavior of this
integral may be found using Laplace’s method (see Example 10 in Sec. 6.4). The result is
C=/n

Example 5 Integral representation for the solution of a difference equation. The solution of the
initial-value problem

n+1)a,,,=2na, — na,_,, a,=1,a,=0, 6.1.4
n+1

may be expressed as an integral which is equivalent to the difference equation together with the
initial conditions:
1 @
a,=— [ eI 21 dr, (6.1.5)

ntly

where J, is the Bessel function of order zero (see Prob. 6.2).
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Local analysis of the difference equation gives two possible behaviors for large n,
a,~A, exp (£ 2i\/;)n‘ % (n — + o0), where the constants 4 , cannot be determined. However,
an analysis of the integral representation (6.1.5) using Laplace’s method (see Prob. 6.32) shows
that

a,~Je/nn Y cos 2 /n—4in), n- +co. (6.1.6)

The asymptotic expansion of integral representations is an extremely impor-
tant technique because all of the special (Bessel, Airy, gamma, parabolic cylinder,
hypergeometric) functions commonly used in mathematical physics and applied
mathematics have integral representations. The asymptotic properties of these
special functions are derived from their integral representations. Many of these
properties are used in Part IV to obtain the global behavior of general classes of
differential equations whose solutions are not expressible as integrals.

Sometimes, an integral representation of the solution to a differential equa-
tion is derived by following the systematic procedure of taking an integral (Fou-
rier, Laplace, Hankel) transform of the equation. However, many integral
representations are the product of imaginative guesswork. Unfortunately, apart
from a small number of equations, one cannot hope to find integral representa-
tions for the solutions. This chapter is concerned only with the local analysis of
integrals and not with the construction of integral representations. After all,
discovering an integral representation is the same as solving the equation in closed
form in terms of known functions, and this book is primarily concerned with those
equations which cannot be solved exactly. Thus, the construction and subsequent
expansion of integral representations is not a general method of global analysis.
That is why, although the examples in this chapter provide a first glimpse of how
to obtain global information about the solutions to differential and difference
equations, we include this chapter in Part II, Local Analysis, rather than in Part
IV, Global Analysis. This chapter concerns the local analysis of integrals rather
than the global analysis of differential and difference equations.

6.2 ELEMENTARY EXAMPLES

It is sometimes possible to determine the behavior of an integral without using
any techniques beyond those introduced in our first exposure to asymptotic
analysis in Chap. 3. Consider, for example, the integral
2
I(x) = | cos [(xe + x?)!] dt.
0
It is hard to evaluate this integral in closed form when x is nonzero. However, to
determine the leading behavior of I(x) as x — 0, we simply set x =0 in the
integral and do the trivial integration. The result is I(x) ~ 2 (x — 0).
More generally, suppose we are asked to find the leading behavior of the
integral
b
1(x)=J fx,t)dt  asx— xq.

a
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If it is given that
£t x) ~ folt), X = Xo,

uniformly for a <t < b [that is, im,_, ., f(t, x)/fo(t) = 1 uniformly in ¢], then the
leading behavior of I(x) as x — x, is just
b

I(X)=_[ I, x)dt~jbfo(r) dt,  x-x,, (6.2.1)

a

provided that the right side of this relation is finite and nonzero. (See Prob. 6.3 for
the details of the argument.)

This simple idea may be easily extended to give the full asymptotic expansion
of I(x) as x — xq. If f(¢, x) possesses the asymptotic expansion

£t x)~ i Fl)x = xo)", x—xo,

for some a > 0, uniformly for a <t < b, then

b @©

[ e x)de~ ¥ (x - xop” jb L) d,  x-oxe  (622)

n=0 a

provided that all the terms on the right are finite (see Prob. 6.3). In the following
examples we illustrate the use of formulas (6.2.1) and (6.2.2) and introduce some
new twists that extend the applicability of these elementary ideas.

Example 1 f} [(sin tx)/t] dt as x —»0. Since the Taylor expansion (sin tx)/t = x — x3t?/6 +

xt4/120 — -+~ converges uniformly for 0 <t < 1, |x| < 1, it follows that
o' sin tx 1
' di~x——x>+—x*=-, x>0
‘o t 18 600

The series on the right converges for all x.

Example 2 {5 ¢t™'2¢™" dt as x — 0+. The expansion

!—1/28—1 =" V2 _ ll/Z + %13/2 —%tS/Z .

converges for all ¢t # 0 but does not converge at t =0. However, this series is asymptotic
uniformly for 0 <t < x as x — 0+. Thus, term-by-term integration gives
x
£ de ~ 2x M2 = 3 4 xS xR e x50+, (6.2.3)
‘o
This result can be rederived by substituting s = t/? in the integral:
VX vx
l V2t dr =2 J e~ ds.
‘o 0

-5

The Taylor expansion of e does converge uniformly for 0 <s < 1, so

VA vE
' e"‘zd5=f 1—s?+4s* 4+ ---ds
‘o ‘o
=[5 = 45® + 155° — 7 + - I,
which reproduces (6.2.3).
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—s

Example 3 {? e™" dt as x — 0. Term-by-term integration of the convergent Taylor series
e =1-1t*+4% L' 4. gives a divergent result. The proper way to apply (6.2.2) is to

write
© © .
j e"‘dt:J’ e-"dz—f e dt
x 1] 0

and then to substitute the Taylor series only in the second term on the right. The result is
@
[ e dr=T() - x + 4 = x4+ Fx? =, (6.2.4)
“x
where we have used the substitution s = ¢* to obtain
© ©
J’ e dr =14 J’ s7¥emsds = 4T (3) =T(3)
0 0

The series (6.2.4) converges for all x, although it is not very useful if |x| is large (see
Example 2 of Sec. 6.3).

Example 4 Incomplete gamma function T'(a, x) as x - 0+. The incomplete gamma function
I'(a, x) is defined by I'(a, x)=[? t°"'e”"dt (x > 0). To discuss the behavior of (g, x) as
x — 0+, we distinguish three cases: (a) a > 0; (b) @ < 0 but nonintegral; and (c)a=0, —1, -2,
—3,.... Only cases (b) and (c) present new difficulties.

(@) a> 0. As in Example 3, we find that
[(a, x) = | et dt . T (I Tals TaR S ¥
‘o ‘o
el xa+n
- | 6.2.5
ey (62.5)

where the series converges for all x.
(b) @ <0 but nonintegral. In this case we write

(g, x)= J'm -

x

+ fm [ i —t)"J (6.2.6)

‘o

1—t+- +(—1)I:]dr—| t"["—i( r]dz

n=o n!

where N is the largest integer less than —a. Notice that all three integrals on the right side of
(6.2.6) converge. The first two integrals may be performed term by term and the third may be
done by repeated integration by parts (see Prob. 6.4):

J': et [e-' _ Zo(_;fl} dt = (). (62.7)

We conclude that the series in (6.2.5) is still valid for this case.
There is a slightly simpler derivation of (6.2.5) for case (b) which uses the relation

0l(a, x)/0x = —x°~'e™*. Integrating the series expansion of x*~'e™* gives
N xen
I'(a,x)~ C — ~-1p—, -0+,
(a.x) ,.;) (=1 n!(a+ n) *

for some constant C. The value C = I'(a) is determined by evaluating an integral like that
in (6.2.7).
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() a=0, —1, =2, .... For simplicity, we consider the case a = 0:

which is the exponential integral. Since
dE\(x)/dx = —e™%/x = —1/x + 1 = 3x +§x? — -+,
we have
Ex)~C—-Inx+x—4?+fpx3> -, x-0+,

where C is a constant. Note the appearance of the function In x in this series.
Next, we compute C. From (6.2.8) we see that E,(x) + In x ~ C (x > 0+), so
@© -t
C= lim (‘. ert+lnx)

x=0+ \"y

==

where y = 0.5772 is Euler’s constant [see Prob. 6.5(a)}.
The expansion of E,(x) may be obtained more directly by writing

YR Sy R L R LW

o

The first integral on the right equals —In x + In (1 + x) = —In x + x — 4x? + §x* — -

(6.2.8)

(6.29)

(6.2.10)

-, the

second integral equals —y [see Prob. 6.5(b)], and Taylor expanding the third integrand gives

x 1 \1 1 5
J (e"’—-————) dt=—-x?+ =x>— -
o t+1

Combining these results recovers (6.2.8) with C = —y. More generally, ifa= —~N (N =0, 1,

2,...), then a similar analysis (see Prob. 6.6) gives

)~+1 © XN
(=N, x)~Cy + lnx—ngo(——l)"n-!——(n_—m, x—=0+, (6211)
nEN
(_ 1)N+ 1 N 1
where Cy= T (y - El ;), N>0, (6.2.12)
and C, = —y. This series contains the function In x, a new feature not found in the series

(6.2.5). The appearance of a logarithmic term when a =0, —1, —2, ... is reminiscent of the
special cases of the Frobenius method for differential equations in which logarithms also

appear.

6.3 INTEGRATION BY PARTS

Integration by parts is a particularly easy procedure for developing asymptotic
approximations to many kinds of integrals. We explain the technique by applying

it to a variety of problems.

Example 1 Derivation of an asymptotic power series. 1f f (x) is differentiable near x = 0, then the
local behavior of f (x) near 0 may be studied using integration by parts. We merely represent f(x)
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as the integral f (x) = f(0) + [5 f'(¢) dt. Integrating once by parts gives

Fx)=/0)+ (= x)f'(t)

", J,, (x — t)f"(t) dt

=f0)+x'0)+ | (x—rt)f"(e)de.
‘o
Repeating this process (N — 1) times gives
—_ o X' (Vl)o ! * Ne(N+1) d
S = 0+ g [ -0 de
If the remainder term (the integral on the right) exists for all N and sufficiently small positive x,

then
S6)~ T ZfM0), x>0+,

n=0
Why ? Moreover, if this series converges, then it is just the Taylor expansion of f(x) about x = 0.
Example 2 Behavior of [ e *dt as x — +c0. We have already found the behavior of the
integral

)= e*at (63.1)
for small values of the parameter x. In Example 3 of Sec. 6.2 we showed that

I(x)= [ e dt— | (I—e*+ 38 =224 ) de
b N
=T(3)— x + 45 — fgx® + Hx12 =, (6.3.2)
Although the series (6.3.2) converges for all x, it is not very useful if x is large (see Fig. 6.1).

In order to study I(x) for large x we must develop an asymptotic series for I(x) in inverse
powers of x; to wit, we rewrite (6.3.1) as

1,°1d
= (et
I(x)= 4L sl
and integrate by parts:
1 © 321
_ 1t —_ PR o
I(x)= yreid I 4[( el dt
L. 321 _,
=a5e _ZL setdr (63.3)
° 1 . S 1
But ' J‘ e dt<x—“J e dt=;;1(x)<<1(x), X = + 0,
so the leading behavior of I(x) is
1
I(x) ~ 4—x,e"‘, X = + 0. (6.3.4)

Repeated integration by parts gives the full asymptotic expansion of I(x). To systematize the
argument we define the integrals
° 1,
1(x) = e (63.5)

n
x
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B Eleven-term Taylor series |
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X

Figure6.1 A comparison of small-x and large-x approximations to I(x) = [* exp (—t*) dt. The small-x
approximation to I(x) is the Taylor series in (6.3.2) which converges for all x. The large-x
approximation to I(x) is the asymptotic series in (6.3.8) which is valid as x — + 0. All approxima-
tions to I(x) are normalized by dividing by I(x). It is clear that the truncated asymptotic series is useful
in a much larger region than the truncated Taylor series.

Now, (6.3.3) becomes I(x) = e™~'/4x> — 2I,(x). Integrating

1 14,
I(x)= —Z‘ t""‘-:sd—te dt
by parts gives
@ 3\ . ® .
I,(x) t‘"lﬂe"‘ - (n +Z)‘ t—me“‘ dt
=g = [ 3 e (636)
Therefore,
I R 360 _emay o L, B - (4n = 5)
0= '3 Ty ey TV @y
+(- 1r--——(3)(7)(“)4;' G =1} ), (63.7)

which is an identity valid for all x > 0.
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The integrand of (6.3.5) is positive, so I, ,,(x) > 0 for x > 0. Thus, (6.3.6) implies that

— x4

e -, X — +00,

TN
IO < g™ < e

X

so the term proportional to I,(x) in (6.3.7) is asymptotically much smaller than the last retained

term in square brackets in (6.3.7). Therefore, the full asymptotic expansion of I(x) is

G)xmnat) - @4n-1)
(@Ax*y

The accuracy of this asymptotic approximation and its advantage over the convergent series in

(6.3.2) when x > 1 is demonstrated in Fig. 6.1.

1 . >
I(x) ~ @e”‘ 1+ Y (=1y ,  X—> too. (6.3.8)
n=1

Example 3 Behavior of [t "' dt as x - + co. We may use integration by parts to find the
behavior of I(x) = [§ ¢~ '/%e™" dt for large x, but we must be careful. Immediate integration by
parts gives an indeterminate expression which is the difference of two infinite terms:

x

0

[ =3 ar. (63.9)

X
I(x) = | T2 dr = — 727
‘o ‘o

N

It is best to express I(x) as the difference of two integrals:
x ® ©
j ™2 dr =J "2 dy —‘[ ™27t dr.
0 o x

The first integral on the right is finite and has the value I'(})= ﬁ; the second may be
integrated by parts successfully because the contribution from the endpoint at co vanishes:

[x Ve dr = Ju 4 |~m t‘”zi(e") de
‘o “x de

-x @
N s [ e ar
Jx o2k
Repeated use of integration by parts gives the full asymptotic expansion of I(x) (see Prob. 6.11):

OHE)E) - @n-1)
(2xy '
The general rule to be learned from this example is that integration by parts will not work if
the contribution from one of the limits of integration is much larger than the size of the integral.
In this example the integral I(x) is finite for all x > 0, but the endpoint t = 0 contributes a
spurious infinity in (6.3.9).

x

'xz'”ie—'dmﬁ—f 1+ i (-1y
Rk

‘o

X - + 0. (6.3.10)

Example 4 Behavior of [§ ¢’ dt as x - + 0. Here, it is wrong to write |3 ¢ dt = |5 ¢ dt —
| € dt because the right side has the form oo — co. But it is also wrong to integrate directly by
parts:

- 1*1d
| etdr==| - ()t
‘o 20, tadt
1 | x 1 0=
=—¢" +—' t~2e" dt,
2t o 27

which also has the form oo — c0. To obtain a correct asymptotic expansion of this integral about
x = o0, we introduce a cutoff parameter a and write the integrals

[xe«’ dt = |'ae*‘ dr + "xe-’.d: (63.11)
‘o ‘o “a
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for some fixed 0 < a < x. We will see that for fixed a, the full asymptotic expansion of (6.3.11) is
independent of the first integral on the right and is also independent of the cutoff a!
We begin our analysis by expanding the second integral on the right side of (6.3.11):

[ea-tol 1 Lo

|
=—e'——e" +-| Setdr 6.3.12
. e ! p (63.12)

Note that § [¥ e” dt/t? < /2x (x —» +0) because by 'Hopitals rule

i Lfre 2 e i x "2 0
im 22— = lm ———— =0.
xvtw  xTle¥ st (2= x72)e
a x
Also, [ erdr<| etdr, x—+a,
‘o )
——e"z«Le"' X— 400
2a 2 ! ’

Hence, from (6.3.11) and (6.3.12) we have
Y [
| etdt~—e"  xo +o, (63.13)
‘o 2x

which is the leading asymptotic behavior of the integral. Observe that integration by parts works
because the endpoint contribution in (6.3.12) from t = a is negligible compared with that from
t=xwhen0<a<x

Repeated integration by parts in (6.3.12) establishes the full asymptotic expansion of
f& ¢ dt as x —» + 0 (see Prob. 6.11):

i )B)5) - (2n 1)
= (@x?y '
Notice that the arbitrary cutoff a does not appear in this asymptotic expansion. In fact, the

endpoint contributions from t = a are exponentially smaller than those from ¢ = x after any
number of integrations by parts.

[ ¢ dt ~ X = + 0. (63.14)

‘o

Example 5 Behavior of integrals of Airy functions. The asymptotic expansion of the integral
{5 Ai (t)dt as x - + o0 is obtained by following the procedure of Example 3. First, we write
{5 Ai (t) dt = § — §2 Ai (t) dt. [Here we have used the property of Ai (¢) that {5 Ai (t) dt = §; see
Prob. 10.20.] ThlS decomposition avoids endpoint contributions (from ¢ = 0) that are larger than
the integral itself. Next, we integrate by parts using Ai” (t) =t Ai (¢), the differential equation
satisfied by the Airy function:

[ Ai)yde= _{m ;Ai" (t) dt

x x

1
= - A’
t i

0 ®
+| t—ZAi'(t)dt.

1
But Al (x)~ ——=x4e 273 x40,
) 2/n



ASYMPTOTIC EXPANSION OF INTEGRALS 257

© AL 1
and -[, AU (| < Jx AV (1) de| = 5 Ai (x)
B N
2/n ’
® 1
Thus, [ Ai (t) dt ~ 5 R (63.15)
N T

x

The full asymptotic expansion of §? Ai (t) dt as x — + oo is most easily obtained by using the
differential equation y” = xy’ that it satisfies to find suitable recursion relations (see Prob. 6.12).
Another Airy function integral is [§ Bi (t) dt. The asymptotic behavior of this integral as
x — 40 may be found by following the procedure in Example 4. First, we write [§ Bi (¢) dt =
f4 Bi (t) dt + {7 Bi (t) dt, where 0 < a <x, in order to avoid infinite endpoint contributions.
Then, integrating by parts in the second integral on the right using Bi” (t) = ¢ Bi (t) gives

[ " Bi () de = | ;Bi" (t) dt

LBy (x) IB"()+|‘XlB"(t)dz
=-Dl (X)——-D1 @ — b1 .
x a e

Next, we note a number of asymptotic relations:

1 1
- Bi' (a) <= Bi' (x), X+,
a X

[ Bi()di<| Bi()d, x-+o,
‘o ‘o

* 1
[ 3 BI () dt < B (x), X+,
X

this last asymptotic relation following from I'Hopital’s rule, and

. 1
Bi (x) ~——x" 1/482::3’2/3, X — + 00,
n

1
Bi’ (x) ~ —= x 114213, X = + 0.
T

From this heap of asymptotic inequalities we deduce that

x 1
Bi (t)dt ~ —=x"34e*"3 x5 40 (6.3.16)
I NG

(see Prob. 6.13).
Since integration of one-signed asymptotic relations is permissible (see Prob. 3.28), (6.3.16)
could have been obtained by integrating the asymptotic behavior of Bi (x):

x l X
Bi (t)dt ~—= | t Y42 dt,  x— +o0.
'[o ﬁ Jo
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Integration by parts gives, for any a > 0,

- X X d
(TR gp = | T3 2003 gy
Y de

a
x 3 .x
= V23| : l - T4e20R13 gy

and (6.3.16) is easily recovered.

Integration by Parts for Laplace Integrals
Until now we have only considered integrals where the parameter x appears as a
limit of integration. A Laplace integral has the form

1uy5ffmfwdz (63.17)

in which x appears as part of the integrand.
To obtain the asymptotic behavior of I(x) as x - + oo, we try integrating by
parts:

l(x)=i—£ i:—((tt)) di[exm] dt
_1 SO ol 1" 4SO cou
= 70 o0 “"'m[(J@MW' (6.3.18)

(We assume that the new integral on the right exists, of course.) The formula in
(6.3.18) is useful if the integral on the right side is asymptotically smaller than the
boundary terms as x — oo. If this is true, then the boundary terms in (6.3.18) are
asymptotic to I(x):
( ) 1 f(b) ¢(b) _ 1 f_(azexd’(a)’
o'(b ) x ¢'(a)
In general, (6.3.19) is a correct asymptotic relation if ¢(¢), ¢’'(¢), and f(t) are
continuous (possibly complex ) functions and one of the following three conditions
is satisfied:

Xx— +o.  (63.19)

1. ¢'(t)#0 (a<t<b) and at least one of f(a) and f(b) are not zero. These
conditions are sufficient to ensure that the remainder integral on the right side
of (6.3.18) exists. Once we know that this integral exists we can prove (see Prob.
6.15) that it becomes negligible compared with the boundary term in (6.3.18) as
x — oo and therefore that (6.3.19) is valid.

2. Re ¢(t) < Re ¢(b)(a <t < b),Re ¢'(b) # 0, and f (b) # 0. These conditions are
insufficient to imply that the integral on the right side of (6.3.18) exists. Never-
theless, they are strong enough to ensure that

L0
I(x) x50 e X — +o00. (6.3.20)

This result is explained using Laplace’s method in Sec. 6.4 [see (6.4.19b)].
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3. Re ¢(t) <Re ¢(a) (a <t <b), Re ¢'(a) # 0, and f(a) # 0. As in condi tion 2,
these conditions are again insufficient to imply that the integral on the right
side of (6.3.18) exists, but they are strong enough to ensure that

@ e L (6321)

0~ =@

[see (6.4.19a)].

Example 6 Leading behavior of simple Laplace integrals. Using the formulas in (6.3.19) to
(6.3.21) we have

2 cosh 2
a Feosht gp o = , +o0;
()I, x sinh 2 7
3 cosh2 3
N &
O eoia ST e
oy 2x sinh 3 cosh 3

If the integral on the right side of (6.3.18) meets one of the three conditions
stated above, we may continue integrating by parts. Apparently, each inte gration
by parts introduces a new factor of 1/x; for example, if Re ¢(b) > Re ¢(a) the full
asymptotic expansion of I(x) in (6.3.17) has the form

I(x)~e*® ¥y A, x7" x> +oo0. (6.3.22)

n=1

Failure of Integration by Parts

The method of integration by parts is rather inflexible; it can only produce asymp-
totic series of the form in (6.3.22) which contain integral powers of 1/x. However,
Laplace integrals like I(x) in (6.3.17) can have large-x asymptotic expansions
which contain fractional powers of x. It is clear, therefore, that the method of
integration by parts is inadequate to find the asymptotic expansion of all such
integrals. If we have no prior knowledge of the correct expansion of an integral,
how then do we know whether or not integration by parts will work ? Generally,
the symptoms that integration by parts is breaking down are easy to detect and
interpret: when integration by parts produces an integral which does not exist it is
not working. We know that integration by parts is about to fail when ¢'(¢) has a
zero somewhere in a < ¢t < b. Here are some examples.

Example 7 Failure of integration by parts for {3 e~ dt. The integral |7 ™™ dt has the exact
value %m Since its asymptotic behavior as x — + co is not an asymptotic series of powers of
1/x like that in (6.3.22), we expect integration by pasts to fait. Comparing this integral with the
general form in (6.3.17) shows that ¢(r} = —t2. Since ¢'(t) = —2¢ vanishes at ¢ = 0, integration
by parts gives a nonexistent integral,

— xt¥ oo o
| = [ 3 e dt,
o ‘o 2xt

CJ ez _ tco l ) S _
J. e d’t—Jo (Tz)(—kte yde =

° —_

—2xt

a sure sign that integration by parts is not applicable.
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Example 8 Failure of integration by parts for [§ e” =™t dt. For this integral ¢(t) = —sinh® ¢.
Since ¢'(t) vanishes at t = 0, we do not expect that integration by parts will be useful for finding
the large-x behavior of this integral.

In Example 6(b) of Sec. 6.4 we will use Laplace’s method to show that the leading behavior
of this integral as x — + oo is +./7/x.

Example 9 Leading behavior of {§ In (1 + t) e™**"™** 4t For some integrals, integration by parts
yields several terms in the expansion of I(x) and then breaks down. The integral I(x)=
@ In (1 + ) e”*="*** dt has this property. For this integral f(t) = In (1 + t) and ¢(t) = sinh? .
Thus, although ¢'(t) = sinh (2¢) vanishes at ¢t = 0,/ (¢) also vanishes there. As a result, it is correct
to integrate by parts once:

1 ®In(l+¢)d
1 _— —x sinh? 1
) xjo sinh (2t) d ( ) de
Q40 ], 17 dln(l+t)]  sinnis
M7 —xan z A MU T U - xsinnze g, 6.3.23
x sinh (2t) o * xJ'o dt sinh (2t) ¢ ( )

Using Laplace’s method, one can show that the last integral on the right vanishes like x ~32 as
X — 40 (see Prob. 6.33). Hence, I(x) ~ 1/2x (x > + co0). Thus, integration by parts gives the
leading behavior of I(x) correctly. However, integration by parts cannot be used to find the next
term in the asymptotic expansion of I(x) for large x because the next term is proportional to
x~3/2 which is not an integer power of 1/x.

Example 10 Stieltjes integral. Integration by parts is useful for finding the behavior of the
Stieltjes integral (see Sec. 3.8):

for small positive x but not for large x. (The Stieltjes integral is not a Laplace integral.)
To derive the small-x behavior of I(x), we organize the integration by parts so that one new
factor of x is introduced at each stage:

® 1 d
I(x) —j —e ' dt

o l4+xtde
l @© @©
= ———¢¢ _xj ____z_e—r
L+xt | o (1 +xt)
1 ° ® 1
=l4x——se™| +2x2| ——e " dt
x(1+xt)’e o jo (1 +xt)?
=l—-x+2Ix? =4 (=1y " Yn—1)x""!
© 1
—1yn! ————e " dt
yn jo (1+xt)"”e

Since this procedure works for all n, we have successfully derived the full asymptotic behavior of
I(x) for small x: I(x) ~ Y= (—1)n! x" (x - 0+).

Now let us see how integration by parts fails to give the large-x behavior of I(x). If
integration by parts did work it would have to introduce an additional factor of 1/x at each stage.
Thus, our best hope is to write I(x) = (1/x) 5 e *(d/dt) In (1 + xt) dt and to use integration by
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parts to obtain I(x) = (1/x) [ e”* In (1 + xt) dt. Integrating by parts once again gives

I(x)= % .[: e-"_j_t[(l + xt) In (1 + xt) — (1 + xt)]
=Lz + Lz [‘” e '[(1 + xt) In (1 + xt) — (1 + xt)] dt.
P X" g

Have we shown that the leading behavior of I(x)is x? (x - +00)? No, because the last term on
the right is not small compared to x~2. In fact

fim [w e™[(1 + xt) In (1 + xt) — (1 + xt)] dt = oo (63.24)
‘o

x= 4o

(see Prob. 6.16).

To understand why integration by parts has failed we need only recall [see Example 3 of Sec.
3.8 and Prob. 3.39(i)] that I(x) ~ (In x)/x (x - + c0); the large-x behavior of I(x) is not a power
series in 1/x.

6.4 LAPLACE’S METHOD AND WATSON’S LEMMA

Laplace’s method is a very general technique for obtaining the asymptotic
behavior as x — + oo of integrals in which the large parameter x appears in an
exponential:
b
Ix)= [ £ d. (64.1)
Here, we assume that f'(t) and ¢(t) are real continuous functions. Integrals of this
form are called Laplace integrals and were introduced in Sec. 6.3.

Laplace’s method rests on an important idea involved in many standard
techniques of asymptotic analysis of integrals, such as the methods of stationary
phase and steepest descents which are discussed in Secs. 6.5 and 6.6. The idea is
this: if the real continuous function ¢(t) has its maximum on the intervala <t <b
at t = c and if f(c) # 0, then it is only the immediate neighborhood of t = c that
contributes to the full asymptotic expansion of I(x) for large x. That is, we may
approximate the integral I(x) by I(x; €), where

cte

0= [ a (6.4.2a)
ifa<c<b,
I(x; ¢) = jm F(t)e* de (6.4.2b)

a

if the maximum of ¢(t) is at t = 4, and

I(x;6) = | " e de (64.2¢)

b—e
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if the maximum of ¢(t)is at t = b. Here ¢ may be chosen to be an arbitrary positive
number (such that the restricted integration range ¢ — ¢ <t < ¢ + ¢ is a subinter-
val of a <t <b). It is crucial that the full asymptotic expansion of I(x; ¢) as
x— +00 (1) does not depend on ¢ and (2) is identical to the full asymptotic
expansion of I(x) as x — + co. Both of these rather surprising results are true
because (we assume here that a < c <b) |[57° f(£)e™® dt| + | [24. f(t)e*® dt|
is subdominant (exponentially small) with respect to I(x) as x — + co. This is so
because for all ¢ on the intervalsa <t < c—¢eand ¢ + ¢ <t < b, e**” is exponen-
tially smaller than ** as x — + 0. To show that I(x) — I(x; ) is subdominant
as x - + 00, we use integration by parts (see Prob. 6.23). The result that I(x) —
I(x; €) is subdominant as x — + oo sometimes holds even if f(c) = 0; we discuss
this point later.

It is helpful to approximate I(x) by I(x; &) because ¢ > 0 may be chosen so
small that it is valid to replace f(¢) and ¢(r) by their Taylor or asymptotic series
expansions about t = c.

Example 1 Leading behavior of [§° (1 +t)"'e™™ dt as x - +o0. We use Laplace’s method to
approximate this integral. Here ¢(t) = —¢ has a maximum in the integration region 0 < ¢ < 10 at
t = 0. Therefore, we may replace the integral by

I(x;€) = [l (1+¢) te ™ dr

To

for any & > 0 at the cost of introducing errors which are exponentially small as x - + co. Next
we choose ¢ so small that we can replace (1 +¢)”! by 1, the first term in its Taylor series
about t = 0. This replacement makes the integral easy to evaluate. Thus,

10 e
[ (1+1)y e dr~J. e ™ dt = (1 —e *)/x, X — +o00.
‘o 0

Since e " « 1 as x - +co for any &€ > 0, we obtain

.10 1

| (40 te™di~=, x> +oo. (6.4.3)
LR x

Note that the final result in (6.4.3) does not depend on the arbitrary parameter ¢; ¢ appears in a
subdominant term only.

Example 1 (revisited) Full asymptotic expansion of [§° (1 +t)'e™™ dt as x » + 0. Laplace’s

method gives the full asymptotic series expansion of this integral. As in Example 1, we can replace
10, the upper limit of integration, by ¢ < 1 and introduce only exponentially small errors as
X — +oo. Instead of replacing (1 + ¢t)~* by 1, as we did in Example 1, we use the full Taylor
expansion (1 +t)™! =Y (—t)", which converges for |¢| < 1:

I(x;€) = J'o (1+1) e~ = dt = go jo (=t)e= dr.

The easiest way to evaluate the integral [§ (—t)'e”™dt for any n is to replace it by
& (—ty'e™* dt. It may seem surprising that it is valid to replace the small parameter £ by co'!
However, this replacement introduces -only exponentially small .errors as x— +.co tbecause the
integral from & to oo is subdominant with respect to [§(—i)le™™ dt=(—1)ym!x"""" as
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x — + co0. We verify this using integration by parts; integration by parts gives

J (—t)e™* dt ~ (—&)e ¥/x, X = 400,

e
which is indeed exponentially smaller than [ (—t)"e”*dt as x > +oco. Assembling these
results, we obtain the full asymptotic expansion of [§° (1 + t)”'e™* dt as x > +oc0:

10 ©
[ (4o te™di~ ¥ (—1pnlx"7Y x40, (6.4.4)
‘o n=0

Let us pause a moment to review the procedure we have just used. There are
three steps involved in Laplace’s method applied to an integral I(x). First, we
approximate I(x) by I(x; ¢) by restricting the original integration region to a
narrow region surrounding the maximum of ¢(t). Second, we expand the func-
tions f(t) and ¢(t) in series which are valid near the location of the maximum of
¢(t). This allows us to expand I(x; ¢) into a series of integrals. Finally, the most
convenient way to evaluate the integrals in the series for I(x; ) is to extend the
integration region in each integral to infinity. It is this third step that is hardest to
grasp. It may seem foolish to first replace the finite number 10 in Example 1
(revisited) by € and then to replace ¢ by co ! However, we must choose ¢ to be small
in order to expand the integrand of I(x; ¢) and thereby obtain a series. We then let
the integration region become infinite in order to evaluate the terms in the series.
Each time we change the limits of integration, we introduce only exponentially
small errors. Note that had we not replaced the integration limit 10 by ¢ < 1, we
could not have used the Taylor expansion for (1 + t)™ !, which is only valid for
[t] < 1.

Watson’s Lemma

’Pon my word, Watson, you are coming along wonderfully.
You have really done very well indeed.

—Sherlock Holmes, A Case of Identity
Sir Arthur Conan Doyle

In Example 1 we obtained the asymptotic expansion valid as x - + oo of an
integral which belongs to a broad class of integrals of the form

b
Ix)=| f()e™dt, b>0. (6.4.5)

Y
There is a general formula, usually referred to as Watson’s lemma, which gives the
full asymptotic expansion of any integral of this type provided that f (t) is contin-
uous on the interval 0 <t < b and that f(¢) has the asymptotic series expansion

fe)~t ) ait’,  t-0+. (6.4.6)
n=0



Note that we must require that « > —1 and § > 0 for the integral to converge at
t = 0. Note also that if b = + oo, it is necessary that f () < e” (t - + o0), for some
positive constant ¢, for the integral (6.4.5) to converge.

Watson’s lemma states that if the above conditions hold then

i a,l(a + pn+ 1)

I(x) ~ T X~ 4o (6.4.7)

n=0 X
We prove this result as follows. First, we replace I(x) by I(x; €), where
I(x; 8)= [ fle)e™ dt. (6.4.8)
0
This approximation introduces only exponentially small errors for any positive
value of &. In particular, we can choose ¢ so small that the first n terms in the
asymptotic series for f(t) are a good approximation to f(¢):

S K@D 0 <t <6, (6.4.9)

f)~-¢ io a,t’"

n=

where K is a nonzero constant. Substituting the first N terms in the series for f(¢)
into (6.4.8) and using (6.4.9) gives

€
< KJ 2 HBN+ 1) =t gy
0

N I3
I(x;e)— Y a,,J g2 ¥hme=xt gy
n=0 0
0
< KJ' (AHBIN+ ) p=xt gy
0

_ gL+ B+pN +1)

xa+ﬂ+BN+l

Finally, we replace ¢ by oo and use the identity [§ **F"e™ dr =
[C(x + Bn + 1))/x**#"* 1 o obtain

N
I(x)— Y al(a+ pn+ 1)/x*" Pl < x727N=10 x5 400,

n=0

Since this asymptotic relation is valid for all N, we have established the validity
of the asymptotic series in (6.4.7) and have proved Watson’s lemma.

Example 2 Application of Watson’s lemma. To expand the integral

5 —xt

e
I(x)=| ——dt
(x) '{o 1+ 2
for large x, we replace (1 + t?)”! by its Taylor series about ¢ = 0:
1
— =l - 6.4.10
144 ( )

Watson’s lemma allows us to substitute (6.4.10) into the integral, interchange orders of integra-
tion and summation, and replace the upper limit of integration 5 by co. This gives I(x)~
1/x —2Yx> + 41/x> = 61/x7 + -+ (x > + ).
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Example 3 Asymptotic expansion of K o(x) using Watson’s lemma. A standard integral representa-
tion of the modified Bessel function Ko(x) is Ko(x) = [T (s> — 1)~ ¥2e™* ds. In order to apply
Watson’s lemma, we substitute s = ¢ + 1. This shifts the lower endpoint of integration to ¢t = 0:

@©

Kolx)=e [ (¢ +20) V2% = dr. (6.4.11)
‘o

When || < 2, the binomial theorem gives

(6% +26)" Y2 = (26) V2L 4 ¢/2)" V2

r
= ()2 Z (- t/2)" (" + z))
Watson’s lemma then gives
- (T + P’
Ko(x)~e EO (= 1) iy Ty X7 (6.4.12)

Example 4 Asymptotic expansion of D (x) using Watson’s lemma. An integral representation of
the parabolic cylinder function D,(x) which is valid when Re (v) <0 is

-x}4 o

e
pv-lg-titg-n gy (6.4.13)
I(-v) J‘0

D (x) =

—-12/2

To obtain the behavior of D,(x) as x - +o0, we expand e as a power series in t:

e "2 = y® o (—1)"t2"/2"n!. Watson’s lemma then gives

-x1/4 © 2
5L (- z—n"'—i) X - + o0, (6.4.14)

D (x)~

in agreement with (3.5.13) and (3.5.14). [The expansion in (6.4.14) is also valid when Re v > 0.]

Asymptotic Expansion of General Laplace Integrals

Watson’s lemma only applies to Laplace integrals I(x) of the form (6.4.1) in which
¢(t)= —t. For more general ¢(t), there are two possible approaches. If ¢(t) is
sufficiently simple, it may be useful to make a change of variable by substituting

s= —(t) (6.4.15)

into (6.4.1) and to rewrite the integral in the form [Z$%) F(s)e™™ ds, where
F(s)= —f(t)/¢'(t). Watson’s lemma applies to this transformed integral.

Example 5 Indirect use of Watson’s lemma. Watson’s lemma does not apply directly to the

integral
%2

I(x) = _[0 emxsintt gy (6.4.16)

because ¢(t) = —sin? t. However, if we let s =sin? ¢t and rewrite the integral as I(x)=
4 13 [s(1 — )]~ %e™* ds, then Watson’s lemma does apply. Since
> T+ l)gn— 1/2
s(l—s)] V2= Y — 22
e T
for |s| < 1, Watson’s lemma gives

[T+ 3

l @
I(x) ~ -3 "go;!—r—(lz—)-;—"—m, X — +o00. (6:4.17)
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Sometimes the substitution (6.4.15) is unwieldy because the inverse function
t = ¢~ (—s)is a complicated multivalued function. In this case, it may be simpler
to use a more direct method than Watson’s lemma for obtaining the first few terms
in the asymptotic series for I(x). We discuss the mechanical aspects of this calcula-
tion first and postpone a more theoretical discussion till Examples 7 and 8.

To obtain the leading behavior of I(x)as x — + oo, we argue as follows. If ¢(t)
has a maximum at ¢t = ¢, then we can approximate I(x) by I(x; ¢), as in (6.4.2). In
the narrow region |t — ¢| < ¢, we replace ¢(t) by the first few terms in its Taylor
series. There are several cases to consider. If ¢ lies at one of the endpoints a or b
and if ¢'(c) # 0, then we approximate ¢(t) by

o(c) + (t — c)¢'(c). (6.4.18a)

If ¢'(c) =0 (this must happen when c is interior to the interval a <t < b) but
¢”"(c) #+ 0, then we approximate ¢(t) by
élc) + 3(t — ¢)*¢(c). (6.4.18b)
More generally, if ¢'(c)= ¢"(c)="-=¢* (c)=0 and ¢'”(c)+ 0, then we
approximate ¢(t) by
1
olc) + o (¢ — c)PdP(c). (6.4.18¢)

In each of these cases, we also expand f (t) about ¢ = ¢ and retain just the leading
term. For simplicity, let us assume that f(t) is continuous and that f(c) # O [that
is, the leading behavior of f(t) as t — ¢ is f ( c)]. We treat cases in which f(c)=0
later in Example 6 and in Prob. 6.24.

Now we substitute these approximations in I(x; ¢) and evaluate the leading
behavior of the resulting integral by extending the range of integration to infinity.
When (6.4.18a) holds, ¢ must be an endpoint, c=a or c¢=b. If ¢ = a, then
¢'(a) <0 and

ate

I;e)~ [ fla)eto@reav@l gy x4 oo,

‘a

~fla)ex@ | ext-ae@ gy X — +00.
f(@jerse
Thus, I(x) ~ ——F—— X = + 0. 6.4.19a
)~ " (64.19a)
If ¢ = b, then ¢'(b) > 0 and a similar computation gives
xp(b)
I(x) ~ J(b)er™ X — + 0. (6.4.19b)

x¢'(b)
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When (6.4.18b) holds and a < ¢ < b, then ¢”(c) < 0 [because ¢(t) has a maxi-
mum at t = ¢] and

Lc+E

I(x; 8) ~ f(c)ex(¢(c)+(t-t)2¢"(c)12] dt, X — + 00,

“c—¢

. 0

~f(c)e"¢“’ gXt— a2 dt, X — 400,

$lc) .0
= _____ﬁf(c)e" e ds,

NETIOR

where we have substituted s* = —x(t — c)?¢"(c). Recall that {*, e **ds=
f& u V2™ du=T() = /r,s0
/ $(c)
I(x)~—2ﬂ—, X — + 0. (6.4.19¢)
—x¢"(c)

This result holds if ¢ is interior to the interval (a, b); if ¢ = a or ¢ = b, the result in
(6.4.19¢) must be multiplied by a factor 4. (Why?)

When (6.4.18¢) holds and a < ¢ < b, then p must be even and ¢”(c) <0
[otherwise ¢(c) would not be a maximum]. Then

cte

I(x; &) ~ J fle)et#@rumare®lpt gy x — 4 o0,
c—€
. 0O
~ f(c)ex#® ' XU POPEIP! gy x— +00,
Y-
@
= f(c)e** [ —x¢P(c)/p!]~V* [ e ds.
)

Now recall that {2, e™* ds = 2I'(1/p)/p, so

20(1/p)(p!)V*
I(x) ~ ﬁ,ﬁfc—;]u;f (c)e™@,  x— +oo. (6.4.19d)

Example 6 Use of Laplace’s method to determine leading behavior.

(a) f§/* 7>t dt ~ 1/x (x » +o0) because (6.4.19a) applies.

(b) f& e =™t dt ~ 4 /n/x (x » + o). Here (6.4.19¢) with the result multiplied by 4 applies
because ¢ = 0 is an endpoint.

(c) fLye ™5™ dt ~ [[($)]/2x"* (x - +o0) because (6.4.19b) applies with p = 4.

(d) {72, (t +2)e™*" dt ~ 4/x (x > +c0), where we have added together contributions ob-
tained using both (6.4.19a) and (6.4.19b) because there are maxima at both t = — 7/2 and

t=m/2
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1 e
(e) | sin te‘”"‘*‘"dt~| te”** dt, X — 400,
‘o ‘o
L
~| te™*" dt, x— +00,
‘o

! |'m s V2075 gs =

_ r@3) _L=
4xyz g 4x12 4N x’

This example is interesting because the maximum of ¢ occurs at a point where f(t) vanishes.
Laplace’s method works because the contribution to the integral from outside the interval
0 <t < ¢ is subdominant for any ¢ > 0. In general, if f (¢) vanishes algebraically at the maxi-
mum of ¢, Laplace’s method works as explained above.

® ,=x cosht £ e—xllﬂI/ZD
f) = dt ~ dt, X — + 00
( Jo Jsinh t ~|0 Jt ’
. © e—xﬂ/l
~e % dt, X — 400,

sT3%e7s ds

= (8x)"M4e~* [
‘o

() w0 e

This example is interesting because f(t) is infinite at the maximum of ¢. Again, Laplace’s
method works because the contribution to the integral from outside the interval 0 <t < ¢ is
subdominant.

(9) The modified Bessel function K,(x) of order v has the integral representation

K,(x)= ' e~ Mt cosh (vt) dt, (6.4.20)
‘o

which is valid for x > 0 (see Prob. 6.36). Therefore, (6.4.19c) with an extra factor } gives

Kx)~ [Ze®  x— +oo, (64.21)
2x
in agreement with (3.8.11).

(h) The integral representation (6.4.20) can also be used to find the asymptotic behavior of K ,(pv)
as v — +oo with p fixed: K,(pv) = § [& e7"Peoh 0 dp 4 1 [& e Peosht=0 dr where we have
substituted cosh (vt) = (" + e~*)/2. Laplace’s method applied to the first integral on the
right gives its leading behavior as e™?*/2v. Laplace’s method also applies to the second
integral on the right. Here ¢(t) =t — p cosh t has a maximum at ¢t = ¢ where p sinh ¢ = 1.
Therefore, (6.4.19¢) gives

n e ™
K~ /3, (TS +00; p>0, (6.4.22)

where g = pcosh ¢ — ¢ = /1 + p? —In[(1 + /1 + p*)/p]. The derivation of (6.4.22) is facil-

itated by the formulas p cosh ¢ = /1 + p* and € = cosh ¢ + sinh ¢ = (/1 + p* + 1)/p.

The procedures used to derive the results in (6.4.19) are correct but not fully
justified. In the next two examples, we apply Laplace’s method to an integral
taking care to justify and explain our approximations more carefully.
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Example 7 Careful application of Laplace’s method to [§* e "' dt. Here ¢(t) = —sin? t hasa
maximum at ¢ =0, so (64.2) shows that for any & (0 <& <m/2), I(x)=[§* e™**i"* gs ~
f5 e7*=™* dt (x - +o0) with only exponentially small errors. Recall that this step is justified in
Prob. 6.23. If ¢ is small, sin ¢ can be approximated by t for all t (0 < ¢ < ¢). Thus, we expect that it
is valid to approximate I(x) by I(x) ~ [ e™** dt (x — + o0). For finite ¢, the Gaussian in tegral on
the right cannot be evaluated in terms of elementary functions (it is an error function). However,
the evaluation of the integral on the right is easy if we extend the integration region to co:

- __l_'m -12,-s _; (1)_1/‘5
.[0 € dt—z\/}.lo s e ds—z\/.;l" 2] 2\ x’

where we have used the substitution s = xt2. Thus,

I(x)~§/n/x,  x— +oo. (64.23)

Note that this result agrees with the first term in (6.4.17).

To justify the asymptotic relation (6.4.23) we must verify that
[exsmtar~| e dr,  x- +oo, (6.4.24)

"o ‘o

when 0 <& <27

The proof of (6.4.24) is delicate and illustrates one of the more subtle aspects of Laplace’s
method, so we go through it in some detail. The idea of the proof is that over the range of ¢ that
contributes substantially to either of the integrals in (6.4.24), the integrands of both integrals are
nearly identical. Outside of this range the two integrands are quite different, but both are expo-
nentially small.

The proof of (6.4.24) begins by breaking up the range of integration 0 <t < ¢ into the two
ranges 0 <t < x~"and x* < t < ¢ where § < a < . This restriction on « is made so that when
t=x"%xt* > +oo but xt* >0 as x> +00. Whent < x *with{ <a <4,

xsin?t—xt?2 €1, x- +oo. (6.4.25)

To prove (6.4.25) we use the inequalities ¢t — t3/6 < sin ¢ < t which hold for all t > 0 (see Prob.
6.40) to obtain

|xsin?t — xt?| = x|sin t + ¢| |sin t — t| < x(2t)(£*/6) = xt*/3.

But xt*/3—50 as x —» +oo when t < x™% with a >4, which proves (6.4.25). Exponentiating
(6.4.25) gives

emxsintt g Xl 1< x7% x> +00. (6.4.26)
Integrating this asymptotic relation gives

x-e -
I e"‘Si“z'dt~J e X dr, X — + 00.
[} [}

To complete the proof of (6.4.24), we must estimate the contribution to each integral from
the interval x~* <t <¢. Note that (6.4.26) is not true for all ¢ in this range. In fact, when ¢ is of
order ¢ and x — + 00, e”*"* i exponentially larger in magnitude than e *’, Here lies the
subtlety in the proof of (6.4.24); (6.4.24) remains valid despite the discrepancy between the
magnitudes of the two integrands e ™**"** and e ~** when ¢ is of the order ¢. The point is simply
that the contribution to each integral in (6.4.24) from the interval x ** < t < ¢ is subdo minant as
x — 400 with respect to the contribution from 0 <t < x~* when a < . In fact, if t > x~* with
a <4, then e™**** and e~ *” are both smaller than e **" =™ ~ ¢™*'"* (x - 4+ 00) which is
exponentially small. In Fig. 6.2, we plot the integrands on the left and right sides of (6.4.24) for
x = 100. Observe that the integrands are nearly the same for those values of ¢ that contribute
substantially to the integrals and that the integrands differ substantially only for those values of ¢
that make a negligible contribution to the integrals.
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Figure 6.2 A graphical demonstration that [§ exp (—x sin? t) dt ~ [§ exp (—xt?) dt (x — + oo)for any
positive & < 27 [see (6.4.24)]. The graph compares the two integrands for x = 100. Observe that over
the range of ¢ that contributes significantly to either of the integrands, both integrands are nearly
equal. Outside of this range the integrands differ substantially but are negligibly small.

Example 8 Leading behavior of 1,(x) as x — +oo. It may be shown (see Prob. 6.41) that

1"
L(x)==| e cos (nt) dt, (6.4.27)
o
where I,(x) is the modified Bessel function of order n. Local analysis of the modified Bessel
equation (see Example 2 of Sec. 3.5) establishes only that

I(x)~ %(cle" +ce7%), x- +oo, (6.4.28)
X
for some constants ¢, and c,, but it does not establish the values of ¢, and c,. However,
asymptotic analysis of the integral representation (6.4.27) shows that ¢, = l/ﬁ; the value of ¢,
is not determined by asymptotic analysis of (6.4.27) because e~ * is subdominant with respect to e*
as x - +00. Observe that integration by parts cannot be used to derive (6.4.28) because the
leading behavior of I,(x) involves 1/\/; and not 1/x.



To use Laplace’s method we note that ¢(t) = cos t has a maximum at ¢ = 0. Thus,
I(x)~ | &8 cos (nt) dt, n— +oo. (6.4.29)
‘o

According to (6.4.18b), we must replace cos ¢ by the first two terms in its Taylor expansion
about 0. What happens if, instead, we approximate cos ¢ by 1 and cos (nt) by 1for 0 <t < ¢? The
resulting approximation to I,(x), { €*(1) dt = ee*, is not correct because the dependence on the
arbitrary constant ¢ has not dropped out. The trouble here is that ¢* is not a good approximation
to *“** over the subinterval of 0 < t < ¢ that gives the dominant contribution to the integral (see
Fig. 6.3).

A correct application of Laplace’s method to (6.4.29) is obtained by approximating cos t by
the first two terms of its Taylor series 1 — t?/2 and by approximating cos (nt) by 1:

1,(x) ~ % [ ST dr x o oo, (6.4.30)
‘o
1

~ * X = +00. (6.4.31)

‘/ane’

The dependence on ¢ has disappeared, as it should.

10501TTT||||||||1TTF1;|

1040

10%
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2
ex(1-t%/2)

1010_

0 0.5 1.0 1.5 2.0

Figure 6.3 A graphical justification that it is valid to replace exp (x cos t) with exp (x — §xr?) in the
integrand in (6.4.29) when x — oo. The graph compares these two expressions when x = 100. Note
that the two curves are nearly identical over many orders of magnitude.
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The leading behavior of I,(x) as x - +co does not depend on n; however, higher-order
terms in the asymptotic expansion of I,(x) do depend on n. In fact, the complete asymptotic
expansion of I,(x) as x —» + oo is given in (3.5.8) and (3.5.9) with ¢, = l/\/ﬁ.

The only step that really needs justification is (6.4.30). The argument is nearly the same as
that used to justify (6.4.24). The range of integration from t = 0 to t = ¢ is broken up into the two
ranges 0 <t < x~*and x™* < t <&, where < a < §. Now for fixed n, cos (nt) e*<' ~ !~ /2
(x — + o) uniformly for all ¢ satisfying 0 < ¢t < x™* because 1 — t?/2 < cost < 1 — t/2 + t*/24.
Therefore, f§ " cos (nt) ¥ dt ~ [§7* €' ~"2) dt (x > +00). Also, when x™* <t <g¢, the inte-
grands on both sides of (6.4.30) are subdominant with respect to e, so the contribution to (6.4.30)
from the integration range x ~* < t < ¢ is exponentially small compared to the contribution from
therange 0 <t < x™*

Laplace’s Method—Determination of Higher-Order Terms

The approach we have used to obtain the leading asymptotic behavior of integrals
by Laplace’s method can be extended to give the higher-order terms in the asymp-
totic expansion of the integral. To do this one would naturally expect to have to
retain more terms in the expansions of ¢(t) and f(t) than those used to obtain
(6.4.19). We illustrate the mechanics of this procedure for the case in which
¢'(c)=0, ¢"(c) <0, f(c)# 0, and a < ¢ < b, where c is the location of the maxi-
mum of ¢(z).

By (6.4.2), I(x) ~ [¢*: f(t)e*®® dt (x - + o0) with exponentially small errors.
The leading behavior of I(x) given by (6.4.19¢) is obtained by replacing f (¢) by f(c)
and ¢(t) by ¢(c) + 3(t — c)*¢"(c). To compute the first correction to (6.4.19¢) we
must approximate f(t) and ¢(t) by two more terms in their Taylor series:

1)~ [ [fe) +£(e)t = ) + £77(0)e — ]

x exp {x[@(c) + 3(t — c)*¢"(c) + §(t — ¢)*¢"(c)
+ 24(t — o)*(@*¢/dt*)(c)]} dt, x> +oo0.  (64.32)
It is somewhat surprising that two additional terms in the series for ¢(t) and f (t)
are required to compute just the next term in (6.4.19c). We will see shortly why
this is so.

Because ¢ may be chosen small, we Taylor expand the integrand in (6.4.32) as
follows:

exp {x[§(t — c)’®"(c) + H4(t — c)*(d*d/dt*)(c)]}
=1+ x[§(t — )’ @"(c) + Fa(t — c)*(d*¢/de*)(c)]
+ Ax2(t — c)5[@" ()P + .

Substituting this expansion into (6.4.32) and collecting powers of t — ¢ gives

I(X) ~ J gx9() +x(t = c)2d(c)/2

c—E

(t— o

)+ E5Er ) + (= o Tt O 0/ae)e) + 8 (067 (c)

+ At — )’ ()@ (c))* +--+pdt, x— +oo, (6433)



where we have excluded odd powers of t — ¢ because they vanish upon integra-
tion. Only the displayed terms in (6.4.33) contribute to the next term in (6.4.19¢).
Notice that we do not Taylor expand exp [4x(t — ¢)?¢”(c)]; we return to this point
shortly.

Next we extend the range of integration in (6.4.33) to (— o0, c0) and substitute
s= \/;(t —c):

oL [T seman
I(x) 7 e [ e

Y-

X

fle)+— [zszf "(c) + 2as’f (c)(d* ¢/dt*)(c) + 8s°f"(c)d"(c)

+ 45" (c)]*f (c)]jds, x— +oo.  (6.4.34)

Observe that all the displayed terms in (6.4.33) contribute to the coefficient of 1/x
in (6.4.34); the additional terms that we have neglected in going from (6.4.32) to
(6.4.34) contribute to the coefficients of 1/x2, 1/x?, and so on.
To evaluate the integrals in (6.4.34) we use integration by parts to derive
the general formula [®, e™*%2s?" ds = \/2n(2n — 1)(2n — 3)(2n — 5)--- (5)(3)(1).
Thus, we have

2n
=0

) :f(c) + 1

pY

S, Sl e)
0" 8PP

f(e)¢"(c) _ 58" () ()
A¢" (e 24[¢"(c))

One aspect of the derivation of (6.4.35) requires explanation. In proceeding
from (6.4.32) to (6.4.34) we did not Taylor expand exp [$x(t — ¢)*¢"(c)], but we
did Taylor expand the cubic and quartic terms in the exponential. If we had
Taylor expanded exp [$x(¢ — ¢)*®”(c)] and retained only a finite number of terms,
the resulting approximation to /(x) would depend on ¢ (see Example 8). If we had
not expanded the cubic and quartic terms and if (d*¢/dt*)(c) were nonnegative,
then extending the range of integration from (¢ — ¢, ¢ + ¢) to (— o0, c0) would
yield a divergent integral which would be a poor approximation to I(x) indeed! If
we had not expanded the cubic and quartic terms and if (d*¢/dt*)(c) <O, then
extending the range of integration from (c — ¢, ¢ + €) to (— 0, 00) would yield a
convergent integral. However, this convergent integral might not be asymptotic to
I(x) because replacing ¢(t) by the four-term Taylor series in (6.4.32) can introduce
new relative maxima which lie outside (¢ — ¢, ¢ + ¢) which would dominate the
integral on the right side of (6.4.32). In summary, there are three reasons why we
must Taylor expand the cubic and quartic terms in the exponential before we
extend the range of integration to (— oo, c0):

+

]}, X — +o00. (6.4.35)

1. The resulting integrals are always convergent and depend on ¢ only through
subdominant terms.

2. It is easy to evaluate the resulting Gaussian integrals.

3. We avoid introducing any spurious maxima into the integrand.
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To illustrate the above discussion we consider the integral
n/2
)= e (6.4.36)
0
To obtain a higher-order approximation to this integral than that in (6.4.23), we
Taylor expand sin? ¢ through t*:

I(x) ~ JO e gy x o oo, (64.37)

Taylor expanding the quartic term, we obtain

W E 1
I(x) ~ | e (1 + gxt“) dt, x— +oo,
Y

~[ e (1 + lxt‘*) dt (64.38)
o 3

_1 E1+i X — + 00
T2 x 4x)’ ’

in agreement with (6.4.17). In Fig. 6.4 we plot the integrands of (6.4.36) to (6.4.38)
for x = 100. Observe that all three integrands are nearlyidentical for small ¢, but
that the integrand in (6.4.37) blows up as ¢ — +co. The integrands of (6.4.36) and
(6.4.38) do differ when ¢ is large, but large t makes a negligible contribution to
both (6.4.36) and (6.4.38).

Laplace’s Method for Integrals with Movable Maxima

There are two kinds of problems where Laplace’s method is useful but does not
apply directly. First, we know what to do when f (t) vanishes algebraically at t = ¢,
the maximum of ¢(t). But what if f(¢) vanishes exponentially fast at ¢? Second, it
can happen that the Laplace integral (6.4.1) converges but that max ¢(t) = co.
What do we do then? We consider each of these cases in the following two
examples.

Example 9 Leading behavior of [§ e™*~'/* di. Here f(t) = e~ '/ vanishes exponentially fast at
t = 0, the maximum of ¢(t) = —t. If we apply Watson’s lemma (6.4.7), we obtain the asymptotic
series expansion 0 + 0/x + 0/x? + -+- (x - + o0 ) because the coefficients of the asymptotic power
series of e ' as t —» 0+ are all zero. Watson’s lemma does not determine the behavior of I(x)
because Watson’s lemma can only produce a series of inverse powers of x. Here, I(x) is smaller
than any power of x; it decreases exponentially fast as x — + co.

In order to determine the correct behavior of I(x), let us determine the location of the true
maximum of the full integrand e~*~'*. This maximum occurs when (d/dt)(—xt — 1/t) =0 or
t= l/\/;. We call such a maximum a movable maximum because its location depends on x.

For this kind of movable maximum problem, Laplace’s method can be applied if we first
transform the movable maximum to a fixed maximum. This is done by making the change of
variables t = s/./x:

e—.&(n- Us) g

I(x) =

L ,.m
Vx %
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Figure 6.4 A comparison of the three integrands in (6.4.36) to (6.4.38) for x = 100. All three differ
when ¢t is large, but in the restricted range near t = 0 all three contribute equally to the integral
as x — 00.

In this form, f(s) = 1 and ¢(s) = s + 1/s and Laplace’s method applies directly. The maximum of
the new function ¢(s) occurs at s = 1, so (6.4.19¢) gives

I(x)~ /e 2Fx¥ x40

Example 10 Derivation of Stirling’s formula for T'(x). A convergent integral representation for
I(x)is T(x) = [§ e™'t*"* dt (x > 0) (see Sec. 2.2). Here f(t) = e~'/t and ¢(t) = In t. Note that
max ¢(t) = oo for 0 <t < 00, so Laplace’s method is not immediately applicable. This example is
very similar to the previous example because the maximum of ¢(t) occurs as t — oo where f (&) is
exponentially small. As in Example 9, we find the location of the maximum of e ~'t*, neglecting the
factor 1/t which vanishes algebraically at co. This maximum occurs where (d/dt)e™'t* = 0 or
t = x. Again, we encounter a movable maximum.
If we make the change of variables ¢ = sx, we obtain

r‘(x) = x* J ® e—x(s—lns) ‘E
0 S
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Now f(s) = 1/s and ¢(s) = —s + In s. Laplace’s method applies directly to this transformed
integral. The maximum of ¢(s) occurs at s = 1 so (6.4.19¢) gives

I(x) ~ x*e™*/2n/x, x— +o0, (6.4.39)
in agreement with (5.4.1). To obtain the next term in the Stirling series we note that ¢(1) = —1,

(1) =0,¢"(1) = — 1, "(1) = 2, (d*¢/ds*)(1) = —6, f(1) = 1, f'(1) = — 1, f"(1) = 2. Substitut-

ing these coefficients into the formula (6.4.35), we obtain

2n 1y -
~xer [+ — . 6.4.40
I(x) ~ x*e . ( + le)’ X = +00, ( )

in agreement with (5.4.1).

The distinction between ordinary and movable maxima is examined in Probs.
6.45 to 6.47.

6.5 METHOD OF STATIONARY PHASE

There is an immediate generalization of the Laplace integrals studied in Sec. 6.4
which we obtain by allowing the function ¢(t) in (6.4.1) to be complex. Note that,
if we wish, we may assume that f(t) is real; if it were complex, f(¢) could be
decomposed into a sum of its real and imaginary parts. However, allowing ¢(t) to
be complex poses new and nontrivial problems. In this section we consider the
special case in which ¢(¢) is pure imaginary: ¢(t) = iyy(¢), where Y (t) is real. The
resulting integral
o
1) = [ f(e)e™© de (6.5.1)

with f(t), ¥(t), a, b, x all real is called a generalized Fourier integral. When
Y(t)=t, I(x) is an ordinary Fourier integral. The general case in which ¢(t) is
complex is considered in Sec. 6.6.

To study the behavior of I(x) in (6.5.1) as x » + co, we can use integration by
parts to develop an asymptotic expansion in inverse powers of x so long as the
boundary terms are finite and the resulting integrals exist.

Example 1 Asymptotic expansion of a Fourier integral as x — + co. We use integration by parts
to find an asymptotic approximation to the Fourier integral

Xt

1
I(x) = dt.
() JO 1+t
After one integration by parts we obtain
i i it e
I(x)= ——e* 4 — ——| —dt 6.5.2
) xS Tx T x '[o (1+1¢)? (65.2)

The integral on the right side of (6.5.2) is negligible compared with the boundary terms as
x — +00; in fact, it vanishes like 1/x? as x — + co. To see this, we integrate by parts again:

i 1 eix: 1 1 2 1 P
LA P . L S
x '[o (1+1) Wt T J’o (1+1¢)
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The integral on the right is bounded because

1 Lxt

l, oo

1
3
-3 = —
sjo (L+7) dz_g.

Since the integral on the right in (6.5.2) does vanish like 1/x? as x — + o, I(x) is asymptotic to the
boundary terms: I(x) ~ —(i/2x)e'* + i/x (x - +o0).

Repeated application of integration by parts gives the complete asymptotic expansion of
I(x) as x - +00: I(x) = e*u(x) + v(x) where

i (=if(n - 1)!
~ e g TS > too,
ux) 2x  4x? (2x)y x ®
i1 —iy(n - 1!
ox) ~ +_Z+..‘..(_ﬂ___)+..“ X + 0.
x  x

n

X

Example 2 Integration by parts applied to [} \/t ¢ dt. Integration by parts can be used just
once for the Fourier integral I(x) = [} \/; e dt. One integration by parts gives
i l 1 Lixt
I(x)= ——e*+— | —xadt 653
()= e ] 7 (653)
The integral on the right side of (6.5.3) vanishes more rapidly than the boundary term as
x — +00. We cannot use integration by parts to verify this because the resulting integral does not
exist. (Why?) However, we can use the following simple scaling argument. We let s = xt and
obtain
i .1 eixr i x oS i Lo eis
— | —dt=—=| —ds~—5 —=ds, X = +00.
2x Jo Jt 2x3/2 I0 Js 2x312 Jo s -
To evaluate the last integral we rotate the contour of integration from the real-s axis to the
positive imaginary-s axis in the complex-s plane and obtain
o g
[ —ds=/n e (6.5.4)

‘o s

(See Prob. 6.49 for the details of this calculation.) Therefore,
i i ;
I(x) + ; e ~ 207 Jm e x o o, (6.5.5)

Clearly, this result cannot be found by direct integration by parts of the integral on the ri ght side
of (6.5.3) because a fractional power of x has appeared. However, it is possible to find the full
asymptotic expansion of I(x) as x — +co by an indirect application of integration by parts (see
Prob. 6.50).

In Example 1 we used integration by parts to argue that the integral on the

right side of (6.5.2) vanishes more rapidly than the boundary terms as x — + c0.In
Example 2 we used a scaling argument to show that the integral on the right side
of (6.5.3) vanishes more rapidly than the boundary terms as x — + co. There is, in
fact, a very general result called the Riemann-Lebesgue lemma that guarantees

b
[ f()ex dt—0,  x- +oo, (6.56)

‘a
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provided that {} | f(t)| dt exists. This result is valid even when f(t) is not differen-
tiable and integration by parts or scaling do not work. We will cite the Riemann-
Lebesgue lemma repeatedly throughout this section; we could have used it to
justify neglecting the integrals on the right sides of (6.5.2) and (6.5.3).

We reserve a proof of the Riemann-Lebesgue lemma for Prob. 6.51. Although
the proof of (6.5.6) is messy, it is easy to understand the result heuristically. When
x becomes large, the integrand f(t)e™ oscillates rapidly and contributions from
adjacent subintervals nearly cancel.

The Riemann-Lebesgue lemma can be extended to cover generalized Fourier
integrals of the form (6.5.1). It states that I(x) —» 0 as x > + oo so longas | f(¢)] is
integrable, Y (¢) is continuously differentiable for a <t < b, and ¥(t) is not con-
stant on any subinterval of a <t < b (see Prob. 6.52). The lemma implies that
f8° 25 dr > 0 (x — +o0), but it does not apply to [§° t*e*™ dt.

Integration by parts gives the leading asymptotic behavior as x — + oo of
generalized Fourier integrals of the form (6.5.1), provided that f(t)/y'(t) is smooth
for a <t < b and nonvanishing at one of the endpoints a or b. Explicitly,

(t) xx t 1 bdf(t) ixy(t)
0= g | e

The Riemann-Lebesgue lemma shows that the integral on the right vanishes more
rapidly than 1/x as x — +oo. Therefore, I(x) is asymptotic to the boundary terms
(assuming that they do not vanish):

X) (t) :xw(()
D)

Observe that when integration by parts applies, I(x) vanishes like 1/x as x - + .

Integration by parts may not work if y'(¢) =0 for some ¢ in the interval
a <t < b. Such a point is called a stationary point of y. When there are stationary
points in the interval @ < t < b, I(x) must still vanish as x — + co by the Riemann-
Lebesgue lemma, but I(x) ‘usually vanishes less rapidly than 1/x because the
integrand f (¢)e™¥" oscillates less rapidly near a stationary point than it does near
a point where ¥/'(t) # 0. Consequently, there is less cancellation between adjacent
subintervals near the stationary point.

The method of stationary phase gives the leading asymptotic behavior of
generalized Fourier integrals having stationary points. This method is very similar
to Laplace’s method in that the leading contribution to I(x) comes from a small
interval of width & surrounding the stationary points of y(t). We will show that if ¢
is a stationary point and if f(c) # 0, then I(x) goes to zero like x " "/? as x —» + oo if
Y"(c) # 0, like x ' if y”(c) = 0 but " (c) # 0, and so on; as Y(r) becomes flatter
at t = ¢, I(x) vanishes less rapidly as x — +o0.

Since any generalized Fourier integral can be written as a sum of integrals in
which y/'(¢) vanishes only at an endpoint, we can explain the method of stationary
phase for the special integral (6.5.1) in which y/(a) =0 and y'(t) # O fora <t <b.

,  X— 400 (6.5.7)

t=a
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We decompose I(x) into two terms:

La+e

1(x)=.

b
f@e 0 de+ [ f () dr, (6.5.8)
“ate

where ¢ is a small positive number to be chosen later. The second integral on the
right side of (6.5.8) vanishes like 1/x as x — + oo because there are no stationary
points in the interval a + ¢ <t < b.

To obtain the leading behavior of the first integral on the right side of (6.5.8),
we replace f () byf(a) and () by ¥(a) + yP(a)(t — a)’/p! where yP(a) # 0 but
V(a)= =y D(a) = 0:

Jmf(a) exp{ix [l//(a) + %!//“’)(a)(t - a)"”dt, X — +00.

(65.9)

Next, we replace ¢ by oo, which introduces error terms that vanish like 1/x as
x — +o00 and thus may be disregarded, and let s = (t — a):

1(x)~.

a

Xo +o0.  (65.10)

1) ~f(a)e [ " exp [ VP(ay? |d

To evaluate the integral on the right, we rotate the contour of integration from the
real-s axis by an angle n/2p if ¥'”(a) > 0 and make the substitution

i) p' u e
S=e 12p [W] (6.5110)

with u real or rotate the contour by an angle —n/2p if y”(a) < 0 and make the
substitution

s=e N2 [m’%f‘(a—)‘ " (6.5.11b)
Thus,
I(x) ~ f (a)e"v@=inize [xlll,fp!)(a” v F(;/p), x— +oo, (65.12)

where we use the factor €27 if y'P(a) > 0 and the factor e~ ™2 if y"(a) < 0.

The formula in (6.5.12) gives the leading behavior of I(x) if f(a) #+ O but
Y'(a) = 0. If f(a) vanishes, it is necessary to decide whether the contribution from
the stationary point still dominates the leading behavior. When it does, the behav-
ior is slightly more complicated than (6.5.12) (see Prob. 6.53).

Example 3 Leading behavior of [§* €*°*' dt as x — + oo. The function y(t) = cos ¢ has a sta-
tionary point at ¢t =0. Since y"(0)= —1, (6.5.12) with p=2 gives I(x)~ . /n/2x &>=""¥
(x > +00).
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Example 4 Leading behavior of [§ cos (xt* — t) dt as x - + 0. To use the method of stationary
phase, we write this integral as [§ cos (xt?> — t) dt = Re [§ ¢~ dt. The function y(¢) = ¢ has
a stationary point at ¢ = 0. Since y”(0) = 2, (6.5.12) with p =2 gives [§ cos (xt> —t)dt ~
Re 4 /n/x €"* =1 /n/2x (x > + o).

Example 5 Leading behavior of J (n) as n — co. When n is an integer, the Bessel function J (x)
has the integral representation

1"
Ju(x) == cos (xsint—nt)de (6.5.13)
T

(see Prob. 6.54). Therefore, J (n) = Re [§ €™~ dt/n. The function Y(t) = sin t — ¢ has a sta-
tionary point at ¢ = 0. Since y"(0) = 0, y”(0) = —1, (6.5.12) with p = 3 gives

1 o (6\? (1
~o —emims[2) r(2)], S +oo,
Ja(n) 7[Re [3e (") (3) X ©

=12—2/33—1/6]“(_1_)n—l/3Y n— co.
n 3

(6.5.14)

Observe that because y”(0) = 0, J,(n) vanishes less rapidly than n~'/? as n — co.
If n is not an integer, (6.5.14) still holds (see Prob. 6.55).

In this section we have obtained only the leading behavior of generalized
Fourier integrals. Higher-order approximations can be complicated because non-
stationary points may also contribute to the large-x behavior of the integral
Specifically, the second integral on the right in (6.5.8) must be taken into account
when computing higher-order terms because the error incurred in neglecting this
integral is usually algebraically small. By contrast, recall that the approximation
in (6.4.2) for Laplace’s method is valid to all orders because the errors are expo-
nentially, rather than algebraically, small. To obtain the higher-order corrections to
(6.5.12), one can either use the method of asymptotic matching (see Sec. 7.4) or the
method of steepest descents (see Sec. 6.6).

6.6 METHOD OF STEEPEST DESCENTS

The method of steepest descents is a technique for finding the asymptotic behavior
of integrals of the form

I(x)= | h(e)e dt (6.6.1)

c

as x — + oo, where C is an integration contour in the complex-t plane and h(t) and
p(¢) are analytic functions of t. The idea of the method is to use the analyticity of
the integrand to justify deforming the contour C to a new contour C’ on which p(t)
has a constant imaginary part. Once this has been done, I(x) may be evaluated
asymptotically as x — + oo using Laplace’s method. To see why, observe that on
the contour C’ we may write p(t) = ¢(t) + ity, where ¥ is a real constant and ¢(t)
is a real function. Thus, I(x) in (6.6.1) takes the form

I(x) = e | h()e™ dr. (6.62)

g
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Although t is complex, (6.6.2) can be treated by Laplace’s method as x — + oo
because ¢(t) is real.

Our motivation for deforming C into a path C’ on which Im p(t) is a constant
is to eliminate rapid oscillations of the integrand when x is large. Of course, one
could also deform C into a path on which Re p(t) is a constant and then apply the
method of stationary phase. However, we have seen that Laplace’s method is a
much better approximation scheme than the method of stationary phase because
the full asymptotic expansion of a generalized Laplace integral is determined by
the integrand in an arbitrarily small neighborhood of the point where Re p(t)isa
maximum on the contour. By contrast, the full asymptotic expansion of a gener-
alized Fourier integral typically depends on the behavior of the integrand along
the entire contour. As a consequence, it is usually easier to obtain the full asymp-
totic expansion of a generalized Laplace integral than of a generalized Fourier
integral.

Before giving a formal exposition of the method of steepest descents, we
consider three preliminary examples which illustrate how shifting complex con-
tours can greatly simplify asymptotic analysis. In the first example we consider a
Fourier integral whose asymptotic expansion is difficult to find by the methods
used in Sec. 6.5. However, deforming the contour reduces the integral to a pair of
integrals that are easy to evaluate by Laplace’s method.

Example 1 Conversion of a Fourier integral into a Laplace integral by deforming the contour. The
behavior of the integral

1
Ix)=| Ince=de (6.6.3)
‘o

as x — + oo cannot be found directly by the methods of Sec. 6.5 because there is no stationary
point. Also, integration by parts is useless because In 0 = — co. Integration by parts is doomed to
fail because, as we will see, the leading asymptotic behavior of I(x) contains the factor In x which
is not a power of 1/x.

To approximate I(x) we deform the integration contour C, which runs from 0 to 1 along the
real-t axis, to one which consists of three line segments: C, which runs up the imaginary-t axis
from 0 to iT; C,, which runs parallel to the real-t axis from iT to 1 + iT; and C, which runs
down from 1 +iT to 1 along a straight line parallel to the imaginary-t axis (see Fig. 6.5). By
Cauchy’s theorem, I(x) = f¢, +c,+c, In t € dt. Next we let T — +co. In this limit the contribu-
tion from C, approaches 0. (Why?) In the integral along C, weset t = is, and in the integr al along
C; we set t = 1 + is, where s is real in both integrals. This gives

I(x)=1i j In (is) e~ ds — iJ' In (1 + is) e+ ds, (6.6.4)
0 0

The sign of the second integral on the right is negative because C; is traversed downward.

Observe that both integrals in (6.6.4) are Laplace integrals. The first integral can be done
exactly. We substitute u = xs and use In (is) = In s + in/2 and the identity [§ ¢ In u du = —,
where y = 0.5772... is Euler’s constant, and obtain

@©

ij In (is) e™* ds = —i(In x)/x — (iy + 7/2)/x.
0

We apply Watson’s lemma to the second integral on the right in (6.6.4) using the Taylor expansion
In (1 +is)= — Y=, (—is)"/n, and obtain

« A 2 (=i)f(n—1)!

-i jo In (14 is) e+ gs ~ i 3 0= 1! ‘);E'il )

n=1

s X — +00.
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Figure 6.5 It is possible to convert the Fourier integral I(x) in (6.6.3) into a Laplace integral
merely by deforming the original contour C into C, + C, + C; as shown above and then allowing
T — o0. C, and Cj are called steepest-descent paths because |exp [xp(t)]| decreases most rapidly along
these paths as t moves up from the real-t axis; |exp [xp(t)]| also decreases along D, but less rapidly
per unit length than along C,.

Combining the above two expansions gives the final result:

ilnx iy+mn/2 - - 1)
_ _w n/ +ie“‘z( )(n ), x = + .
n=1

Ix) ~ ——— n+ 1
X X X

Let us review the calculation in the preceding example. For the integral
(6.6.3), p(t) = it. For this function, paths of constant Im p(t) are straight lines
parallel to the imaginary-t axis. On the particular contours C; and Cs,
Im p(t) = 0 and 1, respectively. Note that Im p(t) is not the same constant on C,
and Cj, but this does not matter; we have applied Laplace’s method separately to
each of the integrals on the right side of (6.6.4). Since Im p(t = 0) # Im p(t = 1), it
is clear that there is no continuous contour joining ¢t = 0 and ¢t = 1 on which
Im p(t) is constant. This is why it is necessary to deform the original contour C
into C, and C; which are joined at co by C, along which the integrand vanishes.
In general, we expect that if Im p(¢) is not the same at the endpoints of the original
integration contour C, then we cannot deform C into a continuous contour on
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which Im p(t) is constant; the best one can hope for is to be able to deform C into
distinct constant-phase contours which are joined by a contour on which the
integrand vanishes.

Now we can explain why the procedure used in Example 1 is called the
method of steepest descents. The contours C, and C; are called contours of
constant phase because the phase of the complex number e*” is constant. At the
same time, C, and C; are also called steepest-descent paths because |e™”|
decreases most rapidly along these paths as ¢t ranges from the endpoints O and 1
toward co. Any path originating at the endpoints 0 and 1 and moving upward in
the complex-t plane is a path on which |€*”| decreases (see Fig. 6.5). However,
after traversing any given length of arc, |e**| decreases more along the vertical
paths C; and C; than along any other path leaving the endpoints 0 and 1,
respectively. We will explain this feature of steepest-descent paths later in this
section.

Example 2 Full asymptotic behavior of [§ ¢ dt as x — + co. The method of stationary phase
can be used to find the leading behavior of the integral I(x) = [} ¢ dt. Here y(t) = t2, so the
stationary point lies at t = 0 and, using (6.5.12), I(x) ~ 4,/7/x ¢* (x > + o). The method of
steepest descents gives an easy way to determine the full asymptotic behavior of I(x). [The
method of integration by parts also works (see Prob. 6.57).]

As in Example 1, we try to deform the contour C: 0 <t <1 into contours alomg which
Im p(t) is constant, where p(t) = it>. We begin by finding a contour which passes through ¢t = 0
and on which Im p(t) is constant. Writing ¢t = u + iv with u and v real, we obtain Im p(t) =
u? — v At t =0, Im p = 0. Therefore, constant-phase contours passing through ¢ = 0 must
satisfy u = v or u = —v everywhere along the contour (see Fig. 6.6). On the contour u = —v,
Re p(t) = 20%, so |€*?| = ¢2*** increases as t = (i — 1)v — co. This is called a steepest-ascent
contour; since there is no maximum of [e**”| on this contour, Laplace’s method cannot be
applied. On the other hand, the contour u = v is a steepest-descent contour because Re p(t) =
—20%, so |e¥¥| =e 2*" decreases as t=(l +iv—>oo. The contour C,: t= (1+ip
(0 < v < o) is comparable to the contour C, employed in Example 1.

Next, we must find a steepest-descent contour passing through ¢ = 1 along which I'm p(t)is
constant. At ¢t = 1, the value of Im p(t) is 1. Therefore, the constant-phase contour passing
through u = 1,0 = 0is given by u = ./v® + 1. Since Re p(t) = —2uv decreases ast = u + iv » o
along the portion of this constant-phase contour with 0 < v < o0, the steepest-descent contour
passing through ¢t = 1 is givenby C5:t = \/v? + 1 + i,0 < v < 0. Note that C; and Cy become
tangent as v — + oo (see Fig. 6.6).

The next step is to deform the original contour C: 0 <t < linto C; + C;,in which Cy is
traversed from ¢t = oo to t = 1. Along C,, Im p(t) = 0, while along C;, Im p(t) = 1. Since the
value of Im p(t) is different on C, and C,, it is clear that the original contour cannot be
continuously deformed into C, + C;. Rather, we must include a third contour C, which bridges
the gap between C, and C,. We take C, to be the straight line connecting the points (1 + i)V on
C,and \/V? + 1 + iV on Cj, (see Fig. 6.6). C can be continuously deformed into C, together with
the portions of C, and C, satisfying 0 < v < V. Now, as V' — oo, the contribution from the
contour C, vanishes. (Why?) Thus,

I(x)=| & dt - j & . (6.6.5)
‘¢, [
The integral along C, can be evaluated exactly. Setting t = (1 + i), we obtain

. ° 1 [z,
[ ewde=(1+0)[ e dv=§ﬁe"‘". (6.6.6)

‘e, )
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Figure 6.6 The Fourier integral I(x) in Example 2 becomes a pair of Laplace integrals if the
original contour C is distorted into C, + C, + C; and V is allowed to approach co. To simplify
the evaluation of the integral along C;, we can replace the lower part of the contour C; by C,.

This contribution is precisely the leading behavior of I(x) as x - + oo that we found using the
method of stationary phase.

Now we evaluate the contribution to I(x) from the integral on C,. Note that if we substitute
t=/v* +1+ip,0 <v < oo,then p(t) = it = i — 2v,/v? + 1. This verifies that C, is a curve of
constant phase; it is also a curve of steepest descent. An easy way to obtain the full asymptotic
expansion of the integral over C, is to use Watson’s lemma. To do this, the integral must be
expressed in the form [§ f(s)e ™™ ds. This motivates the change of variables from ¢ to s where s is
defined by

plt)y=it2=i—s; (6.6.7)

observe that s=2v,/v?> + 1 is real and satisfies 0 <s < oo along C,. Since t = (1 + is)"/?,
dt/ds = $i(1 + is)™ /2, so

- xs

ds.

@
f e dt = Lie'* J.

e
Cy o /1+is

To apply Watson’s lemma, we use the Taylor expansion

(L4197 = % (~isfTln+ Yni )
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We obtain

. © it
I e dt~£ie"‘ Y. (-iy Fln +2)

s X — 400. 6.6.8
TGy 2 n=0 CEpt ( )

Combining this result with that in (6.6.6) gives the full asymptotic expansion of I(x) asx — +o0:

1 [n 1.2 L Tn+3)
I(x)~5\/;e /4_Eze’”§0(—xrw, X = +o0. (6.6.9)

Finally, we mention an alternative way to obtain the result in (6.6.8) for the integral on C,.
The substitution in (6.6.7) is an exact parametrization of the curve C, in terms of the real
parameter s. However, as we know from our discussion of Laplace’s method in Sec. 6.4, it is only
the immediate neighborhood of the maximum at ¢ = 1 that contributes to the full asymptotic
expansion of the integral on C ;. Therefore, it is not necessary to follow the curve C; exactly. Itis
correct to shift the integration path C, to one which still passes through the maximum at ¢t = 1
and which is a descent contour in the sense that |e*"| decreases and rejoins C for large |t|.
Any deformation of C, of this kind does not change the value of the integral because the
intcgrand is analytic. For the present example, a convenient alternative to C, is a contour C,
which originates at ¢t = 1, goes vertically upward parallel to the imaginary-t axis, and the n rejoins
the contour C, at any point in the upper half plane (see Fig. 6.6). Only the vertical straight-line
portion of C, in the immediate vicinity of t = 1 contributes to the full asymptotic expansion of
the integral. We can parametrize the straight-line portion of Cy neart = 1 by t = 1 + iv, where v
is real and 0 < v < ¢ with ¢ small. Thus,

. . &
et dt = ‘ e dt ~ i ' pix(1*iv? g,
“Cy ‘Cy "o
e
=ie* | e e ™ dp, x> +00.
)
Using Laplace’s method
B B © Ly 2n
' ; : —ix)'v
e~ xvgixvl gy ' PREel Z ( 'r dv
o ‘0 n=0 n:
= (=ip(n)!
~ —_— X 0.
”§022n+1n!xn+1' -+

Since (2n)!/(2*"n!) = ['(n + 4)/T'(4), we have reproduced (6.6.8) exactly.

This alternative calculation, in which we have replaced the curved path C, by a path C,
which begins as a straight line, is an important computational device that is frequently helpful in
the method of steepest descents. Note that C, is neither a curve of constant phase nor a curve of
steepest descent, although it is a curve of descent of |e**’|. Other descent curves could be used
instead of C, (see Prob. 6.58).

Example 3 Sophisticated example of the method of steepest descents. What is the leading behavior
of the generalized Fourier integral
1

I(x)= J' exp (ixe™ %) ds (6.6.10)

as x — +00? This is a sophisticated example because s = 0 is an infinite-order stationary point;
i.e., all derivatives of e™ ! vanish as s - 0+. We know from our discussion of the method of
stationary phase that if the first nonvanishing derivative of  in (6.5.1) at a stationary point is /'”,
then I(x) must vanish like x~"? as x » + co. Therefore, we expect that if the integrand has an
infinite-order stationary point, I(x) vanishes less rapidly than any power of 1/x as x — +o0.
However, the Riemann-Lebesgue lemma guarantees that I(x) does indeed vanish as x — + oo.
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How fast does I(x) in (6.6.10) vanish? It is hard to apply the method of stationary phase to

I(x) directly. (Try it!) However, the method of steepest descents provides a relatively easy
approach. We begin by making the substitution ¢ = e~ !*:

L lje

e
16 = -'o t(ln £)?

1xt

dt.

The form of this integral is similar to that of the integral (6.6.3) considered in Example 1.
Therefore, as in Example 1, we shift the contour C: 0 <t < /e to two vertical lines parallel to the
imaginary-t axis:

ixt . 1 Xt

Ix)=| —dt—| ——d, 6.6.11
) '|c. t(In )2 JC, o(In )2 (66.11)
where C, is the patht = iv (0 < v < c0) and C, is the path t = 1/e + iv (0 < v < o). Now we find
the leading behavior of each of the integrals on the right in (6.6.11).

The integral on the path C, requires only a straightforward application of Laplace’s
method. We substitute t = 1/e + iv (0 < v < o) and obtain

. eixr , 0 e x
dt =i 1x/e d
L g =], e we s wp
The integral on C, is more difficult. We simplify the integral by substituting t =iv
(0 <v < ) and perform one integration by parts:

v~ie™%/x, x— +o00. (6.6.12)

. ixt @ e o pTxv
I(x)= —dt = ———dv= —x —dv. 6.6.13
i) "C. t(in t)? JO oin ()P ,|0 In (iv) (66.13)
The integral on the right side of (6.6.13) is a Laplace integral; we can restrict the range of
integration to the vicinity of v = 0 without altering its asymptotic expansion as x - + c0. Thus,

€ - xv

toe
Ii(x)~ —x Jo n (iv)dv’ X — +00.

This integral does not yield to a straightforward application of Laplace’s method because
the integrand vanishes at v = 0. Moreover, the conventional treatment of a moving maximum
[see the derivation of the Stirling series for I'(x) given in Example 10 of Sec. 6.4] does not work
because the moving maximum of the integrand is too broad (see Prob. 6.47). A good way to
proceed is to substitute r = xv and thus obtain

-r

e

————dr, X — 400,
Inr—Inx+in?2

LEX
L(x)~ - |
0
where we have used the relation In (iv) = In v + in/2. Next, we argue that the immediate vicinity
of the origin, say 0 < r < 1/x'/?, does not contribute to the asymptotic expansion of the integral
as x > +o00. To prove this we bound the contribution to I,(x) from 0 < r < 1/x"/2:

]/xl/l -r

: e 2
—,—-d" S“—Ui,

Yo Inr—Inx +in/2 nx

because |Inr —1Inx +in/2| > n/2 and |e™"| < 1. This contribution to I,(x) is negligible
because, as we shall see, the full asymptotic expansion of I,(x) is a series in inverse powers of In x.
Thus,

-r

e

Lix)~ - | X - + 0. (6.6.14)

> dr,
Yyxvz Inr = 1In x +in/2
To expand the integral in (6.6.14), we Taylor expand the integrand in powers of 1/In x:

1 1 2 (in/2+lnr

n
- -1/2

- = R X <r<ex,x— +oo.
Inr—Inx+in/2 In x 5% )

In x



ASYMPTOTIC EXPANSION OF INTEGRALS 287

1
Thus, I(x)~—

2™ _r(in/2+lnr
e
In x n=0"1/x12

nx ) dr, X = +o00. (6.6.15)
The range of each of the integrals in (6.6.15) can be extended to 0 < r < oo with an error smaller
than any inverse power of In x. (Why?) Evaluating the first two integrals, we obtain

1 in/2 —y
IL(x)~— +— + - 6.6.
1) mx (In x)? ’ (66.16)
where we have used [ In re™" dr = —y. The coefficient of the general term in (6.6.16) may be

expressed in terms of derivatives of I'(t) at t = 1 (see Prob. 6.59).
Combining the results (6.6.12) and (6.6.16) with (6.6.11), we obtain the final result
1 in2—y

I(x) ~ — - . 6.6.
(x) lnx+(lnx)2 + X — +00 (6.6.17)

One could not have guessed this result from a cursory inspection of the original integral in
(6.6.10)! Does this asymptotic series diverge? (See Prob. 6.60.) In Table 6.1 we compare numeri-
cal values of I(x) with the asymptotic results for I(x) given in (6.6.17).

Formal Discussion of Steepest-Descent Paths in the Complex Plane

In the previous three introductory examples, we have shown that deforming con-
tours of integration in the complex-t plane can facilitate the asymptotic evaluation
of integrals. It is now appropriate to give a more general discussion of steepest-
descent (constant-phase) contours.

We begin by recalling the role of the gradient in elementary calculus. If f (u, v)
is a differentiable function of two variables, then the gradient of f is the vector
Vf = (9f/0u, df /0v). This vector points in the direction of the most rapid change of f
at the point (u, v). In terms of the gradient, the directional derivative df/ds in the
direction of the unit vector n is df/ds = n - Vf. This directional derivative is the
rate of change of f in the direction n. Thus, the largest directional derivative is in
the direction n = Vf/|Vf | and has magnitude |Vf |. On a two-dimensional con-
tour plot of f (u, v), the vector Vf is perpendicular to the contours of constant f

Table 6.1 Comparison between the exact value of the integral /(x) in (6.6.10) and
one-term and two-term asymptotic approximations to I(x) in (6.6.17) obtained using
the method of steepest descents

One-term asymptotic Two-term asymptotic

In x Exact value of I(x) approximation approximation

0 0.9814 + 0.1467i © ©

2 0.3077 + 0.5419i 0.5000 0.3557 + 0.3927i

4 0.2499 + 0.0643i 0.2500 0.2139 + 0.0982i

6 0.1428 + 0.0423i 0.1667 0.1506 + 0.0436i

8 0.1146 + 0.0227i 0.1250 0.1160 + 0.0245i

10 0.0935 + 0.0143i 0.1000 0.0942 + 0.0157i

12 0.0790 + 0.0100: 0.0833 0.0793 + 0.0109i
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(level curves). Note that the directional derivative in the direction of the tangents
to a level curve is 0.

We will now give a formal proof that constant-phase contours are also steep-
est contours. Let p(t) = ¢(t) + iy(t) be an analytic function of the complex vari-
able ¢t = u + iv. Also, for the moment, we restrict ourselves to regions of the
complex-t plane in which p'(t) # 0.

We define a constant-phase contour of ¢**” where x > 0 as a contour on
which y(¢) is constant. A steepest contour is defined as a contour whose tangent is
parallel to V || = Ve**, which is parallel to V. That is, a steepest contour is
one on which the magnitude of ¢** is changing most rapidly with ¢.

Now we will show that if p(t) is analytic, then constant-phase contours are
steepest contours. If p(t) is analytic, then it satisfies the Cauchy-Riemann equa-
tions

0¢p/0u = dys/ov, 0¢p/ov = —dy/ou.
Therefore,

(0¢/0u)(0/0u) + (0/0v)(0/dv) = O.

However, this equation can be written in vector form as V¢p-Vy =0, so V¢ is
perpendicular to Vi and the directional derivative in the direction of V¢ satisfies
dy/ds = 0. Thus, ¢ is constant on contours whose tangents are parallel to V¢,
showing that constant-phase contours are also steepest contours.

There is a slightly more sophisticated way to establish that constant-phase
contours are steepest contours. It is well known that an analytic function p(t) is a
conformal (angle-preserving) mapping from the complex-t plane (u, v) to the
complex-p plane (¢, ¥) if p'(t) # 0. Therefore, since lines of constant u are perpen-
dicular to lines of constant v, lines of constant ¢ are perpendicular to lines of
constant . But lines of constant ¢ are also perpendicular to steepest curves of ¢.
This reestablishes the identity of steepest and constant-phase contours.

In the above two arguments, it was necessary to assume that p'(t) # 0. In the
second argument, this condition was necessary because a map is not conformal at
a point where p’(t) = 0. Where was this condition used in the first argument?

Saddle Points

When the contour of integration in (6.6.1) is deformed into constant-phase con-
tours, the asymptotic behavior of the integral is determined by the behavior of the
integrand near the local maxima of ¢(t) along the contour. These local maxima of
¢(t) may occur at endpoints of constant-phase contours (see Examples 1 to 3) or
at an interior point of a constant-phase contour. If ¢(t) has an interior maximum
then the directional derivative along the constant-phase contour d¢/ds = |V¢|
vanishes. The Cauchy-Riemann equations imply that V¢ = Vi = 0so p’(t) = O at
an interior maximum of ¢ on a constant-phase contour.

A point at which p’(t) = 0 is called a saddle point. Saddle points are special
because it is only at such a point that two distinct steepest curves can intersect.
When p'(t,) # 0, there is only one steepest curve passing through ¢ and its tangent
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is parallel to V¢. In the direction of V¢, |e**| is increasing so this portion of the
curve is a steepest-ascent curve; in the direction of —V¢, |e*| is decreasing so
this portion of the curve is a steepest-descent curve. On the other hand, when
p'(to) = O there are two or more steepest-ascent curves and two or more steepest-
descent curves emerging from the point ¢,.

To study the nature of the steepest curves emerging from a saddle point, let us

study the region of the complex-¢ plane near ¢,.

Example 4 Steepest curves of e’ near the saddle point t = 0. Here p(t) = t>. Observe that
p’'(t) = 2t vanishes at t = 0, which verifies that 0 is a saddle point. We substitute t = u + iv and
identify the real and imaginary parts of p(t):

p(t)=u? — v+ 2iuw,  P(t)=u? — 0%  Y(t) = 2uv.

Since p(0) = 0, the constant-phase contours that pass through t = 0 must satisfy y(t) = O every-
where. The constant-phase contours u = 0 (the imaginary axis) and v = O (the real axis) cross at
the saddle point t = 0.

All four curves that emerge from ¢ = 0, (a) u = 0 with v positive, (b) u = 0 with v negative, (c)
v = 0 with u positive, and (d) v = 0 with u negative, are steepest curves because p’(t) # 0 except at
t = 0. Which of these four curves are steepest-ascent curves and which are steepest-descent
curves? On curves (a) and (b), ¢(t) = —v?, so ¢ is decreasing away from t = 0; these curves are
steepest-descent curves. On curves (c) and (d), (t) = u?,so0 ¢ is increasing away from t = O; these
curves are steepest-ascent curves. A plot showing these steepest-ascent and -descent curves as well
as the level curves of ¢ away from t = 0 is given in Fig. 6.7.

Example 5 Steepest curves of e "' near the saddle point t = 0. Here p(t) = i cosh t, so p'(t) =
i sinh t vanishes at t = 0. If we substitute t = u + iv and use the identity

cosh (u + iv) = cosh u cos v + i sinh u sin v,
we obtain the real and imaginary parts of p(t):
¢(t) = —sinhusinv,  Y(t) = cosh u cos v.

Since p(0) = i, the constant-phase contours passing through t = 0 must satisfy y(t) = Im p(t) = 1.
Thus, the constant-phase contours through t = 0 are given by

coshucosv=1

Other constant-phase contours (steepest-descent and -ascent curves) are given by coshucosv = ¢,
where ¢ is a constant. On Fig. 6.8 we plot the constant-phase contours for various values of c.
Observe that steepest curves never cross except at saddle points.

Example 6 Steepest curves of e**™ '~ near the saddle point at t = 0. Here p(t) = sinh t —t, so
p'(t) = cosh t — 1 vanishes at t = 0. Note that p”(t) = sinh ¢ also vanishes at 0 and that the lowest
nonvanishing derivative of p at t = 0 is p”(t). We call such a saddle point a third-order saddle
point. At t = 0 six constant-phase contours meet. To find these contours we substitute t = u + iv
and identify the real and imaginary parts of p:

p = ¢ + iy = (sinh u cos v — u) + i(cosh u sin v — v).

But p(0) = 0. Thus, constant-phase contours passing through t = 0 satisfy cosh u sin v — v =0.
Solutions to this equation are v = 0 (the u axis) and u = arc cosh (v/sin v).

1In Prob. 6.61 you are asked to verify that (a) a total of six steepest paths emerge from ¢ = 0;
(b) paths emerge at 60° angles from adjacent paths; (c) as t moves away from 0, the paths
alternate between steepest-ascent and steepest-descent paths; (d) the paths approach oo,
+ 00 + im, oo — in. All these results are shown on Fig. 6.9.
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Figure 6.7 Steepest curves of e’ near the saddle point at ¢t = 0 in the complex-t plane. The steepest
curves satisfy uv = constant. The level curves of ¢ satisfy u> — v? = constant and are orthogonal to
the steepest curves.

Example 7 Steepest curves of e*®*"*~*/? near the saddle point at t = 0. Here p(t) = cosh t —
t2/2. Note that p'(t), p”(t),and p”(t) all vanish at t = 0. The first nonvanishing derivative of p(t) at
t =0 is d*p/dt*, so we call t = 0 a fourth-order saddle point. Eight constant-phase curves meet
at t = 0. Note that

p(t) = cosh u cos v + (v — u?)/2 + i(sinh u sin v — uv).

Thus, constant-phase contours emerging from ¢t = 0 satisfy ¢ = sinh u sin v — uv = 0. Solutions
to this equation are u = 0 (the imaginary axis), v = O (the real axis), and (sinh u)/u = v/sin v.

In Prob. 6.62 you are asked to verify the results on Fig. 6.10. Namely, that (a) eight steepest
paths emerge from ¢ = 0, all equally spaced at 45° from each other; (b) as t moves away from 0,
the paths alternate between steepest-ascent and steepest-descent paths; (c) the four steepest-
ascent paths lie on the u and v axes; (d) the four steepest-descent paths approach +oo + im,
+oo —im

Steepest-Descent Approximation to Integrals with Saddle Points

We have seen that by shifting the integration contour so that it follows a path of
constant phase we can treat an integral of the form in (6.6.1) by Laplace’s method.
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Figure 6.8 Constant-phase (steepest) contours of exp (ix cosh t) in the complex-(t = u + iv) plane.
Constant-phase contours satisfy (cosh u) (cos v) = ¢, where c is a constant. Saddle points lying at
t =0 and t = tin are shown.

What happens when the constant-phase contour passes through a saddle point?
In the following examples we encounter this situation.

Example 8 Asymptotic expansion of J(x) as x - + co. A standard integral representation for
Jo(x) [see (6.5.13)] is Jo(x) = [¥%,, cos (x cos B) d6/n, which can be transformed into
l in/2
Jo(x) = Re — dt e coh! (6.6.18a)
LAY

by substituting t = if.

We can certainly use the method of stationary phase to find the leading behavior of this
integral as x — + oo (see Prob. 6.54). However, it is better to use the method of steepest descents
to find the higher-order corrections to the leading behavior. (Why?)

To apply the method of steepest descents we extend the contour to infinity. Note that the

integrals
1 —in/2
— dt e =ht (6.6.18b)

MY o —in2
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Figure 6.9 Steepest curves of exp [x(—t + sinh t)] near the third-order saddle point at t = 0. The plot
indicates that three steepest-descent curves and three steepest-ascent curves meet at t = 0.
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Figure 6.10 Steepest curves of exp [x(—4t? + cosh t)] near the fourth-order saddle point at t = 0. The
graph shows that four steepest-descent curves and four steepest-ascent curves meet at ¢t =0. In
Example 12 the structure of the saddle point is the same as the one in this graph shifted by in;
the steepest-descent curve used in Example 12 consists of the curves in the third and fourth quadrants
of this figure.
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Figure 6.11 To find the asymptotic behavior of Jy(x) as x - +co we first represent J,(x) as an
integral along the special contour in (6.6.18a, b, c). Second, we observe that any Sommerfeld contour
C from —o0 — in/2 to +co + im/2 is equally good. Third, to approximate the integral in (6.6.19) we
choose that Sommerfeld contour which is also a path of steepest descent through the saddle point at
t=0.

where the contour extends along a line parallel to and below the real axis, and

1 potim2
— dt ¢ osh ' (66180)
I 2

where the contour extends along a line parallel to and above the real axis, are convergent and
pure imaginary (see Prob. 6.63). Thus, we have constructed the rather fancy represen tation

1
Jolx)=Re — | dreixcone, (6.6.19)
c

where C is any contour which ranges from —oo — in/2 to + o0 + in/2 (see Fig. 6.11). Such a
contour is called a Sommerfeld contour.
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From here on the steepest-descent analysis is easy because there is a curve of constant phase
which ranges from — oo — in/2 to + o0 + in/2 (see Fig. 6.8)! We have seen in Example 5 that this
curve passes through a saddle point at t = 0. The equation for this curve is cosh u cos v = 1. Note
that | e “**"!| attains its maximum value on the contour at the saddle point at t = 0. Thus, we know
from our study of Laplace’s method that as x » + co the entire asymptotic expansion is deter-
mined by a small neighborhood about ¢ = 0.

To find the leading behavior of J(x) as x — 0o, we approximate the steepest-descent path in
a small neighborhood of t = 0 by the straight line t = (1 + i)s (s real) and approximate cosh ¢
near s = 0 by cosh t ~ 1 + is? (s » 0). Thus,

Jo(x) ~ Re [(1 + i)/in] [ e " ds,  x— +o0.

s=-¢
Extending the limits of integration to oo and evaluating the integral gives

Jo(x) ~ Re [(1 + i)/in)e™\/n/x = \/2/nx cos (x — m/4),  x— +oc0.

To find the full asymptotic expansion of J(x) as x — + c0, we use Watson’s lemma. It is
simplest to parametrize the integration path in terms of ¢ = Re p(t). We know that along the
steepest-descent contour p(t) =i + ¢(t), where ¢(t) is real and ranges from ¢ =0 at t =0 to
¢=—o0 at t = +(0 +in/2). Also, we have ¢(t)=icosht—i so dp =isinhtdt. Thus,

= d¢/i,/ — ¢* — 2i¢. Substituting this result into (6.6.19) and replacing ¢ by — ¢ gives

1x—in/4 ) 172
Jox) = Re & -—¢—e“°‘( “”) .
T

\/2_"0 \/E 1_7

To apply Watson’s lemma, we expand the square root:
ib\ -~ 12
p_f) -
2 "

e:x-nl/4 © [r'(n+_21)]2 i\"
Jol)~ Re =5 /2 3 S () -

Thus, the full asymptotic expansion of Jy(x) is given by

(i¢/2yT(n + $)
0 n! T'(})

MS

1

and integrate term by term:

Jo(x) = \/xz"[a(x) cos (x — n/4) + B(x) sin (x — m/4)), (6.6.20)

where a(x)~:0[—llj(k§:T!%%];)—f)—}l—): X — + 00,

[Tk + HP(= 1)
and — r . N .
kZO Ak ) @ X7

The trick of adding the contour integrals (6.6.18b,c) to (6.6.18a) to derive (6.6.19) could have
been avoided by deforming the contour from —in/2 to in/2 into three constant-phase contours:
Ciit=—in/24+u(—o0 <u<0);C,:coshucosv=1;and C;:t =in/2 +u (0 <u < ). The
contributions from C, and C, cancel exactly in this problem.

Example 9 Asymptotic expansion of T'(x) as x - +oo. In Example 10 of Sec. 6.4 we used
Laplace’s method to show that

I(x) ~ x*e~*/2n/x (6.621)
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[see (6.4.39)]. In this example we use the method of steepest descents to rederive this result from a
complex-contour integral representation of I'(x) [see Prob. 2.6(/)]:
L_ L wa (6622
I(x) 2mi'e ’ 622)

where C is a contour that begins at t = — oo — ia (a > 0), encircles the branch cut that lies along
the negative real axis, and ends up at — oo + ib (b > 0) (see Fig. 6.12). The branch cut is present
when x is nonintegral because t~* is a multivalued function. The advantage of (6.6.22) over the
integral representatior. used in Example 10 is that it converges for all complex values of x and not
just those x for which Re x > 0. Nevertheless, in this example we will only investigate the
behavior of I'(x) in the limit x - +co.

We begin our analysis by making the same substitution that was made in Example 10 of Sec.
6.4; namely, t = xs. This substitution converts the integrand from one that has a movable saddle
point to one that has a fixed saddle point. (Why?) The resulting integral representation is

1 1 :
= d x(s=1In S)_ 6623
[(x) 2mix*~? JC Se ( )
w21
Branch cut ’
I |
- 1
- .\/ 2
Contour Cin (6.6.23) Complex-s plane
_"/2 -
T
< Down 1
Cintc steepest
descent contour 1 Saddle
point
Branch cut
1 1 1 " 1 " I ]
f T T T + +—q
-4 -3 -2 -1 2
“+
Complex-s plane
< Down [

- -

Figure 6.12 To find the asymptotic behavior of I'(x) as x — + o0, we represent I'(x) as the integral
in (6.6.23) along a contour C in the complex-s plane which goes around the branch cut on the
negative real axis. Then we distort C into a steepest-descent contour which passes through the saddle
point at s = 1.
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For this integral p(s) = s — In s. Thus, p’(s) =1 — 1/s and p’ = 0 when s = 1. So there is a simple
(second-order) saddle point at s = 1.

To ascertain the structure of the saddle point we let s = u + iv and identify the real and
imaginary parts of p: p(s)=u — In \/u? + v* + i(v — arc tan v/u). At s = 1, p = 1. Therefore,
paths of constant phase (steepest curves) emerging from s = 1 must satisfy

v — arc tan v/u = 0.

There are two solutions to this equation: v = 0 and u = v cot v. These two curves are shown on
Fig. 6.12. In Prob. 6.64 you are asked to verify that (a) the steepest-descent curves are correctly
shown on Fig. 6.12; (b) as s moves away from s = 1, steepest-descent curves emerge from s = 1
initially parallel to the Im s = v axis; (c) the steepest-descent curves cross the v axis at +in/2 and
approach s = — oo + im.

To use the method of steepest descents, we simply shift the contour C so that it is just the
steepest-descent contour on Fig. 6.12 which passes through the saddle point at s = 1. Let us
review why we choose such a contour. In general, we always choose a steepest-descent contour
because on such a contour we can apply the techniques of Laplace’s method directly to complex
integrals. If the steepest-descent contour is finite and does not pass through a saddle point, then
the maximum value of || must occur at an endpoint of the contour and we need only perform
a local analysis of the integral at this endpoint. However, in the present example the contour has
no endpoint and is infinitely long. It is crucial that it pass through a saddle point because |e**|
reaches its maximum at the saddle point and decays exponentially as s — oo along both of the
steepest-descent curves. If there were no saddle point, then, although [e**| would decrease in one
direction along the contour, it would increase in the other direction and the integral would not
even converge!

Now we proceed with the asymptotic expansion of the integral in (6.6.23). We can approxi-
mate the steepest-descent contour in the neighborhood of s = 1 by the straight line s = 1 + iv.
This gives the Laplace integral

1 1 o

[(x)  2mx ! [ do =D o b0,
x ax* T,

which we evaluate by letting ¢ — co:

1 1 e
m~F\/—;\/§E X— +00.

We thereby recover the result in (6.6.21).

Example 10 Steepest-descents approximation of a real integral where Laplace’s method fails. In
this example we consider the real integral

.1
I(x)=| dte=** cos (5xt — xt*) (6.6.24)

‘o
in the limit x — + co. This integral is not a Laplace integral because the argument of the cosine
contains x. Nonetheless, one might think that one could use the ideas of Laplace’s method to
approximate the integral. To wit, one would argue that as x — + oo, the contribution to the
integral is localized about x = 0. Thus, a very naive approach is simply to replace the argument of

the cosine by 0. If this reasoning were correct, then we would conclude that

1

I(> ~‘ dt —dxe? —
() Jo ¢ 16x

T xo o (WRONG)

This result is clearly incorrect because e~ does not become exponentially small until ¢ is
larger than 1/\/;. Thus, when ¢ ~ 1/\/§ (x = +00), the argument of the cosine is not small. In
particular, the term 5xt is large and the cosine oscillates rapidly. This suggests that there is
destructive interference and that I(x) decays much more rapidly than ./n/16x as x — + co.
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Can we correct this approach by including the 5xt term but neglecting the xt* term? After
all, when ¢ lies in the range from 0 to 1/\/;, the term xt> — 0 as x — + o0. Thus, xt* does not even
shift the phase of the cosine more than a fraction of a cycle. If we were to include just the 5xt term,
we would obtain

1
I(x) ~ ' dte™** cos (5xt), x— + 0o,
‘0

@
~ [ dte™** cos (5xt), X — +o00,
‘o

€GO
% [ d[e—axﬂ +51xt

T-w

1 o~ X(2=5/4)1-25x/16
2

Bl

J- dt
Jmjx e 25X1E X = + 0. (WRONG)

Although this result is exponentially smaller than the previous wrong result, it is also wrong! It is
incorrect to neglect the xt* term (see Prob. 6.65).

But if we cannot neglect even the xt? term, then how can we make any approximation at all?
It should not be necessary to do the integral exactly to find its asymptotic behavior!

The correct approach is to use the method of steepest descents to approximate the integral
at a saddle point in the complex plane. To prepare for this analysis we rewrite the integral in the

following convenient form:
1

I(X) = % | dt e—4x11 + Sixt —ixtd
-1
1
=1de 2 J dr ¥, (6.6.25)
-1
where p(t)= —(t—i)? =t — i) (6.6.26)

Our objective now is to find steepest-descent (constant-phase) contours that emerge from
t=1and t = —1, to distort the original contour of integration t: —1 — 1 into these contours,
and then to use Laplace’s method. To find these contours we substitute ¢ = u + 1w and identify the
real and imaginary parts of p:

plt)=¢ + i
= —v® +4v? — S+ 3u?v — 4u® + 2 +i(3uv? — 8uv + Su — u?). (6.627)
Note that the phase of y =Imp at t=1 and at t= —1 is different: Im p(—1)= —4,
Im p(1) = 4. Thus, there is no single constant-phase contour which connects t = —1tot = 1.
Our method is similar to that used in Examples 1 and 2. We follow steepest-descent
contours C, and C, fromt = — 1 and from t = 1 out to co. Next, we join these two conto urs at co

by a third contour C, which is also a path of constant phase. C, must pass through a saddle point
because its endpoints lie at co; otherwise, the integral along C, will not converge (see the
discussion in Example 9).

There are two saddle points in the complex plane because p'(t) = —2(t — i) — 3i(t — 1)* =0
has two roots, t = i and t = 5i/3. The contour C, happens to pass through the saddle pont at i.
On Fig. 6.13 we plot the three constant-phase contours C,, C,, and C,. It is clear that the original
contour C can be deformed into C, + C, + C,. (In Prob. 6.66 you are to verify the results on Fig.
6.13.)

The asymptotic behavior of I(x) as x — +co is determined by just three points on the
contour C, + C, + Cj: the endpoints of C, and C, at t = —1 and at t = +1 and the saddle
point at i. However, the contributions to I(x)at t = +1 are exponentially small compared with



298

LOCAL ANALYSIS

¢ ~ Down \BQ]

Complex-¢ plane Olpo

—2i
Up
i

Figure 6.13 To approximate the integral in (6.6.25) by the method of steepest descents we deform
the original contour connecting the points't = —1 to t = 1 along the real axis into the three distinct
steepest-descent contours above, one of which passes through a saddle point at ¢t =i. Steepest-
ascent and -descent curves near a second saddle point at t = 5i/3 and steepest-ascent curves going
from 1 and —1to —ico are also shown, but these curves play no role in the calculation.

that at ¢t = i (see Prob. 6.67). Near t = i we can approximate the contour C by the straight line
t =i+ uand p(t) by p(t) ~ —u? (u— 0). Thus,

l(x)~%e’z‘[ e ™ du,  x— +oo,
-
~te~2= /n/x, X = + 0. (6.6.28)

This, finally, is the correct asymptotic behavior of I(x)! This splendid example certainly shows the
subtlety of asymptotic analysis and the power of the method of steepest descents.

Example 11 Steepest-descents analysis with a third-order saddle point. In Example 5 of Sec. 6.5
and Prob. 6.55 we showed that

1 1
Jx(x)~—2’2/33'”61'(3)):'”3, X = +00. (6.6.29)
n

Here we rederive (6.6.29) using the method of steepest descents.
We begin with the complex-contour integral representation for J (x):

1
J(x) == dtexsichiv 6.6.30
)= f dee (6630)
where C is a Sommerfeld contour that begins at + oo — in and ends at + oo + im. Setting v = x
gives

1 .
x)=—| dtesiohiTo, 6.6.31
T =5 | e (6631)
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For this integral p(t) = sinh ¢ — ¢ has a third-order saddle point at t = 0.

We have already analyzed the steepest curves of this p(t) in Example 6 (see Fig. 6.9). Note
that we can deform the contour C so that it follows steepest-descent paths to and from the saddle
point at t = 0.

The contribution to J,(x) as x — + co comes entirely from the neighborhood of the saddle
point. In the vicinity of the saddle point we can approximate the contours approaching and
leaving t = 0 by the straight lines ¢t = re™""3 and t = re>. Substituting into (6.6.30) gives

1 ° . 1 ;
J(x) ~ e [ dre™it3g=xrl6 4 o J dre™3e =6 x too.

“r=c T =0
To evaluate these integrals, we replace ¢ by co:

PLENPETLE

J(x) ~ dre=*l®, x— + 0,

2mi =0

Sm (7"'/3)(6/ )1/3 jm e " dr, X = +00.
0

But [§ e™” dr =1 2 e7557 %3 ds = {['(4). Thus,

=L ey

which reproduces the result in (6.6.29).

Example 12 Steepest-descents analysis with a fourth-order saddle point. What is the leading
asymptotic behavior of the real integral

I(x) = j dt cos (xmt)e™ xcosht+632) (6.632)
o

as x - +00? To analyze I(x) we first rewrite the integral as

@
I(x)= %J lint = cosht~12/2)

-

= Lexm2 J'm dt exleosh (¢ im =@t =im2/2] (6633)
— o
For this integral p(t) = cosh (t — in) — (t — in)*/2 has a fourth-order saddle point at t = in (see
Example 7). The steepest-descent contours from this saddle point are drawn in Fig. 6.10 (the
saddle point in Fig. 6.10 is shifted downward by ).

To approximate I(x) we shift the original integration path t: — o0 — + oo from the real axis
into the complex plane so that it follows a steepest-descent curve passing through the saddle
point. The asymptotic behavior of I(x) is completely determined by the contribution from the
saddle point. In the neighborhood of the saddle point at in, we can approximate the steepest-
descent contour by the straight lines t =in + re'”* to the left of the saddle point and
t = in + re”™* to the right of the saddle point. In terms of r, (6.6.33) becomes

0 e
I(x) ~ L= lj oinl4 drex(l—ﬁ[24)+J e i dpex1-r2a) x— +00,
-t 0

L
= e *M/2+x cog (1:/4)I dre™ 128 X — +00.
)

But [§dre ™ =4 [§ drr~¥% " = {T(}). Thus, we obtain the final result that

I(x) ~ 4=~ D(6/x) V4T (4). (6.634)
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This result could not have been obtained by performing a Laplace-like analysis of the real
integral in (6.6.32). Suppose, for example, we argue that as x — + co the contribution to (6.6.32)
comes entirely from the neighborhood of the origin ¢ = 0. Then it would seem valid to replace
cosh t by 1 + t%/2, the first two terms in its Taylor series. If we do this, we obtain an integral
which we can evaluate exactly:

@ .

j dt cos (xnt)e-xtlﬂl) = _zl_ l dt enxm—x(l+11)
o i
@

- %‘[ dt e~ U—1m D2 x(1+xY4)

~®

=1 /n/x e~ =1 +mH),

But this does not agree with (6.6.34) and is therefore not the asymptotic behavior of I(x) as
x — +oco! What is wrong with this argument? (See Prob. 6.68.)

Steepest Descents for Complex x and the Stokes Phenomenon

Until now, x in (6.6.1) has been treated as a large real parameter. However, the
method of steepest descents can be used to treat problems where x is complex. As
we have already seen in Secs. 3.7 and 3.8, an asymptotic relation is valid as x — oo
in a wedge-shaped region of the complex-x plane. At the edge of the wedge, the
asymptotic relation ceases to be valid and must be replaced by another asymptotic
relation. This change from one asymptotic relation to another is called the Stokes
phenomenon.

The Stokes phenomenon usually surfaces in the method of steepest descents in
a relatively simple way. For example, as x rotates in the complex plane, the
structure of steepest-descent paths can change abruptly. When this happens, the
asymptotic behavior of the integral changes accordingly. The integral representa-
tion of Ai (x) behaves in this manner (see Prob. 6.75). The Stokes phenomenon
can also appear when the contribution from an endpoint of the contour suddenly
becomes subdominant relative to the contribution from a saddle point (or vice
versa). We consider this case in the next example.

Example 13 Reexamination of Example 10 for complex x. In this example we explain how the
Stokes phenomenon arises in the integral (6.6.25). It is essential that the reader master Example
10 before reading further.

The integral I(x) in (6.6.25) exhibits the Stokes phenomenon at arg x = *arctan § =
26.57° and at +n. When |arg x| < arc tan 4, the contribution to I(x) from the saddle point
at t =i dominates the endpoint contributions. As in (6.6.28), this gives

I(x) ~ e~ **/n/x, x— o0, |arg x| <arc tan }. (6.6.35)
When arc tan § < arg x < =, the endpoint contribution from t = — 1 dominates. We obtain (see
Prob. 6.69)
i—4
I(x) ~ —68—8"“* DX x—oco,arctani<argx <m (6.6.36)
X

When —7 < arg x < —arc tan 4, the endpoint contribution from ¢ = 1 dominates, giving

i+4
I(x) ~ _%87 e x5 00, —m<argx < —arc tan §. (6.6.37)
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It is interesting to see what happens to the steepest-descent contours as x is rotated into the
complex-x plane. We have plotted the steepest-descent contours for I(x) for arg x = 0°, 30°, 75°,
and 135° in Figs. 6.13 to 6.16. Observe that as arg x increases from 0° to 75°, the contours through
the endpoints at ¢t = +1 and the saddle point at ¢t =i tilt and distort slightly. Note that the
asymptotes of these contours at co rotate by —(arg x)/3 as arg x increases. This is so because

f Complex-t plane

Figure 6.14 Steepest-descent path for I(x) in (6.6.25) when arg x = 30°. (See Fig. 6.13.)
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Complex-t plane

Figure 6.15 Steepest-descent path for I(x) in (6.6.25) when arg x = 75°.
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Figure 6.16 Steepest-descent path for I(x)in (6.6.25) when arg x = 135°. Note that the steepest-descent
path no longer passes through the saddle point at t = i as it does in Figs. 6.13 to 6.15.

Im [xp(t)] must be constant at ¢t = co. The constancy of Im [xp(t)] on the steepest-descent con-
tours implies that the endpoint contours passing through t = + 1 rotate by —arg x neart = +1
and that the contour through t =i rotates by —(arg x)/2 near ¢t = i. There is no abrupt or
discontinuous change in the configuration of the steepest-descent contours as arg x increases past
arc tan 1. In this example the Stokes phenomenon is not associated with any discontinuity in the
structure of the steepest-descent path. It occurs because the contribution from the saddle point
becomes subdominant with respect to the contribution from the endpoint as arg x increases past
arc tan %.

When arg x reaches n — arc tan 2 = 116.57°, there is a discontinuous change in the
steepest-descent path for I(x) (see Prob. 6.69). As illustrated in Fig. 6.16, when arg x = 135°, the
steepest-descent contour no longer passes through the saddle point at ¢ = i. When arg x >
116.57°, the steepest-descent contours from t = +1 meet at 00, so it is no longer necessary to join
them by a constant-phase contour passing through the saddle point at i. The abrupt disappear-
ance of the saddle-point contour from the steepest-descent path when arg x increases beyond
116.57° does not affect the asymptotic behavior of I(x) because the saddle-point contribution
from ¢ = i is subdominant when arc tan § < |arg x| < .

6.7 ASYMPTOTIC EVALUATION OF SUMS

In this section we discuss methods for finding the asymptotic behavior of sums
which depend on a large parameter x. We consider four methods in all: truncating
the sum after a finite number of terms, approximating the sum by a Riemann
integral, Laplace’s method for sums, and the Euler-Maclaurin sum formula. The
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first method is very elementary and rarely applicable, but for completeness we
illustrate it in the following brief example:

Example 1 Behavior of Y *_, e~"**" as x — + 0. The behavior of this convergent series is easy to
find because the sum of the terms with n = 1,2, 3, ... is clearly subdominant with respect to the
first term as x > +co. Thus, 1 + e™ +e7 % + -~ 1 (x > +00).

Approximation of Sums by Riemann Integrals

The Riemann integral I = [} f(t) dt is defined as the limit of the Riemann sum,

= im Y fE) e — to)

N—w n=0

where f(t) is continuous, t, is any point in the interval t, <t, <t,,,, and
t,=a + n(b — a)/N. In the next two examples we show how to use this formula
to find the leading behavior of sums.

Example 2 Behavior of S(x) = Y2, 1/(n* + x?) as x > +co0. Note that each term in this series
decays to 0 like x 2 as x — + oo and that this series converges. One might therefore be tempted to
conclude that S(x) decays to 0 like x ~ 2. However, the correct behavior is

~Z xo 4o (671
2x

S(x)
The origin of this surprising result is that as x increases, more terms contribute significantly to the
leading behavior of S(x). Roughly speaking, x terms, each of size x 2, contribute to S(x) causing
S(x) to decay like x ! as x > +oo0.
We can establish (6.7.1) by converting the series to a Riemann sum. We simply multi ply by
x, rewrite the series as

hed 1
; n/x) X’
and observe that as x — + o the series becomes a Riemann sum for the convergent integral
R | n
[ —d=3. (6.72)
o 1+t 2

Specifically, a Riemann sum for this integral is obtained by choosing the discrete points
t,=t,=n/x (n=0,1,2,...). This gives

1
o1 +1t2

™8

(tn+ 1 tn)'

n

This Riemann sum converges to the integral in (6.7.2) as the interval ¢, , —t, = x~ ! - 0. Thus,
we obtain lim, _ , xS(x) = n/2, which is just (6.7.1). For a higher-order approximation to S(x)see
Prob. 6.91.

Example 3 Behavior of ¥, ., <. n* as x » +c0. We will show that the leading behavior of

Sx)= ¥ (6.73)
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for large x is

a+1
a , Xx— +owya>—1, (6.7.4a)

a+1
St)~ In x, x— +o0;a= —1, (6.7.4b)
{(—a), x- +4o;a<—1, (6.7.4c)

where {(p) is the Riemann zeta function defined by the convergent series
Up)=Y n7¥, Rep> 1. (6.7.5)
n=1

To verify (6.7.4a) we reason as in Example 2. We observe that as x —» o0, x 7 '§(x) =
Y 1<n<x (0/x)/x is a Riemann sum for the integral [§ t* dt = 1/(a + 1), where we have approx-
imated the integral as a Riemann sum on the discrete points t, = n/x for n=1,2, ..., [x] ([x]
stands for the largest integer less than x). This justifies (6.7.4a). The proof of (6.7.4b) was given in
Prob. 5.8. Finally, when a < — 1, the sum S(x) converges as x —» + 0 to S(+ o) = {(—«). This
proves (6.7.4c).

Laplace’s Method for Sums

In the next example we show how to obtain the leading behavior of a sum by
following the philosophy of Laplace’s method which was introduced in Sec. 6.4.

Example 4 Leading behavior of .o x"(n!)™* as x —» +co. We have already encountered this
problem in Example 1 of Sec. 3.5 and Prob. 3.42. There we solved the problem by finding a
differential equation satisfied by the sum and then determining the asymptotic behavior of its
solutions. However, you will recall that because the differential equation was linear, local analysis
could not determine the overall multiplicative constant in the asymptotic behavior of the sum. In
this example we find the leading behavior of the sum directly and encounter no such ambiguities.

To find the leading behavior of this sum by Laplace’s method, we must identify the largest
term in the series. Let us examine the ratio of the (n — 1)th term to the nth term in the series:

X7 (= 1] () =

Note that this ratio is less than 1 if n < x!/* and greater than 1 if n > x'* Therefore, the
terms in the series increase as n increases until n reaches [x'/*]. This is the largest term in the
series. The remaining terms decrease with increasing n.
As x - + 0, the terms in the series peak sharply near the n = [x'/*] term. Therefore, using
the principles of Laplace’s method, we expect that for any ¢ > 0
© A +a] g
S(x)= Y x"(n!)7*~ Yy —. (6.7.6)
n=0 n=[x1%(1-¢) ("’y
with errors that are subdominant with respect to every power of 1/x as x — + oo.
Next we use the Stirling formula (see Sec. 5.4) to approximate each of the terms retained in
(6.7.6). If n = x'* + t, where ¢ is small compared with x'/*, then by Stirling’s formula we have

n! ~ (n/e)',/2nn, n— +o0,
= (x'™ 4 tye™"/2nn
=xn/keu|nu+zx-m,e_n\/m

- x b 2x-
~ xMkgx!txT ML [om 2K x o 4o0; 13 < XK
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where we have truncated the Taylor expansion of In (1 + tx~ '¥) after quadratic terms in .
Therefore,

xn(n!)—k ~ ekxl.he—m.x- Irl/z(zn)—k/?.x— 1/2, X—> +oo;n= xl/k +1t, lJ « XZIk

Finally, we substitute this result into the sum on the right side of (6.7.6) and extend the
region of summation to oo, just as we do with integrals. We obtain

S(x)~ Y extehTM2(n)TMIx "2 x5 4 o0, (6.7.7)

t=-o

The leading behavior of the sum on the right side of (6.7.7) can be obtained as in Examples 2
and 3 by observing that the sum is a Riemann sum for the integral
[ exem a2 ()M 2x =12 gt Hence, we evaluate this integral and find that the leading
behavior of S(x) as x —» + o0 is

S(x) ~ (2m) 1 -Rr2- U2y (1 -2k ghx 1t X = +00. (6.7.8)

Can you find the next-higher-order correction to this result? (See Prob. 6.89.)

Euler-Maclaurin Sum Formula

The Euler-Maclaurin sum formula is an elegant and general expression for the
asymptotic expansion of sums of the form

Fin) = éo 1) (6.7.9)

as n— o0. For example, this formula can be used to find the full asymptotic
expansion of sums like Y%_, k% d%_,Ink as n—oco and even sums like
Yo Y(k* + x?), Yoo (k + x)™" as x > + co.

The Euler-Maclaurin sum formula involves Bernoulli polynomials B,(x)
which are defined as the nth derivative of te*'/(e' — 1) evaluated at t = 0. The first
few Bernoulli polynomials are By(x)=1, Bi(x)=x —3, By(x)=x*— x + %
B,(x) is a polynomial of degree n. Some of the properties of these polynomials are
studied in Prob. 6.88. The Bernoulli numbers B, are defined in terms of Bernoulli
polynomials asB,=B (0) The first few Bernoulli numbers are By = 1, B; = —4,
B,=1% By;=0, B,= —35 Some of the properties of Bernoulli numbers are
examined in Prob. 5.18. There it is shown that B,,,; =0 forn > 1.

In terms of B, and B,(x), the full asymptotic expansion of F(n) in (6.7.9) is

F(n)~%f(n)+J f()dt+C+ ; 1y*t ]‘L*;)'f“’() n— oo,

(6.7.10)
where C is a constant given by the rather messy formula

C = lim [Z( 1)’B’”f“’(0)+ 5/(0)

m—ow |[j=1 ( +1)'

+ (T(n% J.: Byt = [e])f ™ V(t) dt (6.7.11)
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Table 6.2 Comparison between the exact sum of the first n reciprocal integers and
the one-, two-, and three-term asymptotic approximations to this sum given by the
Euler-Maclaurin sum formula in (6.7.12)

= 1 1 1 !

n ug'lk n n nn+y nn+y+2n
10 2.928 968 25 2.302 585 09 2.879 800 76 2.929 800 76
50 4.499 205 34 3.912 023 01 4.489 238 67 4.499 238 67
100 5.187 377 52 4.605 170 19 5.182 385 85 5.187 385 85
500 6.792 823 43 6.214 608 10 6.791 823 76 6.792 823 76
1,000 7.485 470 86 6.907 755 28 7.484 970 94 7.485 470 94
5,000 9.094 508 85 8.517 193 19 9.094 408 86 9.094 508 86

and [t] is the largest integer less than t. The proof of these formulas is left to
Prob. 6.88.

Example 5 Full asymptotic behavior of Y% _, 1/k as n — co. By (6.7.10) with f (t) = 1/(¢t + 1) and
n replaced by n — 1,
t1 1 B, B, Bg
—~lnn+C+— -5 —— —— — ", — 0. 6.7.12
,Z:, k nn 2n  2n? 6 " ( )
The constant C, as given in (6.7.11), is evaluated in Prob. 6.90; the result is C =y =0.5772. In
Table 6.2 we test the accuracy of the expansion in (6.7.12).

Example 6 Full asymptotic behavior of In (n!) as n — co. Using f(t) = In (1 + t) and n replaced
by n — 1, (6.7.10) gives
B, B, Bg

1
ln(n!)~(n+i)lnn—n+C+—

b L P L aLw (6713
L2n T3 a "5 6w T nooo. (6713)

Here C = lim,_, [In (n!) — (n + ) In n + n] = { In 27, by Stirling’s formula.
For more examples, see the problems for Sec. 6.7.

PROBLEMS FOR CHAPTER 6

Sections 6.1 and 6.2

6.1 Show that the integral in (6.1.3) satisfies the differential equation (6.1.1).

Clue: Differentiate three times under the integral sign and integrate by parts once.
6.2 Show that a, in (6.1.5) satisfies the difference equation (6.1.4) and the initial conditions a, = 1,
a, =0.
6.3 (a) Prove (6.2.1).

Clue: Assuming that the asymptotic relation f(t, x) ~ fo(t) (x = X,) is uniform in ¢, show that for
any >0, |2 £ (¢, x) dt — f% f,(¢) dt| < &| [} f,(t) dt| for x sufficiently close to x,.

(b) Prove (6.2.2).
6.4 Verify (6.2.7). (Note that N is the largest integer less than —a and a <0.)
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(D) 6.5 Euler’s constant y is defined by y = lim,_, (1 + 3§+ 4+ -~ + 1/n — In n) = 0.5772. Show t
can also be represented as

(@ y= - lim (J t"le'dt +In x);

x=0+ \'x

(b) v = jw (@e/o1/(1 + 1) — e

(I) 6.6 Verify (6.2.11) and (6.2.12).
(E) 6.7 Find the leading behavior as x —» 0+ of the following integrals:

1

(a) J cos (xt)dt

(M[JﬁﬂFm
j e~* dr;
[ e M dt;

(e) j sin (xt) dt;

x

()] M@/ = o))(e — e);

[
mj e d;
I

fe™=/(1 + £2)] dt;

©

(i) j Jo(xt) =12 dt.

(E) 6.8 Find the full asymptotic behavior as x - 0+ of the following integrals:
(a) j [e™/(1 + x*®)] dt;
(ijw—mw—wx
0

() [ e7Y(¢ + a)] dt.

(I) 6.9 Show that [} [dt/(1 —1)](e* — €¥) ~ € In x + €y + - (x > + c0).
(D)  6.10 Let I(x) = [ [e™(1 + xe™)] dt.
(a) Show that I(x) — 1 ~ —exp (/ —In x) (x = 0+).

(b) Find the full asymptotic expansion of I(x) as x —0+.

Section 6.3

(I) 6.11 (a) Verify (6.3.10).
(b) Verify (6.3.14).
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6.12 Find the full asymptotic expansion of [§ Ai (t) dt as x — +co and compare three methods for
obtaining this result:

(@) Use direct integration by parts.

(b) Use the asymptotic expansion of Ai (x) valid for large x.

(c) Show that {5 Ai (t) dt satisfies the differential equation y” = xy’ and use this equation to
generate the series.

Which method is easiest?
6.13 Verify (6.3.16).
6.14 Find the full asymptotic expansion of f§ Bi (t) dt as x — + co.
6.15 Show that the integral term on the right side of (6.3.18) becomes negligible compared with the
boundary term as x — + co, assuming that the integral exists and that ¢'(t) # 0 fora <t < b.

Clue: Divide the integration region into small subintervals and bound the integral on each
subinterval.
6.16 Verify (6.3.24).

Clue: [§ e™"(1 + xt) In (1 + xt)dt > x [& te™" In (xt) dt.
6.17 (a) The Fresnel integrals are |2 cos (t?) dt, [ sin (¢?) dt. Find the full asymptotic expansions as
x — 0 and as x —» + c0.

(b) The generalized Fresnel integral is defined by F(x, a) = [ t™“" dt for a > 0. Find the full
asymptotic expansion of F(x, a) as x —» + 0.
6.18 Find the leading behaviors of:

(a) j e * dt as x » + oo, where a > 0 and b > 0;

(b) J cos (xt)t~'dtas x> 0+.
1

6.19 (a) How many terms of the asymptotic expansion of [§* cos (xt?) tan® t dt as x — + oo can be
computed using integration by parts? Compute them.

(b) Do the same for f§ cos (xt) sin (t?) dt as x > + co.
6.20 Find the leading behavior as x — + oo of the following integrals:

(a) J? Kol(t) dt, where K, is a modified Bessel function of order 0;

(b) J5 Io(t) dt, where I, is a modified Bessel function of order 0;

(c) |2 D,(t) dt, where D, is a parabolic cylinder function of order v.
6.21 (a) Show that iffis infinitely differentiable, then A, = [§ f(cos 6) cos (n6) d6 defined for integer n
vanishes more rapidly than any finite power of 1/n as n —» co. (This proves that the Fourier expansion
of any even, 2n-periodic, infinitely differentiable function is uniformly convergent and can be differen-
tiated termwise an arbitrary number of times.)

(b) What is the leading behavior of A, as n — co through nonintegral values?
6.22 Find the leading behavior as n— oo (through integer values) of the integral

.= [§ t sin (3nt)o(A, t) dt, where J, is the Bessel function of order 0 and 4, is its nth zero.

Clue: Use the asymptotic expansion of J(x) as x —» + oo to show that 4, ~ (n — §)m (n > o).
Also, note that J (4, t) satisfies the differential equation (ty’y + t42y = 0. Note that the Fourier-Bessel
expansion of sin (3nx) is 2 Y%, A, Jo(4, x)/J5(4,)%

Section 6.4

6.23 Use integration by parts to show that the difference between I(x)in (6.4.1) and I(x; €)in (6.4.2)is
subdominant with respect to I(x).
6.24 (a) Find the leading behavior as x — + co of Laplace integrals of the form [ (t — a)g(t)e**® dt,
where ¢(t) has a maximum at ¢t = a and g(a) = 1. Here « > — 1 and ¢'(a) < 0.

(b) Repeat the analysis of part (a) when @ > —1 and ¢'(a) = ¢"(a) = - = ¢'*"V(a) = 0 and
¢P(a) <O.
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6.25 (a) Use the integral representation

2y "

J(x)=—"" | cos (x cos 8) sin?"* 9 df,
ﬁ I'v+ ‘ZL) ‘o
which is valid for v > —3, to show that the Bessel function J (x) satisfies J (x) ~ (x/2)/T"(v + 1)
(v— o0).
(b) Use the integral representation

1" 1>
Y,(x) = - I sin (x sin 6 — v0) df — - I [e" + e~ cos (va)le > """ dt
0 0

to show that the Bessel function Y,(x) satisfies Y,(x) ~ —'(v)(2/x)"/n/(v = o).
6.26 (a) Obtain three terms of the asymptotic expansion of 5% e~ ? df as x — co.

(b) Find the leading behavior of [3* (1 + t?)e*°*** dt as x — + c0. Note that two maxima contrib-
ute to this leading behavior.
6.27 Show that [§ Ai (xt)/(1 + t?) dt ~ 1/(3x) (x - + o), where Ai (s) is the Airy function. Can you
find the full asymptotic behavior of this integral as x —» +c0?
6.28 Find the leading behaviors of

n2

(a) I Jsinte ¥ dt as x » o0}
0

1
(b) j V(1 —=t) (t +a) *dt as x > + o0 with a> 0;
0

x4
(c) J Jtante ™ dt as x » +o0;
0
x2/2 x2/2 -
(d) j dsj dt € °®Ys* a5 x — + 0.
0 )

6.29 Define P,(z) = (1/z) [§ [z + (22 — 1)"/? cos 6]" dO (z > 1) where the positive square root is taken.
P,(z) is the nth-degree Legendre polynomial. Show that for large n,

L [z4 (2 - 1)y
In (Zz _ 1)1/4

6.30 (a) The digamma function y(z) = I'(z)/T'(z) has the integral representation

Pi(z) ~

V(@) =Inz—1/2z - jm (€ =1)" ="'+ He = de.
o

Use this integral representation to generate the first three terms of the asymptotic expansion of
Y(z) —Inz + 1/2z as z— o0.
(b) Show that

@ Tl _

+y=| ————dt
viz) +v Io T

(c) Show that y(z) + 1/z +y = 3%, (= 1)*¢(k)z*"* (]z| < 1), where the Riemann { function
is defined by {(k)= Y, n7"

(d) Use the series in part (c) to derive a recursion relation for the coefficients C; in the Taylor
series (5.4.4) for 1/T(z).
6.31 Use Laplace’s method for a moving maximum on (6.1.3) to show that A in (6.1.2) is given by
Rt29233-1/2,

6.32 Use Laplace’s method for a moving maximum on (6.1.5) to verify (6.1.6).
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6.33 Show that the last integral on the right side of (6.3.23) vanishes like x~ %2 as x - + c0.

6.34 Calculate two terms in the asymptotic expansion of [§ e™*~**" dt and [§ e™*(1 +t)” "2 dt as
x—0+ and as x > +oc.

6.35 Find the leading behavior of [ e™'~*".dt for « > 0 as x >0+ and as x —» +co.

6.36 (a) Verify that the integral representation in (6.4.20) satisfies the differential equation for K (x).
(b) Use the integral representation (6.4.20) to show that K (x) ~ \/7/2v (2v/ex)" (v > + ).

637 (a) Show that
1
| dt~—T(x), x— +co.

o t+Xx 2x

o px= le—l

(b) Find the leading behavior as x —» + oo of

©

I [ Y(x + )] e dt

J‘ e dt

0
6.38 Solve Prob. 3.77 using Watson’s lemma.
6.39 The logarithmic integral function li (x) is defined as li (x) = P [ dt/In t, where P indicates that
the Cauchy principal part of the integral is taken, when x > 1. Show that li (e°) ~ e* Y2 n!/a"*!
(@a— +o)
6.40 Prove that

2N+1 t2n+1 2N t2n+l
—1f—— <sint e
2 Crggyi<ine< L CU gy

for all t > 0 and all integers N.
Clue: Prove that sin ¢ < t by integrating cos t < 1. In the same way, use repeated integration to
establish the general result.

6.41 Show that (6.4.27) is an integral representation of the modified Bessel function I,(x). In other
words, show that the integral satisfies the differential equation x?y” + xy’ — (x? + v?)y = 0 and the
relation I,(x) ~ (x/2)'/n! (x > 0+).

6.42 Use Laplace’s method for a movable maximum to find the next correction to (6.4.40). In particu-
lar, show that

T(x)~x*"Y2e™* 2m |1 +

1

12_)( + 2—857 + ), X — +00.
6.43 (a) Show that Laplace’s method for expanding integrals consists of approximating the integrand
by a ¢ function. In particular, show how the representation é(t) = lim,_, ,, \/;71; e~ reproduces the
leading behavior of a Laplace integral for which ¢'(c) = 0 but ¢”(c) < 0. [See (6.4.19¢) and (1.5.10c).]

(b) What is the appropriate é-function representation for the case in which ¢(t) < ¢(a) for
a<t<band ¢(a) < 0?[See (6.4.19a).]

(c) What is the appropriate é-function representation for the case in which ¢'(c) = ¢"(c) = -+
¢~ Y(c) =0, ¢P(c) < O with p even? [See (6.4.19d).]

(d) Extend the d-function analysis of parts (a) to (c) to give the higher-order corrections to the
leading behavior.

Clue: The answer is given in (6.4.35).
644 Find the leading behavior of the double integral [§ ds [§ dt e =0 *(os0tinal a5 x —, 4 oo for
0<v<l,v=1 and v > 1. Sketch the function for large x.

Clue: Show that when 0 < v < 1, the exponent has four stationary points. As v — 1—, these
stationary points merge into two. When v > 1, there are no stationary points.
6.45 What happens if we try to treat an ordinary Laplace integral {3 f(t)e**" dt using the methods
appropriate for a moving maximum? Suppose we rewrite the integral as [} e*#©*!"/® gt and expand
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about the maximum of the integrand. Show that now an interior maximum is shifted slightly from
t = ¢ where ¢'(c) = 0, but that this does not affect the result given by Laplace’s method in (6.4.19¢ to d).
6.46 Show that naive application of Laplace’s method for a moving maximum to the integral
I(x, a) = |§ t%¢™*" dt = x"*"'T'(a + 1) gives the wrong answer! Show that the maximum of the inte-
grand occurs at t = a/x and retaining only quadratic terms gives

@
I(x, a) ~ e ™%+ 12 ™2~ ‘\/7 j e du, x — +o00.

-Varz~
Explain why we have obtained the wrong answer.
6.47 (a) Show that
e e~ X
J t~ — , X — +00.
o Int x Inx

Clue: See Example 3 of Sec. 6.6.
(b) Show that

1e ,—xt

l, W

l L @
dt ~ “Thx ";) (In x)" L (Insye™*ds, x— +oo.

(c) Explain why naive use of Laplace’s method for a moving maximum fails to give the results (a)
and (b) above.
6.48 Find the leading behaviors of

(a) I e XN =1 gt a5 x — o0;
0
(b) (d"/dx")[(x)|,, as n - co.

Section 6.5

6.49 Show that § €*s*~ ! ds = ¢™/’I'(«x) for 0 <Re a < 1.

Clue: Substitute s = it and rotate the contour of integration from the negative imaginary-t axis to
the positive real-t axis.
6.50 Use integration by parts to show that the full asymptotic expansion I(x) in (6.5.3) is

i . i . 1] = —j\nt1
I(x)~lﬁ et x| 4o Y (-—l) l“(n+%)
x

251 xJ/n 2.5

s X — +00.

Clue: Write
L1 e-'xr L Lixt L © eixr
Jo \/;dt Jo \/;dt Jl \ﬂdt
and use integration by parts on the second integral on the right.
6.51 Prove the Riemann-Lebesgue lemma by showing that f% f(t)e™ dt — 0 (x — + co) provided that
| £(t)] is integrable.
Clue: Break up the region of integration into small subintervals and bound the integral on each
subinterval.
6.52 Show that [% f(t)e™*® dt - 0 (x - + c0) provided that | f(t)] is integrable, Y () is continuously
differentiable, and y(t) is not constant on any subinterval of a <t <b.
Clue: Use the Riemann-Lebesgue lemma.
6.53 Find the leading behavior of f’f(¢)e™* dt under the following assumptions: y'(a) = --- =
WP Na) = 0; yP(a) # 0; f(t) ~ A(t — a)* (t ~>a+) witha > — 1.
(a) What is the leading contribution to the behavior of I(x) from the neighborhood of the
stationary point at ¢t = a? This result is a generalization of the formula in (6.5.12).
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(b) For which values of « and p does the contribution found in (a) equal the leading behavior of
I(x) as x - co. Assume that y’(t) # 0 for a < t < b and that f(t) is continuous and nonvanishing for
a<t<b
6.54 (a) Show that (6.5.13) is an integral representation of J,(x).

Clue: Show that the integral satisfies the Bessel equation x?y” + xy’ + (x> — n?)y = 0 and be-
haves like (x/2)'/n! as x — 0.

(b) Use the integral representation (6.5.13) to find the leading behavior of J,(x) as x — +c0.

6.55 When v is not an integer, (6.5.13) generalizes for positive x to
" . sin (va) ¢° _ o
J(x)= —I cos (x sin t — vt) dt — —I e xsiRtTV gy,
iy T Y
(a) Verify the validity of this integral representation of J (x).
(b) Use this integral representation to find the leading behavior of J (v) as v » + 0. The result
shows that (6.5.14) remains valid when n is not an integer.

6.56 Use the method of stationary phase to find the leading behavior of the following integrals as
X —> +00:

1
(a) J e cosh ? dt;
0

1

(b) L cos (xt*)tan t dt;

1
(C) ,’ enxu—sin:) dt;
‘o
1
(d) [ sin [x(¢ + §° — sinh t)] cos ¢ dt;
‘o

(e) I l sin [x(t — sin t)] sinh ¢ dt.

Section 6.6

6.57 Evaluate the full asymptotic behavior of [} e dt using integration by parts (see Example 2 of
Sec. 6.6).
6.58 Explain why the contour C, can be replaced by the contour C, in Fig. 6.6. Show that this
replacement introduces errors that are smaller than any term in the asymptotic expansion (6.6.8).
6.59 Show that the coefficient of the general term in (6.6.16) can be expressed in terms of derivatives of
I'(t)ate=1.
6.60 Find the radius of convergence of the asymptotic series (6.6.17).

Clue: See Probs. 6.48(b) and (6.59).

6.61 Verify the features of Fig. 6.9. In particular, show that six steepest paths emerge from ¢t = 0 with
60° angular separations, that the six paths are alternately ascent and descent curves, and that the paths
approach t+oo, + o0 +in, + 0 — i

6.62 Verify the features of Fig. 6.10. In particular, show that eight steepest paths emerge from t =0
with 45° angular separations, that the eight paths are alternately ascent and descent curves, and that
the paths approach + oo, +ioo, + 00 + in, + 0 — im.

6.63 Verify (6.6.19) by showing that the integrals (6.6.18) are pure imaginary.

6.64 Verify that the steepest-descent curve through the saddle point of (6.6.23) is correctly drawn in
Fig. 6.12. Show that this curve is vertical at s = 1, crosses the imaginary-s axis at s = +in/2, and
approaches — oo + im.
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6.65 Formulate a convincing explanation that if we neglect the term xt* in (6.6.24), we will obtain the
wrong asymptotic behavior of the integral as x » + co.

Clue: On the assumption that the term is small, expand the cosine and estimate the error terms.
Show that the error is not smaller than the exponentially small integral obtained by neglecting xt3.
6.66 Verify the results in Fig. 6.13. In particular, show that C,, C,, and C; are steepest-descent
contours.

6.67 Show that the contributions to I(x)in (6.6.25) from C, and C, in Fig. 6.13 are exponentially small
compared with the contribution from the saddle point on C,.
6.68 Formulate a convincing explanation that if we replace cosh ¢t by 1 + ¢?/2 in (6.6.32), we will
obtain the wrong asymptotic behavior of (6.6.32) as x —» + co.
Clue: See Prob. 6.65.
6.69 (a) Verify (6.6.35) to (6.6.37).

(b) Show that as arg x in (6.6.25) increases past n — arc tan 2 the steepest descent path through
the endpoints at t = + 1 no longer passes through the saddle point at t = i. (See Figs. 6.13 to 6.16.)
6.70 The integrand in (6.6.19) has saddle points at t = innt (n =0, +1, +2, ...). Why don’t we distort
the contour C to pass through all or some of these points instead of just through ¢t = 0 as in Example 8
of Sec. 6.67
6.71 An integral representation of the modified Bessel function K (x) is K ,(x) = 4 [© e *cshi+y g¢
Show that K, ,(x) = ﬂ (p* — x?)~ Y4e~ P2 sin ¢(x), where ¢(x) — p cosh™! (p/x) + \/p? — x* ~ n/4
(x = + 0, p/x = +00).

Clue: The contribution comes from the neighborhood of two saddle points satisfying sinh ¢ =
ip/x. Explain why it is that although there are an infinite number of saddle points, only two contribute
to the leading behavior.

6.72 Investigate the Stokes phenomenon for the integral I(x) = [§ €*’ dt as x — co. Specifically, evalu-
ate the asymptotic behavior of (x) as x — oo with arg x fixed for several values of arg x and show that
there are Stokes lines at |arg x| = 7/2.

6.73 Find the first two terms in the asymptotic behavior of [§'* cos (xt?) tan? ¢ dt as x — + 0.
6.74 Find three terms in the asymptotic behavior of f§ In (1 + t) e *"** dt as x —» + 0.

6.75 (a) Show that an integral representation of the Airy function Ai (x) is given by

1
Al (x)= o | e,
c

where C is a contour which originates at coe™2*/> and terminates at coe?™/>.

(b) Use this integral representation to show that the Taylor series expansion of Ai (x) about
x =0 is as given in (3.2.1).

(¢) Using the method of steepest descents, find the asymptotic behavior of Ai (x) as x — +co.

(d) Extend the steepest-descent argument used in part (c) to show that the same asymptotic
behavior is valid for x — oo with |arg x| <m and that there is no Stokes phenomenon at
|arg x| = /3.

(¢) Show that there is no Stokes phenomenon at |arg x| = n/3 in a different way. Transform
the integral in (a) to

©
Ai (x)= le’z“’”’3 I e~ xMICI3 4y
r 0

and then use Laplace’s method.

Clue: For real positive x, deform C in (a) into the straight-line contour connecting —x — ico to
—Xx + ico and then allow x to be complex with |arg x'/?| < /2.

(f) Find the leading behavior of Ai (x) as x » — co.



314 LOCAL ANALYSIS

Clue: Show that the steepest-descent contour connecting coe ™ 2*/3 to c0e?™/® consists of two

pieces, one passing through the saddle point at t = —i,/ —x and one passing through the saddle point
att= +i
6.76 (a) Show that an integral representation of the Airy function Bi (x) is given by

1 1
Bi(x)=— | & ®Pdt+—| e "Pd,
i (x) =5 L, +o jCA

where C, is a contour which originates at coe*2*/> and terminates at + oo.

(b) Use this integral representation to show that the Taylor series expansion of Bi (x) about
x =0 is given in (3.2.2).

(e) Using the method of steepest descents, find the asymptotic behavior of Bi (x) as x — + co.

(d) Extend the steepest-descent argument used in (c) to show that this leading asymptotic
behavior of Bi (x) is still valid for x — co with |arg x| < =/3.

(e) Use the integral representation of (a) to find the asymptotic behavior of Bi (x) as x — co with
n/3 < |arg x| < m. Show that as |arg x| increases beyond n/3, the contribution from the saddle point
at t = —,/x overwhelms the contribution from the saddle point at t = + \/)—c
6.77 Consider the integral I(n) = 5 cos (nt) " *** dt where n is an integer.

(@) Use integration by parts to show that I(n) for n integral decays to 0 faster than any power of
1/n as n —» co. What if n is nonintegral?

(b) Use the method of steepest descents in the complex-t plane to show that I(n)~
V/2n (diea/n)" (n — o).

(c) By setting z = cos ¢ show that
el dz
(z+/22-1y J1-72

where the branch cut of \/zZ — 1 is chosen to lie along the real axis from z= —1to z= +1, the
branch is chosen so that \/zZ — 1 — +z as z — o0, and C is any contour that loops around the branch
cut just once in the counterclockwise sense.

(d) Use the integral representation in (c) and the method of steepest descents to reproduce the
results in (b). Notice that there are no endpoint contours required with this alternative derivation.

I(n)——J.

6.78 Let f(z) be an entire (everywhere analytic) function of z whose Taylor series about z =0 is
f(z) = Y°.0 a,z". Cauchy’s theorem gives a contour integral representation for a,:

_1_[ f(t)d

L
2mi o rt!

'n

where C loops the origin once in the counterclock wise sense. Using the method of steepest descents,
find the leading asymptotic behavior of a, as n — oo for the following functions:

(@) f(z) = €* (the result is a rederivation of the Stirling formula for n!);

(b) f(z) = €™,

(¢) f(z) = exp (€*) (see Prob. 5.71).
6.79 Using the approach of Prob. 6.78, verify the result stated in Prob. 5.20 for the asymptotic
behavior of the Bernoulli numbers B, = n! f™(0) where f(z) = z/(e* — 1).

6.80 Find two terms in the asymptotic expansion of [§ e “*' dt as x — + co. Where are the Stokes
lines in the complex plane?
6.81 Use the method of steepest descents to find the full asymptotic behaviors of

(a) | O dt (x - +o0);

1
) [ e dt (x> +o0).
‘o
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6.82 Find the leading behavior of the integral [© %%, t12*®/3~9 d¢ a5 x — + 0, where a > 0 and
the contour of integration is an infinite straight lme parallel to the real-t axis lying in the upper half of
the complex-t plane. What is the effect of the branch point at t = 0?
6.83 (a) Show that y(x) = f. €*~*/ dt, where C is any contour connecting the points oo, coe*2%/5,
coe**™5 at which the integrand vanishes, satisfies the hyperairy equation (3.5.22).

(b) Use the integral representation given in (a) to find the possible leading behaviors of solutions
to the hyperairy equation as x — + co.

(c) Investigate fully the Stokes phenomenon for that solution of the hyperairy equation obtained
by choosing C to be a contour connecting coe ™ *™> to coe™ 2%/,
6.84 (a) Show that D,(x) = (¢*/*/i,/2n) [ t"e™**/2 dt, where C is a contour connecting —ioo to
+ioo on which Re ¢t > 0, satisfies the parabolic cylinder equation (3.5.11) and the initial conditions
D,(0) = ='22"2/T (4 — v/2), D,(0) = —=!/220* 12 (—v/2).

(b) Use the method of steepest descents to show that D (x) ~ x"e™*'* (x = + o).

(c) Extend the steepest descent argument of (b) to show that D (x) ~ x"e™**/* is still valid if
x — oo with |arg x| < /2.

Clue: Show that the branch point of t* at t = 0 does not affect the steepest descent calculation if
|arg x| < m/2.

(d) Show that the asymptotic behavior found in (b) and (c) is valid beyond |arg x| = n/2 and
only breaks down at |arg x| = 3n/4 when v is not a nonnegative integer.

Clue: Show that the contribution from the branch point at ¢t =0 found in part (c) becomes
significant as |arg x| increases beyond 3m/4.

(e) Find the asymptotic behavior of D,(x) as x — oo with 3n/4 < |arg x| < 5n/4.
6.85 (a) Using the integral representation of Prob. 6.84(a), show that if Re (v)> —1,
D,(x) = /2/m e*1* |3 e™"I%1" cos (xt — va/2) dt.

(b) Show that D (x) = /2 (v/e)"? cos 0, where 8 ~ xv!/2 — vr/2 (v = c0; x fixed).
6.86 Find the leading behavior as x > +co of the integral

eix(:-‘/] ]

dt,
c t—a

where C is a contour connecting —oo to +co in the upper-half ¢ plane and a is a real constant.
Investigate separately the cases |a| <1, |a| > 1,a= +1.

6.87 (a) Find the leading behavior of I,(x) = [§ €*~"" dt as x > + c0. (See Prob. 6.83.)
(b) Investigate the Stokes phenomenon for I,(x) as x — co in the complex-x plane.

Section 6.7

6.88 Derive the Euler-Maclaurin sum formula (6.7.10) as follows:
(a) Verify that
k+1

WE k0 -[ 0d=]  (—k=hred

(b) Sum the identity in (a) to show that F(n) in (4.7.9) satisfies F(n)=3[f(0)+f(n)] +
fo f(t)dt + [ By(t — [t])S"(t) dt, where B,(s) is the Bernoulli polynomial of degree 1, By(s)=s—3

(c) Show that the Bernoulli polynomials B,(x), which are defined by the formula te*/(e — 1) =
Yo Bu(x)t"/n!, satisfy By(x) = nB,_,(x) and B,(0) = B,(1) for n >2.

(d) Integrate the result of (b) repeatedly by parts to show that

F(n)=%[f(0)+f(n)]+f 1) de + z (—lr“

j+ 1)'
L1000 - 1900 +

(e) Let m — oo and thus derive (6.7.10) and (6.7.11).

[ B (07 (0) de.
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(D) 689 Find the first correction to the result in (6.7.8).
(D) 6.90 Euler’s constant y is defined as y = lim,, (3=, 1/k — In n). Use the formula (6.7.11) to show
that the constant C in (6.7.12) is Euler’s constant y.
Clue: Reverse the process of integration by parts used in Prob. 6.88.
(D) 691 (a) Show that Y2, 1/(k? + x*) — m/2x ~ 1/2x* (x - + o0).
Clue: Follow the derivation given in Prob. 6.88 to derive an analog of the Euler-Maclaurin sum
formula for x —» + co.
(b) Evaluate Y°, (k* + x2)™! exactly by representing the sum as the contour integral

1 J» cot t

2mi Je £ + x?

dt

over an appropriate contour.
(c) By comparing the results of (a) and (b), show that the error in (a) is exponentially small as
X — +00.

(D) 692 Find two terms in the asymptotic behavior as x — + co of the following sums:

(a) io (k +x)"* (@>1);

() Y k* +x*)"2
k=0
(D) 6.93 Find three terms in the asymptotic behavior as n — co of the following sums:

@ % (-1
(b) é: By,

(c) Y sin k/k.
k=1
(D)  6.94 Show that
had 1 In x

,y «©
DT i g )

k=1 X n=1

0_1YBZn
——————2")‘2”2 s X — +00.

() 695 Show that

(a) Z 2"””“”“"'”/"’~x'_'"z/(l—ln2)(x—>+00);
1Snsx

(b) Y n'2e" ~2xe™” (x > +0);

1snsx

© 3 e+ 0P/l + 3 + 57T~ 23 (s )

@) T 0= ~ 02" Sk (o).



