xzii

44
44

44

44

44
Index

Chapter 33: Critical Properties of Gauge Theories
Chapter 37: Instantons in Quanturn Mechaniecs .
Chapter 38: Instantons in Quantum Mechanics: (Generalization .
Chapter 39: Unstable Vacua in Field Theory e e
Chapter 42: Instantons: The ¢* Field Theory in Dimension Four
Chapter 43: Multi-instantons in Quantum Mechanics

Conients

990
990
992
996
a97
998
1001

i,

1 ALGEBRAIC PRELIMINARIES

It is somewhat unusual to begin a physics textbook with algebraic identities, which are in
general] hidden in appendices. However, our discussion of perturbative aspects of quan-
tum mechanics and quantum field theory will entirely be based on path or functional
integrals and more generally functional techniques. Therefore a reader not already famil-
iar with these concepts may find it difficult to follow the algebraic manipulations which
enter in the derivation of many results. Moreaver we want to indicate by such a choice
that the various techpical difficulties which we shall meet, will in general be directly
confronted rather than carefully hiddes.

Therefore in this first chapter we recall a few algebraic identities about gaussian inte-
grals. We also recall the concept of functional differentistion and the algebraic definition
of the determinant of an operator.

We then define and discuss a few properties of differentiation and integration in a
Grassmanm, j.e. antisymmetric algebra. In particular we calculate gaussian “fermionic”
integrals. Throughout the chapter all expressions are given.for a finite but arbitrary
number of variables, because the focus is mainly on algebraic properties. Bowever the
generalization to an infinite number of variables will be easy, as will be discussed in the
following chapters.

Note that in this chapter, as well as in this whole work, summation over repeated
indices will always be meant (except if explicitly stated otherwise).

1.1 The Gaussian Integral

In this section we briefly review a few algebraic properties of gaussian integrals in the
case of a finite number of integration variables.

A general gaussian integral has the form:

n n n
NAP.UV ﬂ,\v :&Ha. exp | — M mﬂ.ﬂa&ﬁ.ﬂ. +M-..ﬂ¢. ' AH.HV

=) i, jed i=1
in which A is a symmetric matrix with eigenvalues A; satisfying
Re(M) 20, XA #0.

To calcunlate F one first Jooks for the minimum of the quadratic form:
& R n n
prry MU Yzidijzs — M bz { =0.
i, j=1 i=1
The solution is: :
= ﬁ\uluv&. Wu. y mH.Mv
{(summation over j being meant as stated above} and one sets:

Ty = Ahlum b + .. (1.3)
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The invegral becomes:

I = exp —an A\mluv&. vu.w .\.A:.Q@au exp A'Ww}.xﬁmu@mv . AHAV
The last integral can be calculated by changing variables, setting

?SV YT Vi

the eigenvalues A}/* of A/? being chosen such that —n/4 < ArgA\/2 < +m/4. The
integral over the y’s is then straightforward and one obtains:

n
I(Ab) = (20)"2 (det A) 2 exp | 3 1t (A7), b4 - {1.5)
ij=1
By differentiating this last expression with respect to the variables b;, it is then possible
to calculate the average of any polynomial with a gaussian weight:

n
{Th,Zhy - The) N.Z\ mms.. Thy Ty oo - Thoexp | — MU iziAiz; |, (1.5)
i $4=1
in which the normalization N is chosen in such a way that {1} = 1:
N =1(A,0).
Indeed from expression (1.1) one derives:

a8
»@..WMH {A,b) = .\A:..&H&Rk exp Almﬂmhﬁ.ﬂu + F.H-.V . a.7)
Repeated differentiation with respect to b then leads to the identity:

A IR S I |
AH_:H»» ... ﬂnav !. Amu.v Two& .Pv ﬁmwn- mvku m@»n H A‘P..UVU_ ﬁv .

=0

or replacing the integral 7 (A, b) by its explicit form (1.5):

lw...nw.l W J.T»l.v bs (1.8
b, Oby, e T g ' )
i,j=1 b=t

Wick’s theoremn. This identity leads to Wick’s theorem. In the r.h.s. of equation {1.8)
each time a differential operator acts on the exponential it generates a factor b. Another
differential operator bas to act on this factor, otherwise the corresponding contribution
vanishes whén we set b = 0. We conclude that the average of the product z3, ... zx, with
the gaussian weight exp (- 3:4;T;) is obtained in the following way: one considers all
possible pairings of the indices k,,..., ks (¢ must thus be even). To each pair kyk; one
-associates the matrix element (A~} kpky of the matrix A=), Then:

{Try ... 2x,) = M
o)} possible pairings
of {ke3..ke}
Equation {1.9) which expresses Wick’s theorem is, in the form adapted to Quantum
Mechanics or Field Theory, the basis of perturbative calculations.

Remark. The gaussian integral has another remarkable property: if we integrate the
exponential of 2 quadratic form over a subset of variables, the result is still the exponential
of a quadratic form. This structural stability is related to some of the properties of the
harmonic oscillator which will be discussed in Chapter 2.

{Try oo Thg) =

Aemkon A i (1.9)

Un.
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1.2 Perturbation Theory

We now want to calculate the integral:

n

I Hu\.mmu_. exp | — M $zidijz; ~ AV iz) |, (1.10)

i=1 ig=1

in which 1?& is & polynomial in the variables x; and X is & parameter. We can expand
the integrand in a formal power series in A:

I = .\.Hmhman. exp | - w .WH-(»-.N.H@
=)

gl

*® *
WU T% EE_ . (1.11)
=0

Using equations {1.6,1.8) we can formally rewrite C.,uov"

I=exp —L:\ A%vz exp M..U $bi (A71),; b . {1.12)

hi=l b=0
ﬁonwuwumc&_.mauwnﬁnz_wnmawnremng.uugmmxvgmwon:mwumimowwmo&oo—,msAu.wv.

Steepest-descent. In the case of contour integrals in the complex domain, one sometimes
uses a method, steepest-descent, which reduces their evaluation to gaussian integrals. Let
us consider the integral:

. 1
I= .\-mﬂﬂ- exp ﬁ|M.WAHua - e..nav”— - ﬁ_..uwu
In the limit A — 0, the integral is dominated by saddle points {xf}:
.%.Mm (#},25.....25) = 0. (1.14)
To ¢alculate the contribution of the leading saddie point x°, we change variables, setting:
x=x°+yVA. (1.15)
‘We then expand S(x) in powers of A {and thus ¥):
1 1. 1 &5
.y.WAun::.aHSV = Mhnx v + Mm @Hu..&u. Aun u@_-m\u
X, Nk/2-1 ks
-+ XY Yoy v - Vi - 1,16
M.M:Illb &l @H-.— . ..@H-.r A vﬂu- k A u

The change of variables is such that the term quadratic in y is independent of X. The
integral becomes:

I= lmﬁunu\»\.mna. ex lhm»|.w (XY vy — R(Y) 117
= L1192 e*P =i Ga g, ()W ~ Y 1.17)
Zn k23 88 .
.NAU\v - =~ *_ mﬁﬂmn .. mﬂmr Ax vﬁmu * -‘@mr 4 - AH.MWV

We then expand the integrand in powers of vA: At each order we have to calculate the
average of a polynomial with a gaussian weight.

2

o o . .
R U

L

AR PN AR
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1.3 Complex Structures

We shall often meet complex structures: we have 2n integration variables {z:} and {1},
i=1,...,n, and the integrand is invariant under a simultaneous identical rotation in all
(x;,¥:) planes. It is then natural to introduce formal noEme variables 2; and Z; which,
for normalization purposes, we define by:

= {zi+ig) V2,  E=(zi—iw) V2. (1.19)

Note however that z; and Z; are independent integration variahles and only formally
complex conjugates since z; and y; could themselves be complex.
The generic gaussian integral now becomes:

I{A;bb) = \ W—%ﬁw exp M 542 +M (Bez +0:5)|,  (1.20)

d=] i5=1 i=}

in which A i5 a complex matrix with non-vanishing determinant,
As before, to calculate this integral we first eliminate the terms linear in 2; and Z; by
a shift of variables, setting:

i=v+ (A7)0, E=H+b(47Y);. (1.21)

The resulting gaussian integral can be calculated either by returning fo the “real” vari-
ables (1.19) or by a change of variables like A;ju; = vf. We obtain

1{A;bb) = (2in)" (det AY Texp | 3 Bi{47), 8. (1.22)
$.5=1

By systematically differentiating with respect to b; and mu., one establishes Wick’s theorem
for averages with the gaussian weight exp (- Z;4;;2;). Only monomials with equal number
of factors z and Z have a non vanishing average:

= s =Y _ -
{£224y - - Zim uu.av = M ” xﬁuwn -;&&JS bum..ua (1.23)
all permutations
P of .nh.-.......uﬂu

1.4 Integral Representation of Constraints

We shall often use a simple identity about Dirac é-functions. By definition:
”
\. [1dwsé(m)=1. (1.24)
i=1

If we change variables:
¥ = fi(x) (1-25)
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and assume that equation (1.25) defines & unique set of functions z;(y) for {v| small
enough, then we obtain the identity:

i 5l %..%E; Ix) =1, (1.26)

Cimrl
in which J (x) is the jacobian of the change of variables (1.25):

o 2h

I = m.au

{1.27)

Identity (1.26) hes a straightforward generalization: assume that we want to calculate
& function #(x) for x solution of the equation f(x) = 0, i.e. for x = x(y = 0), without
solving the equation explicitly. We can ther use the identity:

() lrea = [ T dee 81560 b 690 (). (1.28)

i=1
This identity, as well as the identities about gaussian integrals, has the interesting prop-
erty that they can be easily generalized to an infinite number of variables.
1.5 Algebraic Functional Technigues
1.5.1 Functional differentiation

In the discussion of algebraic properties of correlation functions the concept of generating

functionals will be very useful. Let f(x) be s function of a variable , we shall consider
objects of the form:

Fif)= \ dzy...dze Fi (21,...,2,) f (1) -0 f{Tn), (1.29)
:lQ

in which F{"} (z,,... +Zn} is & symmetric function of its arguments. We shall also need
the concept of functional derivative 8/6f(z). It is defined by the properties that it
satisfies the nsual algebraic rules of any differential operator:

é
and in addition:
- % /@) = b=, (1.31)

This implies for example:

H n
i - nga_...&,& D@ (@) ). ()
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1.5.2 Determinants of operators

Often we shall have to calculate determinants of operators represented by some kernel
M{z,y) which, after some transformations, can be cast into the form §{(z ~ y) + K(z. y)-
Provided the traces of all powers of K exist, the following identity, valid for any matrix
M,

IndetM =trlnM, (1.33}

expanded in powers of the kernel K:
Indetfl + K| = \.makﬁa_au - w.\nuaan K(z1,22)K (z2,21) + -

1yt
+AI;HMI.\%:...aaafnra&ﬁaya&.:fafa;+.: . (1.34)
will often be useful.
1.6 Grassmann Algebras. Differential Forms

‘We shall also deal with thecries containing fermions.. Since fermion field correlation
functions (or Green’s functions) are antisymmetric with respect to the exchange of ﬁa.o
arguments, the construction of generating functionals requires the introduction of anti-
commuting classical functions, and thus Grassmann variables.

Grassmann elgebre. We only consider Grassmann algebras over R or € (real or com-
plex). A Grassmann algebra 2 is an algebra constructed from a set of generators 6; and
their anticommuting products:

0:0;+0,0:=0 Vi j. (1.35)

Note that as a consequence:

(i} all elements in a Grassmann algebra are first degree polynomials in each generator;
(ii) if the number n of generators is finite, the algebra forms a finite dimensional vector
space on R or C of dimension 2™.

U is aleo a graded algebra in the sense that to any monomial 8;,6;,...8;, we can
associate an integer p counting the number of generators in the product. .

Finally let us note that elements of % are invertible if and only if their expansion
as a surn of products of generators contains a term of degree zero which is mnéu.év_m.
For example the element 1 + & i5 invertible, and has 1 — @ as inverse; however # is not
invertible.

Grussmannian parity. On the algebra 2 we can implement a simple automorphism
which is & refiection P defined by:

P{6;,) = -6;. (1.36)
Then on a moncmial of degree p, P acts like:
P{6;...0,) =(—1)°6;...0;,. (1.37)

The refiection P divides the algebra 2 in two eigenspaces 2% containing the even or odd
elerments

P () = 22*. (1.38)

HRAK s YR AN
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In particular 2+ is a subalgebra, the subalgebra of commuting elements.

Differential forms. An application of Grassmann algebras is the representation of
differential forms. The language of differential forms will not be used often in this work.
However it is interesting to here recall one concept, the exterior derivative of forms,
whose generalization will appear in the context of BRS symmetry (see Chapter 16). Let
us consider totally antisymmetric tensors €., .., (), functions of n commuting variables

H:.>mmcomwa=m:n_.mmm8§5<§%8m:i«wnt.amnm.:sa«marm corresponding i-form
44

2= L7 ST Ah.vmt- c {1.39)
where { < n otherwise the form vanishes. .
One can define a differential operator d acting on forms:
3
d=ooZ. (1.40)

We note that if Q is a Iform, 4 is a ! + 1-form {see Chapter 22 for details). One
immediately verifies that d is nilpotent:
a d
2 .. e _
d“=¢ w.a,.a pro 0,
becanse the preduct 648" is antisymmetric in RN
We also recall that a form Q which satisfies dS2 = 0 is called ¢iosed and & form $ which
can be written Q = d€¥' is called ezaci The property {1.41) implies that any exact form
is closed.
Note that it is customary to write in the case of forms the generators of the algebra

dz# instead of 8% and to then use the A notation for the product to show that it is
antisymmetric.

(1.41)

1.7 Differentiation in Grassmann Algebras

1% is then useful to define differentiation in Grassmann slgebras. A npaive definition would
be inconsistent due to the non-commutative character of the algebra. The problem can

be solved in the following way: Considered as functions of a generator &;, all elements A
of ¥ can be written

A=A, + 64,
after some commutations, where 4, and 4; do not depend on ;. Then by definition
sA
77, =4 (1.42)

Note that the differential operator 8/86; is nilpotent: (8/86;)2 = 0, Jike the form differ-
entiation (see equation (1.41)).

Remerk. The equation (1.42) defines a left-differentiation in the sense that the action
of 8/00; consists in bringing 8; on the left in & monomial and suppressing it. Similarly
a right-differentiation could have defined by commuting 8; to the right.

Chain Tule. 1t is easy to verify that chain rule applies to Grassmann differentiation, If
o{f) belongs to A~ and z(§) belongs to At we can write:

) _00f  dxdf
3" = 555, v 35 (143)




