Homework 6 PY501 (Fall 2012)

Instructor: Pankaj Mehta (323 SCI, pankajm@bu.edu)

Reading: This weeks HW is about using separation of variables to solve PDEs.

We focus on cylindrical coordinates . The lectures are from Mathews + Walker and Arfken Chapter 8+ Jackson.

Problems: Due Monday, December 2

- 1. Consider a rectangular box with dimensions (a, b, c) in the (x, y, z) directions positioned so that the box lies in the positive quadrant x, y, z > 0. All surfaces of the box are kept at zero potential everywhere inside the box except at z = c which is kept at a potential V(x, y). Solve Laplace's equation using separation of variables and find the potential Φ inside the box. Express your answer as a power series. (Hint: Expand the potential V(x, y) as a Fourier series in x and y to get the coefficients of the series.)
- 2. (a) Two long half-cylinders of inner radius b are separated by a small lengthwise gaps on each side and kept at different potentials V_1 and V_2 . Using separation of variables to solve for the potential and show that the potential inside is given by

$$\Phi(\rho,\phi) = \frac{V_1 + V_2}{2} + \frac{V_1 - V_2}{\pi} \tan^{-1} \frac{2b\rho}{b^2 - \rho^2} \cos \phi.$$
 (1)

where ϕ is measured perpendicular to the plane through the gap.

- (b) Calculate the surface charge density on each half of the cylinder.
- 3. A hollow right circular cylinder of radius b has its axis coincident with the z-axis and its ends at z=0 and z=L. The potential at the end faces is zero, while the potential on the cylindrical surface is given by $V(\phi,z)$. Use the appropriate separation of variables in cylindrical coordinates, find a series solution for the potential anywhere inside the cylinder. (Hint: Think about what the boundary conditions on the ends of the cylinders imply about the choice of parameters in the separation of variables and Bessel equation).
- 4. An infinite, thin plane sheet of conducting material has a circular hole of radius a cut in it. A thin, flat disc of the same material and slightly smaller radius lies in the plane filling the hole, but separated from the sheet by a very narrow insulating ring. The disc is maintained at a fixed potential V, while the infinite sheet is kept at potential 0.
- a) Using the appropriate cylindrical coordinates, find an integral expression

involving the Bessel function for the potential at any point above the plane. b)Use the identity

$$\frac{1}{\sqrt{\rho^2 + z^2}} = \int_0^\infty e^{-k|z|} J_0(k\rho)$$
 (2)

to show that the potential a perpendicular distance z above center of the disc is

$$\Phi_0(z) = V(1 - \frac{z}{\sqrt{a^2 + z^2}}) \tag{3}$$