Application of Contour Integrals

Example 1 Consider a R-L circuit

Suppose we give an impulse

\[V(t) = A \delta(t) \]

\[= \frac{A}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \, dw \]

\[\hat{V}(\omega) = \frac{A}{2\pi} e^{i\omega t} \]

Well we know that

\[V(t) = L \frac{dI(t)}{dt} + I(t)R \]

Fourier Transforming

\[\hat{V}(\omega) = L \omega \hat{I}(\omega) + R \hat{I}(\omega) \]

\[\Rightarrow \hat{I}(\omega) = \frac{A}{2\pi} \frac{e^{i\omega t}}{(L\omega + R)} \]

\[I(t) = \frac{A}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega t} \, dw}{(L\omega + R)} \]

So now do by contour integration. Notice if \(\omega \) is negative, then in lower half plane contour integral has large negative part as \(\text{Im} \omega \rightarrow -\infty \)

Thus, \[\int_{C_L} \frac{e^{i\omega t}}{(L\omega + R)} \rightarrow 0 \] as \(R \rightarrow \infty \)
Thus, for \(t \leq 0 \), we close \(\text{contour} \) on the bottom and conclude

\[
I(t) = \int_{-\infty}^{\infty} \frac{e^{i\omega t}}{i\omega L + R} + \int_{C_L} f(z) \, dz = 2\pi i \text{Res} = 0
\]

So

\[
I(t) = 0 \quad \text{for} \quad t < 0. \quad \text{This must be due to causality!}
\]

This is a general property of susceptibilities (causality requires, that the be analytic in a half-plane). We will come back to this next lecture we discuss dispersion relations.

For \(t > 0 \), we close in the upper-half plane. Then,

\[
e^{i\omega t} \to 0 \quad \text{as} \quad |\text{Im} \, \omega| \to \infty
\]

So we know

\[
\int_{C_R} f(z) \to 0
\]

\[
\int_{-\infty}^{\infty} e^{i\omega t} = 2\pi i \text{Res} = 2\pi i \left(\frac{A}{2\pi i} \right) \frac{e^{-R t L}}{LL} = \frac{A e^{-R t L}}{L}
\]

as we expect!
Example 2

\[I = \int_0^\infty \frac{dx}{1 + x^3} \]

Notice this odd integral so can't extend to infinity. We will do this in some very long convoluted way to learn about integrating around branch points.

Consider integral

\[\int_C \frac{\ln z}{1 + z^3} \]

Notice that integral along \(C_R \) goes to 0 as \(R \to \infty \) since

\[\left| \frac{\ln z}{1 + z^3} \right| \leq \left| \frac{\ln R}{R^3} \right| \]

so

\[\int_C \frac{\ln z}{1 + z^3} \leq \frac{\pi \ln R}{R} \to 0 \quad \text{as} \quad R \to \infty \]

Now consider integral along inner circle \(\theta \neq 0 \), \(pe^{i\theta} \), \(\pi \theta < 0 \)

\[\lim_{\rho \to 0} \int_0^{2\pi} i\frac{e^{i\theta}}{1 + pe^{3i\theta}} d\theta = 0 \]

Since integral vanishes.

Thus we only have integrals above and below branch.

Above branch

\[\int_0^\infty \frac{d\ln x}{1 + x^2} \]

below branch

\[\int \frac{dx}{1 + x^2} \]

\[= -\int \frac{d\ln x}{1 + x^3} dx - 2\pi i \int \frac{d(\frac{1}{x})}{1 + x^3} \]

\[= -\int \frac{d\ln x}{1 + x^3} dx - 2\pi i \int \frac{dx}{1 + x^3} \]
So
\[\int_{C} \frac{\ln z}{1 + z^3} = \int_{0}^{\infty} \frac{dx}{x} \frac{\ln x}{1 + x^3} - \int_{0}^{\infty} \frac{\ln x}{1 + x^3} = -2\pi i \int_{0}^{\infty} \frac{\ln x \, dx}{1 + x^3} \]
\[2\pi i \sum \text{Res} \quad \begin{array}{c} z = z_0 \end{array} \]
\[z_0 = e^{\pi i 3}, e^{\frac{\pi i}{3}}, e^{\frac{5\pi i}{3}} \]
\[I = \sum \text{Res} \left\{ \frac{\ln z}{1 + z^3} \right\} \]
\[= \sum \text{Res} \frac{\ln z}{(z - e^{\pi i 3})(z - e^{\frac{\pi i}{3}})(z - e^{\frac{5\pi i}{3}})} \]
\[= \frac{\ln e^{\pi i 3}}{(e^{\pi i 3} - e^{\frac{\pi i}{3}})(e^{\pi i 3} - e^{\frac{5\pi i}{3}})} + \frac{\ln e^{\frac{\pi i}{3}}}{(e^{\pi i 3} - e^{\frac{\pi i}{3}})(e^{\frac{5\pi i}{3}} - e^{\frac{\pi i}{3}})} + \frac{\ln e^{\frac{5\pi i}{3}}}{(e^{\pi i 3} - e^{\frac{5\pi i}{3}})(e^{\frac{5\pi i}{3}} - e^{\frac{\pi i}{3}})} \]
\[= \frac{2\pi i \sqrt{3}}{q} \]

Example: Scattering in Quantum Mechanics and Physical Meanings of E- prescription (Due after next example)
Example 3

Consider integrals of the form

\[I = \int_0^{2\pi} f(\sin \theta, \cos \theta) \, d\theta \]

\[z = e^\theta \quad dz = e^\theta \, d\theta \]

\[d\theta = -\frac{dz}{z} \quad \sin \theta = \frac{z - z^*}{2i} \quad \cos \theta = \frac{z + z^*}{2} \]

\[I = -C \int_C f \left(\frac{z - z^*}{2i}, \frac{z + z^*}{2} \right) \frac{dz}{z} \]

Consider

\[I = \int_0^{2\pi} \frac{d\theta}{1 + e \cos \theta} \quad |e| < 1 \]

\[= -C \int_C \frac{dz}{z \left[1 + \frac{z^2}{2} (z + z^*) \right]} \]

\[= -\left(\frac{2}{e} \right) \int \frac{dz}{z^2 + \frac{2}{e} z + 1} = -\left(\frac{2}{e} \right) \left[2\pi i \frac{1}{z + \frac{1}{e} + \frac{1}{e\sqrt{1-e^2}}} \right] \]

\[\text{root} \quad \frac{z}{z^-} = -\frac{1}{e} - \frac{1}{e} \sqrt{1 - e^2} \quad \text{outside circle} = \frac{2\pi}{\sqrt{1 - e^2}} \]

\[z_+ = -\frac{1}{e} + \frac{1}{e} \sqrt{1 - e^2} \quad \text{in circle} \]
Thus consider some function \(f(z) \) with pole at \(z_0 \).

For counter clockwise close enough to pole

\[
\lim_{x \to 0} \int_{-\infty}^{\infty} \frac{x}{\pi(x^2 + 1)} \, dx
\]

Basic idea consider pole directly on contour integration

\[
\int_{-\infty}^{\infty} \frac{x}{x^2 + 1} \, dx
\]

Can by pass pole

where \(P \)

means "principal value"

Consider integral

This is imaginary part

Also well defined

\[
\int_{0}^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}
\]

\[
\int_{0}^{\infty} \frac{\cos x}{x} \, dx = \frac{\pi}{2}
\]

\[
\int_{0}^{\infty} \frac{\ln \sin x}{x} \, dx = \frac{\pi}{2}
\]

\[
\int_{0}^{\infty} \frac{\ln x}{x} \, dx
\]

Example 4
So now
\[
\int_0^\infty \frac{e^{\alpha z} \, dz}{z} = 0 \quad (\text{no poles})
\]

So now \(\int_{c_1} \frac{e^{\alpha z}}{z} \, dz = \pi i \)

Furthermore, \(\int_{c_2} \frac{e^{\alpha z}}{z} \, dz = 0 \) by Jordan's lemma

a) \(f(z) \) is analytic in upper half plane except finite number of poles

b) \(\lim_{|z| \to \infty} f(z) = 0 \) \(0 \leq \arg z \leq \pi \)

Then \(\int_{c_2} \frac{f(z)}{z} \, dz = 0 \). (See Ahlfors p.424)

\(\Rightarrow \quad \pi \int_{-\infty}^\infty \frac{e^{\alpha x}}{x} \, dx = \pi i \quad \Rightarrow \quad \int_{-\infty}^\infty \frac{\sin x}{x} \, dx = \pi \)
Now for some physics

Scattering theory in Q.M.

Consider a localized potential $V(r)$

Consider a plane wave e^{ikr} (traveling away from origin)

Well then one will in general get scattered outgoing wave far away from the scattering region must have form

$$e^{ikr} + \frac{f(\theta, \phi)}{kr} e^{ikr}$$

(ie plane wave that decays at infinity)

This is scattering amplitude

So look at Schrödinger's equation

$$\left(\frac{-\hbar^2}{2m} \nabla^2 + E_k\right)\psi_k(\mathbf{r}) = V(\mathbf{r})\psi_k(\mathbf{r}) \quad E_k = \frac{\hbar^2 k^2}{2m}$$

Then

$$\psi_k(\mathbf{r}) = e^{ikr} + \int d\mathbf{r}' G(\mathbf{r} - \mathbf{r}') [V(\mathbf{r}')\psi_k(\mathbf{r}')]$$

where $G(\mathbf{r} - \mathbf{r}')$ is Green's Function satisfying

$$\left(\frac{-\hbar^2}{2m} \nabla^2 + E_k\right)G_{R,k} = \delta(\mathbf{r})$$

[Like inverse matrix]

(notice add e^{ikr} and still solution)
Basic idea of Green's function

\[L = \frac{\hbar^2 \nabla^2}{2m} + E_k \]

\[\hat{L} \Psi_k(\vec{r}') = g(x) \]

\[\Psi_k(\vec{r}) = \hat{L}^{-1} g(x) \]

Spend all of October doing this in detail!

One finds

\[G(\vec{r}, k) = \int \frac{d^3k'}{(2\pi)^3} \frac{e^{ik'r}}{E_k - k^2} \]

\[= -\frac{m}{2\pi^2 \hbar^2} \int_{-\infty}^{\infty} \frac{K' dk' e^{iK'r}}{K'^2 - K^2} \]

So now we have the contour integral

\[\int_{-\infty}^{\infty} \frac{K' dk' e^{iK'r}}{K'^2 - K^2} \]

This is not well defined, poles are on real axis

What should we do?

Use physics. Physics is actually hidden in these things we do to make mathematic well-defined!

We can complete contour in upper-half plane since \(r > 0 \)
by Jordan's Lemma

\[e^{iK'r} \text{ solution} \]
\[e^{-iK'r} \text{ solution} \]
\[\text{incoming wave} \]
\[\text{standing waves} \]
This gives us perscription \(\rightarrow \) so enclose pole at \(+k\)

but not at \(-k\)

\[G_+ (r, k) = \frac{\pi}{2\pi i \hbar^2} \int_{c} k' \frac{e^{ik'r}}{k'^2 - k^2 - \hbar \epsilon} \]

\[C_+ (r, k) = \frac{\hbar}{\hbar^2} \frac{e^{i k r}}{2} \]

Physics Example 2

Winding Numbers, Argument Principle, Berry's Phase

and Polarization in 1-D materials.

Argument Principle + Winding Number

Consider some function

\[f(z) \text{ which has finite number of poles and singularities in region } C \]

\[\oint_C \frac{f'(z)}{f(z)} = 2\pi i (N - P) \]

\(N = \# \text{ of zeroes (counted with multiplicity)} \)

\(P = \# \text{ of poles (counted with order)} \)
Proof

Let z_n be a zero of f. Then $f(z) = (z-z_n)^k g(z)$ so $g(z_n) \neq 0$.

\[
f'(z) = k(z-z_n)^{k-1} g(z) + (z-z_n)^k g'(z)
\]

\[
\frac{f'(z)}{f(z)} = \frac{k}{z-z_n} + \frac{g'(z)}{g(z)}
\]

$\frac{g'(z)}{g(z)}$ is analytic at z_n. So

\[
\text{Res}_{z=z_n} \frac{f'(z)}{f(z)} = k_n
\]

Let z_p be a pole of f. Write $f(z) = (z-z_p)^{-m} h(z)$ where $h(z_p) \neq 0$. Then

\[
f'(z) = -m (z-z_p)^{-m-1} h(z) + (z-z_p)^{-m} h'(z)
\]

\[
\frac{f'(z)}{f(z)} = -\frac{m}{z-z_p} + \frac{h'(z)}{h(z)} \quad \text{no singularities at } z_p, \quad h(z_p) \neq 0
\]

So

\[
\text{Res}_{z=z_p} \frac{f'(z)}{f(z)} = -m_p
\]

Thus, by Residue Theorem

\[
\int_{\gamma} \frac{f'(z)}{f(z)} = 2\pi i (N-M)
\]
However, notice

\[\oint_C \frac{f'(z)}{f(z)} = \ln f(z) = \text{Log}_c(f) \]

Since \(\text{Log}_c(f) \) is just "winding number" \(\times 2\pi i \) of \(f(z) \), since \(\ln \) measures how many times \(Wf(z) \) wraps the origin in \(W \) plane

So we have that winding number

\[W(C,0) = (N - P) \]

The "winding number" is a topological quantum number \(\to \) it is quantized in units of integers \(\text{i.e.} \ N - P \)

This unlike topological charge. \(\to \) It depends only on number of poles and zeros not on any other details of \(f(z) \). Create surfaces where you puncture "holes" with + charge and poles with "-" charge in complex plane.

This is really amazing!! We just heard about topological insulators what can we do with this case.