
Topic 33: Green’s Functions I – Solution to Poisson’s Equation 
with Specified Boundary Conditions 

 
This is the first of five topics that deal with the solution of electromagnetism problems 
through the use of Green’s functions. We will begin with the presentation of a procedure 
that permits the solution of electrostatic problems with specified charge distributions 
within a volume V surrounded by a surface S that has specified boundary conditions for 
either the potential or the normal component of electric field. To set the stage, consider 
the application of Green’s theorem for such a geometry: 
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Note that we have chosen a prime to denote the variable of integration. We choose the 
two functions as follows. Let r  be the electrostatic potential in V. Therefore  
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where r  is the charge density. For the other function we choose:  
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where r  is a fixed point in V. Equation (33-1) becomes: 
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As S recedes to infinity the surface integrals vanish, and we recover Coulomb’s Law, 
which is not particularly interesting or useful. Equation (33-4) does suggest the 
possibility of a useful expression for evaluating the potential at points in V if S 
corresponds to an actual physical boundary. However, as it stands, this will not work. 
This is due to the fact that one would need to specify both the potential and its derivative 
on the boundary in order to evaluate the integrals. But such a case would correspond to 
an over-specification since either type of boundary condition suffices to uniquely 
determine the potential inside V. 
 
Dirichlet Green’s Function 
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If we modify our choice for r  the situation improves. Suppose that instead of 
Equation (33-3) we use the following function: 
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where the Green’s Function G is subject to the conditions: 
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and 
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Then Equation (33-4) becomes: 
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Equation (33-8) can be used to solve Dirichlet type problems for which the potential is 
specified on the surface. 
 
Neumann Green’s Function 
 
Suppose that instead of equation (33-5) we use the following function: 
 

r,rGr N ,     (33-9) 
 
where G is subject to the conditions: 
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and 
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We have used the symbol S in equation (33-11) to denote the surface area of the surface 
S. Then Equation (33-8) becomes: 
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Equation (33-12) can be used to solve Neumann type problems for which the normal 
derivative of the potential is specified on the surface. It was necessary to impose 
condition (33-11) on the Neumann Green’s Function to be consistent with equation (33-
10). 
 
Symmetry Condition for Dirichlet Green’s Function 
 
Let r,xGr D  and let r,yGr D  for a Dirichlet type Green’s Function, 
where x  and  are two points inside of V. Inserting these into Green’s theorem we get:  y
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We have used the fact that the Dirichlet Green’s Function vanishes on S. Now let’s use 
condition (33-6) to obtain: 
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So the Dirichlet Green’s Function must be symmetric under exchange of its two position 
variables. 
 
Dirichlet Green’s Function for a Sphere 
 
The search for a Dirichlet Green’s Function is equivalent to the search for an image 
charge, a procedure that is covered in most undergraduate courses. In each case we need 
to find a function that is a potential within volume V. The potential is due to a point 
charge in V, added to a potential due to charges outside the region of interest. The 
potential is required to vanish on S for both the Green’s Function problem and for the 
usual form of the image problem in which the bounding surface is a grounded metallic 
object. 
 
As an example we state the result for such a search for a sphere of radius a. Suppose we 
are interested in the Green’s Function for interior problems (i.e. we want to calculate the 
potential within the sphere). By considering the elementary image problem for a sphere 
(consult your undergraduate text), it is easy to find the appropriate Green’s Function: 
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which can be written as: 
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In this equation,  is the angle between the vectors r  and r . The Green’s function for 
the exterior problem is easily seen to be exactly the same (except that r  and r  are 
outside the sphere in this case). 
 
************************************************************************ 
Exercise 33-1 
Consider an isolated metal sphere of radius a whose center is located at the origin. The 
sphere has no charge on it. A positive charge Q is located at z = R, and a charge –Q is 
located at z = R. Let’s find the potential outside the sphere. 
 
Solution 33-1 
The potential on the sphere is zero, which can be seen by calculating the work done in 
moving a charge from infinity to the surface of the sphere along a line in the xy plane. 
Equation (33-8) becomes: 
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where V is the volume exterior to the sphere. This equation yields the potential at all 
points outside the sphere. By using the specified charge distribution, we get: 
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So we have: 
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Using equation (33-14): 
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where  is the usual polar angle. With equation (33-18) is easy to see that: 
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The answer is thus specified in terms of equations (33-17), (33-18), and (33-19). 
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An interesting check of the results can be obtained by letting R approach infinity. In this 
case: 
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Combining terms we have: 
 

2

3
0

0 r
cosaE

cosrEr ,   (33-20) 

 

where 2
0

0 R4
Q2E  is the uniform field produced by the external charges. This is the 

familiar expression for the electric field outside of an uncharged conduction sphere in a 
uniform field. 
 
The charge density on the sphere is easily found to be: 
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