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(Kuznetsov and Gelfand, 1986; Hackney, 1988). The over- 
all reaction scheme is similar to that of myosin (equation 1): 
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Summary 

We measured the force-velocity curves of single 
kinesin molecules attached to silica beads movlng In 
an in vltro motility assay. Optical trapping interferome- 
try was used to track movement with subnanometer 
precision and to apply calibrated, pN-sized forces to 
the beads. Velocity decreased linearly with increasing 
force, and klnesin molecules moved agalnst applied 
loads of up to 5-6 pN. Comparison of force-velocity 
curves at limiting and saturating ATP concentrations 
suggests that the load-dependent dlminution in kine- 
sin velocity may be due to a decrease In the net dis- 
placement per molecule of ATP hydrolyzed, not simply 
to a slowing of the ATP turnover rate; klnesln would 
therefore appear to be a loosely coupled motor. 

Introduction 

Motor proteins, or mechanoenzymes, are molecules that 
convert chemical energy into mechanical work. Measure- 
ments of force and velocity have long formed the basis 
for quantitative modeling of these macromolecules, but 
movement in traditional contractile systems is generated 
by large numbers of interacting components. In muscle 
fibers, millions of myosin molecules function during con- 
traction, while bending in eukaryotic flagella is produced 
by thousands of dynein molecules. Such enormous num- 
bers complicate interpretation in terms of molecular mech- 
anochemistry. In recent years, in vitro motility assays have 
facilitated increasingly quantitative studies using limited 
numbers of molecular motors under relatively well-defined 
conditions, free of the complex regulatory elements typi- 
cally present in vivo. Single molecules of the molecular 
motor kinesin can move loads over distances of several 
micrometers, corresponding to hundreds of mechano- 
chemical events (Howard et al., 1989; Block et al., 1990) 
making this system very attractive for the study of molecu- 
lar mechanochemistry. 

Since kinesin molecules rarely release MTs, K stands for 
the kinesin-MT complex. In contrast with myosin, /r3 >> 
k+; i.e., essentially no hydrolysis reversals occur per prod- 
uct released (Hackney, 1988). Although a number of stud- 
ies of MT-activated kinesin ATPase have been performed, 
there is little consensus as to the maximum value of the 
turnover rate per kinesin molecule, &r, particularly under 
conditions that obtain for in vitro assays (Kuznetsov and 
Gelfand, 1986; Cohn et al., 1987; Hackney, 1988; Hack- 
ney et al., 1991; Gilbert and Johnson, 1993). Part of the 
problem may be traceable to differences in protein source, 
purification methods, assay buffers and conditions, etc., 
but erratic variations in turnover rate among preparations 
under nominally identical conditions have also been noted 
(Hackney et al., 1989). Typical values for k,,,, (3/s for the 
native heterotetrameric form [Hackney et al., 19911) would 
seem to be incompatible with single-molecule speeds of 
- 500 rim/s and a molecular step size of 8 nm (Svoboda 
et al., 1993), assuming a mechanism where one ATP is 
hydrolyzed per step (1 :l coupling). It has therefore been 
suggested that mechanoenzymes might somehow un- 
dergo several steps per ATP hydrolyzed (1 :many coupling) 
(Yanagida et al., 1993; Taylor, 1993), an explanation first 
advanced to explain discrepancies in measurements in 
the actomyosin system (Yanagida et al., 1985; Burton, 
1992). An alternative explanation may be that the turnover 
rate achieved by kinesin in vitro is substantially higher 
than the average value measured in solution. In support 
of this explanation, Hackney has recently found that native 
kinesin molecules in solution are mostly in a closed confor- 
mation, with the tail folded back against the motor domain 
(Hackney et al., 1992). Recombinant fragments of kinesin 
molecules, consisting of dimers of motor domains without 
the tail, have substantially higher turnover rates (k-r = 
90/s), consistent with 1:l coupling (Hackney, 1994). To- 
gether, these observations suggest that a majority of 
kinesin molecules in solution might exist in an inactive 
form, with the overall turnover arising from a minority frac- 
tion of activated molecules. 

ATP-dependent velocities of single kinesin molecules 
in vitro follow the Michaelis-Menten relationship, 

vmaxc v(c) = - 
K,,, + c 

Kinesin has a very low basal ATPase rate (Vale et al., (equation 2), where c is the ATP concentration, v,, is the 
1985) with a fast phosphate release and a rate-limiting velocity at saturating ATP, and K,,, is a mechanochemical 
ADP release (Hackney et al., 1989). ADP release can be Michaelis-Menten constant (Howard et al., 1989). Kinesin 
accelerated up to 1 000-fold by microtubules(MTs), and the moves parallel to the MT protofilament (Ray et al., 1993; 
MT-activated ATPase obeys Michaelis-Menten kinetics Kamimura and Mandelkow, 1992; Gelies et al., 1988). Ad- 
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vances in optical trapping (Svoboda and Block, 1994) and 
subnanometer-level tracking (Denkand Webb, 1990) have 
provided evidence for molecular steps during the transport 
of silica beads by kinesin molecules along MTs: individual 
kinesin molecules advance in discrete increments of 8 nm 
(Svoboda et al., 1993). At limiting concentrations of ATP 
(c << K,,, = 90 PM for these experiments), steps appear 
at random without clustering, suggesting that each ATP 
hydrolysis is responsible for at most one step (Svoboda 
et al., 1993). 

To understand the mechanism of force production, it is 
necessary to go beyond kinematic measurements and to 
probe the load-dependent chemistry of motor proteins. Re- 
cent estimates of the maximum force produced by kinesin 
molecules have generated disparate results: 1.9 f 0.4 
pN measured with optical tweezers in a MT gliding assay 
(Kuo and Sheetz, 1993), >5 pN measured with optical 
tweezers in a moving-bead assay (Svoboda et al., 1993), 
and 0.12 * 0.03 pN measured with a centrifugal micro- 
scope in a sperm gliding assay (Hall et al., 1993). Here, 
we used optical trapping interferometry to measure force- 
velocity curves for single kinesin molecules at two different 
ATP concentrations. We found that the stall force for 
kinesin molecules is 5-6 pN, higher than some estimates, 
but consistent with our earlier work (Svoboda et al., 1993). 
A comparison of force-velocity curves at different ATP 
concentrations suggests that the slower movement of 
kinesin molecules under increasing load may be due to 
a load-dependent decrease in the net distance traveled 
per ATP hydrolyzed. 

Results 

In a typical experiment, a silica bead coated with a small 
number of kinesin molecules (fewer than one molecule 
per bead, on average) was captured out of a suspension 
and deposited onto a MT using optical tweezers. A single 
kinesin molecule subsequently attached to the MT and 
began movement, developing load as it pulled the bead 
toward the edge of the optical trap. After a bead was depos- 
ited, the trap was held stationary, and bead position was 
tracked with subnanometer accuracy using interferome- 
try. For displacements of up to -200 nm, the force is 
proportional to displacement from the trap center, and this 
constant of proportionality can be measured. The trap 
therefore acts as a calibrated Hookeian spring on the 
kinesin molecule, acting through the bead. Motors moved 
a few hundred nanometers before releasing from the MT, 
whereupon the bead would return to the trap center, re- 
attach, and begin movement anew. In this fashion, an indi- 
vidual kinesin molecule could be studied for up to several 
minutes and up to hundreds of mechanochemical events, 
until, for whatever reason, the motor failed to bind to the 
MT or became stuck irreversibly (Svoboda et al., 1993). 

Optical Trapping Interferometv 
The optical trapping interferometer (Svoboda et al., 1993) 
consists of optical tweezers (a single-beam gradient force 
optical trap) (Ashkin et al., 1986) combined with a dual- 
beam interferometer (Denk and Webb, 1990) (Figure 1). 
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Figure 1. Schematic of the Optical Trapping Interferometer and the 
Motility Assay 

For description, see text. 

Polarized laser light is introduced into a microscope 
equipped with differential interference contrast (DIC) op- 
tics at a point just below the objective Wollaston prism. 
The prism splits this light into two beams with orthogonal 
polarizations that are focused to two overlapping, diffrac- 
tion-limited spots in the specimen plane. Together they 
act as a single optical trap. A transparent object located 
in the region illuminated by the spots (the detector zone) 
introduces a relative phase retardation between them. 
When the beams are recombined in the Wollaston prism 
at the condenser back focal plane, elliptically polarized 
light is produced. The degree of ellipticity is measured 
using additional optics and provides a sensitive measure 
of displacement, passing through zero when the object is 
located symmetrically between the two spots. The interfer- 
ometer is essentially a one-dimensional position detector: 
its signal is most sensitive along the Wollaston shear 
direction and relatively insensitive to movements in other 
directions (Denk and Webb, 1990). During measure- 
ment, assays were monitored simultaneously by video- 
enhanced DIC microscopy, which can visualize single MTs 
(Schnapp, 1986). 

The response of the interferometer was calibrated in a 
series of steps. We first calibrated the x-y piezo stage, 
which held a test specimen consisting of highly uniform 
silica beads affixed to the coverglass of a flow chamber. 
As a bead was driven past the detector, its position with 
respect to the center of the trap was compared with the 
interferometer output voltage, V,,,, to construct a response 
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Figure 2. Calibration of the Optical Trapping 

(b) Measured displacement as a function of 
piezo displacement after calibration. 
(c) Trap stiffness measurement. A free bead 
was trapped 2 pm above the coverglass sur- 
face and a viscous force was applied, as de 

the text. The slope of the force as a 

and assay buffer (squares). Stiffnesses were 
determined from the rolloff frequency of the 

0 100 200 300 400 0 10 20 30 40 50 60 power spectrum of Brownian fluctuations. 
Piezo Displacement [nm] Laser Power [mW] 

curve for the system (Figure 2a). A cubic polynomial was 
then fitted to this nonlinear response curve, and the fit 
parameters were subsequently used to determine dis- 
placement out to 200 nm directly from V,, (Figure 2b). 
Further calibration measurementswith immobilized beads 
showed that displacement measurements over this range 
were accurate to f 5%. Instrumentation noise was below 
0.1 nm/JHz (Svoboda et al., 1993). 

To calibrate optical forces, trapped silica beads were 
displaced with a viscous force by moving the piezo stage 
sinusoidally while bead displacement was measured by 
interferometry. Displacement from the trap center was lin- 
ear with force over the range O-200 nm (Figure 2~); the 
force profile of the optical trap could therefore be charac- 
terized over this range by the trap stiffness, G. During 
experiments, the trap stiffness for individual beads was 
measured by computing the power spectrum for Brownian 
fluctuations in position; this spectrum is Lorentzian, with 
a corner frequency, r,, related to the stiffness through 
f-2 = a,,/2n5. The viscous drag coefficient of a bead was 
computed as 5 = 6&a, where a is the particle radius, 
u is the viscosity of the surrounding medium, and 5 is a 
correction factor for the proximity of the surface (in this 
work, 5 = 1.08, 2 urn from the surface) (Svoboda and 
Block, 1994). Trap stiffness was proportional to laser 
power at the specimen plane, P (Figure 2d), and trap forces 
were essentially independent of the distance from the sur- 
face over O-2 urn. 

Bead Assay 
Silica beads were first coated with casein and then incu- 
bated with low concentrations of kinesin. We used flow 
chambers in which the lower coverglass was pretreated 
with 4ABDMS (4aminobutyldimethylmethoxysilane) to 
produce a surface that binds MTs. MTs were introduced 
into the chamber at relatively high flow rates, which en- 
sured that they bound with their long axis parallel to the 
flow field. The chamber was mounted with its flow field 

parallel to the Wollaston shear direction, so MTs became 
aligned with the interferometer. To our surprise, we found 
that this procedure yielded >75% of MTs bound with their 
plus ends pointing upstream. The reason for this asymme- 
try remains unknown, but it implies a preferential affinity 
of the plus end for this surface. Kinesincoated beads were 
then introduced into the flow chamber. 

A diff using bead was captured with optical tweezers and 
held against a MT for a few seconds. When a bead did 
not move, we briefly shuttered the laser beam and reposi- 
tioned the bead against the MT. This was repeated for 
three trials; the probability that a bead would move after 
further trials was negligible. At low laser powers, we distin- 
guished two outcomes: first, the bead bound and moved, 
with probability p(t), where f is the relative kinesin concen- 
tration, or second, the bead failed to bind, with probability 
1 - p(f); under these conditions, beads rarely bound with- 
out moving (- 1%). If single kinesin molecules move 
beads, then P(t) = 1 - exp(-vcorresponds to the Poisson 
probability that a bead carries one or more motors, where 
Ir. is a fitting parameter. Similarly, 1 - P(f) = exp(-)if) is 
the probability that a bead carries no motors. This form 
of P(f) fits our data well (reduced x2 = 1.1 [Bevington, 
19691) (Figure 3). Alternatively, if two or more motors were 
required to move a bead, one would expect P(f) = 1 - 
exp(-)J) - (M)exp(-U); this form did not fit our data well 
(reduced x2 = 2.1; data not shown). We conclude that 
single kinesin molecules suffice to move beads, confirm- 
ing earlier work (Howard et al., 1989; Block et al., 1990). 
Force-velocity experiments were performed at dilutions 
such that P(f) < 0.5, so that the probability that a bead 
carried two or more motors was <0.14. Assuming a ran- 
dom distribution of motors over the bead surface, and 
allowing an 80 nm reach for the kinesin tether (Hirokawa 
et al., 1989; Scholeyet al., 1989), weestimate theprobabil- 
ity of two randomly attached kinesin molecules simultane- 
ously binding a MT to be <0.02. 

At high laser powers, the fraction of moving beads was 
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Figure 3. The Fraction of Beads Moving, p,,,, as a Function of Relative 
Kinesin Concentration 

The fit curve is given by 1 - exp(-lf), the Poisson probability that one 
or more kinesin molecules are bound to a bead. Values are expressed 
as pm f (p,,,(l - pm)&!)* and are the result of 40 measurements. 

slightly lower, with optical damage likely to be a factor. 
One measure of optical damage was estimated by holding 
kinesincoated beads in the trap for varying lengths of time 
before depositing them onto MTs. We then compared the 
fraction of beads not moving, including those exhibiting 
anomalously slow movement, intermittent movement, or 
both, for various periods of irradiation. The estimated half- 
life times power for movement in the trap was -35 
min.mW. Even at the highest power used (62.5 mw), 
therefore, hundreds of mechanochemical events of an in- 
dividual kinesin molecule could be observed. 

Measurement of Kinesin Velocity 
Bead-MT linkages display considerable flexibility (Svo- 
boda et al., 1993). As beads move toward the edge of the 
optical trap and load increases, these linkages become 
increasingly stretched, and the bead velocity falls below 
the kinesin motor velocity. To derive the motor velocity 
from the measured bead velocity, it was necessary to char- 
acterize the elasticity of the linkage. Kinesin-coated beads 
were bound to MTs in the presence of the nonhydrolyzable 
ATP analog AMP-PNP, which produces a rigorlike associ- 
ation between the kinesin molecule and the MT. The piezo 
stage was then moved at a constant speed, v,, while the 
bead velocity, vb, was measured as a function of position. 
The ratio of these speeds is identical to the ratio of dis- 
tances moved by the stage and the bead, and is given by 
vdv, = a,,r/(a,r + a*), where amor is the strain-dependent 
elasticity of the bead-MT linkage. For all power levels, 
vdv, increased rapidly up to bead displacements - 50 nm 
from the trap center. Beyond this distance, vdv, was 
roughly constant out to the edge of the trap (Figure 4). 
The scatter in the data comes from the Brownian motion 
of tethered beads as well as from linkage heterogeneity. 
Measured bead velocities were divided by the experimen- 
tally determined value of (vdv,) (averaged over the range 
50-200 nm) to derive motor velocities. (vdv,> at 15 mW 
is in close agreement with the elastic correction applied 
to our earlier step size measurements at moderate ATP 
concentrations and low load (cf. Figure 4 of Svoboda et 
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Figure 4. Elasticity of the Bead-MT Linkage 

The ratio of bead velocity to stage velocity is shown as a function of 
bead displacement from the trap center. Ratios averaged over 50- 
200 nm were 0.63 f 0.06 (62.5 mw), 0.64 f 0.11 (30 mw), and 
0.64 f 0.11 (15 mw) and were roughly constant. Although the ratio 
vdv, was approximated by a constant in converting bead velocity to 
kinesin velocity, this quantity actually increases monotonically with 
displacement for all power levels. This rise is quantitatively consistent 
with the requirement that the passive compliance am be a monotoni- 
cally increasing function of load, independent of the trap stiffness a*. 

al. [1993]). The stress-strain curves for kinesin molecules 
bound to MTs in the absence of nucleotides (in true rigor) 
were similar. At the highest trap stiffnesses used, the 
total stretch in the bead-MT linkage was 204 + 11 nm 
(mean f SEM, n = ll), which implies a relatively long 
tether length, I = 65 nm (Figure 5). 

Applying very high loads to beads bound to MTs via 
kinesin in a rigorlike state showed that the bond is exceed- 
ingly strong; it supports forces in excess of 10 pN. A reli- 
able estimate could not be determined in this work, how- 
ever. First, at high tensions, MTs were sometimes pulled 
off the coverglass surface, rather than beads off the MT. 
Second, beads would occasionally dissociate at - 10 pN, 
but later withstood much higher loads after rebinding, or 
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Figure 5. Geometry of the Bead Assay 
The kinesin tether (bead-MT linkage) has length 1. connecting a bead 
of radius a to the surface via a microtubule with diameter d. The force of 
the trap produces a tension in the tether. This tension has a component 
normal to the surface and tends to pull the bead toward the surface. 
The thermal RMS distance of the bead over the surface is oz = 
d(i) = (s/a)(/rT/aJ*. We have neglected the vertical trapping stiff- 
ness in deriving this estimate. The tether must point toward the center 
of the bead, on average; otherwise, the tether would produce an unop- 
posed torque on the bead. The maximal extension of the bead-MT 
linkage is s = ((I+ a)2- (a - d)2)H, neglecting d(z’), and any possible 
stretching in the microtubule or the kinesin molecule. Note that in this 
picture, the elasticity of the bead-MT linkage is entirely entropic. 

Time [s] 
Figure 6. Examples of Multiple Runs at Saturating ATP Powered by 
Individual Motors 
To derive the kinesin velocity, the bead velocity was corrected for the 
linkage flexibility (see text). 
(a) Two examples at low load (15 mw). During most runs, beads es- 
caped the trap without dissociating (horizontal arrows), but sometimes 
premature dissociations occurred (vertical arrows). 
(b) Two examples at high load (62.5 mw). Beads almost never reached 
the edge of the trap and often dissociated before slowing down sub- 

value, so that distance from the center of the trap is rectified. 

vice versa. Third, the tension sustained by the kinesin 
tether might be somewhat larger than the actual force ap- 
plied to the bead, owing to the geometry of the linkage: 
the magnitude of this tension is fbqdcos 0, where 9 is the 
angle between kinesin tether and the coverglass surface, 
and F,,+, is the force applied to the bead. 

Load-Dependent Velocity 
From earlier studies, it was apparent that kinesin motors 
could move against loads up to 5 pN, but not much higher 
(Svobodaet al., 1993). To study the load-dependent veloc- 
ity, we measured speeds at three different laser power 
levels at each of two ATP concentrations. Light levels, and 
corresponding trapping stiffnesses, were chosen to cover 
the entire range of forces: 15 mW (0.40-l 58 pN), 30 mW 
(0.80-3.17 pN), and 82.5 mW (1.87-8.87 pN). One ATP 
concentration (10 vM) was picked to be well below the 
apparent Km for kinesin movement (- 90 PM for these ex- 
periments), the other well above it (2 mM). At 15 mW and 
30 mW, runs terminated in one of two ways: either a motor 
would drag the bead out of the trap altogether, or the motor 
would release from the MT substrate before reaching the 
edge of the trap. In either case, the bead was often recap- 
tured by the trap and resumed movement (Figure Sa). At 
low power levels, up to 20 runs of ,200 nm could be mea- 
sured in this way using a single bead. At the highest power 
level (82.5 mw), few beads escaped the trap(<l%; Figure 
8b). As beads moved out of the trap and developed load, 
motors slowed, sometimes to below 1W of the unloaded 
velocity (Figures 7 and 8). Such beads would generally 
resume movement at the unloaded velocity if the trapping 
light was shuttered (n = 25). The run length, defined as 
the distance traveled by a bead before release and return 
to the center of the trap, was significantly shorter at high 
loads (- 100 nm at 82.5 mW) than at low loads (>lOOO 
nm at 15 mW; see Figure 8). At high loads, single steps 
could often be made out in displacement records, with a 
step size on the order of 8 nm, but noise and stage drift 
prevented our resolving all events. Apart from Srownian 
motion, displacement usually increased monotonically un- 
til bead release. Occasionally, the kinesin motor would 
appear to slip backward, and this happened more fre- 
quently at high loads than at low loads. Slipping was most 
apparent when the motor would alternate several times 
between positions 8 nm apart (Figure 8~). 

Force-Velocity Curves 
For each run, velocities were estimated by fitting lines 
to successive 20 nm segments of movement and plotted 
against the average force for each segment, resulting in a 
force-velocity curve. For each ATP concentration, force- 
velocity curves computed for individual runs at all power 
levels were averaged (Figure 9). This analysis procedure 
was tested using simulated data generated by computer, 
based on stochastic steppers subject to Gaussian noise. 
Simulations showed that velocity determinations from 
many runs (210) must be used to construct force-velocity 
curves, owing to the (presumably) stochastic nature of the 
stepping process and the limited number of steps per run 
(- 20). At saturating ATP, kinesin velocity appeared to be 
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Figure 7. Examples of Multiple Runs at High Load (62.5 mW) and 
Saturating ATP (2 mM), Showing the Load-Dependent Diminution in 
Kinesin Speeds 

Some examples of kinesin slippage are indicated by the arrows 

Figure 6. Selected Runs at High Load (62.5 mW) and Limiting ATP 
(10 uM), Showing the Load-Dependent Diminution in Kinesin Speed 

Some examples of kinesin slippage are indicated by the arrows. 

roughly independent of load out to - 1.5 pN (Figure 9a), 
although the scatter in the data prevents a clear resolution 
of this point. For increasing loads, velocity decreased al- 
most linearly until stall. A linear fit of data from 1.5 to 5.0 
pN gave an extrapolated maximal force (stall force) of 
5.7 f 0.4 pN. At limiting ATP, the data were somewhat 
noisier, and a plateau at lower loads was not observed. 
The extrapolated stall force, derived from a linear fit, was 
similar, 5.1 f 0.5 pN (Figure 9b). 

Forces were measured for three independent prepara- 
tions of kinesin protein. In two cases, stall forces were 
identical to the pooled estimate above, even though one 
preparation was fresh, while the other had been stored at 
-20% for nearly a year. A third fresh preparation gave a 
reproducibly smaller stall force (- 4 pN at 2 mM ATP), 
even though the purification was nominally identical, sug- 
gesting that an unidentified modification of kinesin might 
alter its mechanochemistry without destroying motility al- 
together. Although data from the latter preparation were 
not used to compute kinesin forces, this raises the possibil- 
ity that the shape of averaged force-velocity curves might 
reflect a polydispersity in stall forces among motors more 
than the mechanochemical properties of an individual pro- 
tein. However, in several cases, records were sufficiently 

good to determine force-velocity curves for individual mo- 
tor molecules (Figure 9c). Although such curves were 
noisy, they were generally consistent with our averaged 
force-velocity curves. 

Discussion 

The crossbridge model proposed by A. F. Huxley was 
among the first to explain existing data and made quantita- 
tive predictions for muscle (Huxley, 1957). In this model, 
thermally fluctuating myosin crossbridges associate with 
an actin filament in a straindependent manner, binding 
when at positive strain. Once bound, crossbridges exert 
force. The energy of ATP hydrolysis, binding, or both is 
used to break detailed balance in some unspecified man- 
ner, such that dissociation rates are small for positively 
strained crossbridges and large for negatively strained 
ones. The significance of this early model is that it demon- 
strated how a microscopic scheme for protein interaction 
could lead to sliding motion and thereby to muscle contrac- 
tion. But since molecular details (in this case, the strain- 
dependent rates) are completely unknown, the model has 
many free parameters (strictly speaking, an infinite num- 
ber), and the same can be said for other microscopic mod- 
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Figure 9. Force-Velocity Curves 
Data from experiments at 15 mW, 60 mW, and 62.5 mW were pooled 
and binned (solid circles). Velocities at very low loads were measured 
using video tracking (open circles). Points represent mean velocity f 
SEM. 
(a) Averaged force-velocity curve at 2 mM ATP. The solid line repre- 
sents a fit to data in the range 1 S-5.0 pN. The velocity below 1.5 pN 
was roughly independent of load. Data points for X pN were not 
included in the line fit, because they came from a small number of 
measurements and contain data from two runs in which the beads were 
pulled entirely out of the trap; these events may have been caused by 
multiple kinesin motors. 
(b) Averaged force-velocity curve at 10 uM ATP. 
(c) Force-velocity curve for individual kinesin motor at 2 mM ATP; 
only data at 62.5 mW could be measured. 

els. Given the lack of dynamic, atomic-level information, 
we choose to take a phenomenological approach to mod- 
eling, independent of microscopic details of the system. 

What is the effect of load on kinesin mechanochemistry? 
We define the Coupling Constant, E, through v = E.d-k,t, 

where v is the average kinesin velocity and d is the step 
size; E is therefore a measure of the number of steps made 
per ATP hydrolyzed. Does E depend upon load? If E were 
independent of load, then kinesin would be a tightly cou- 
pled machine, i.e., it would move with a fixed stoichiometry 
of displacement to hydrolysis, and the ATPase rate would 
decrease in proportion to velocity with increasing load. 
However, if E were to change with load, kinesin would be 
a loosely coupled machine (Gosawa and Hayashi, 1986). 
We construct below a simple phenomenological theory of 
single-motor force-velocity curves and use it to distinguish 
between these scenarios. 

Analysis of Force-Velocity Curves 
To illustrate the approach, we assume that the overall 
kinesin biochemical cycle can be approximated by 

(equation 3) where k. and /rb are (lumped) rate constants. 
(A more general formalism can be found in the Theory 
section of Experimental Procedures). At low mechanical 
loads, each biochemical cycle is assumed to produce a 
single step of size d = 8 nm. The kinesin velocity at low 
loads will therefore be given by 

(equation 4), where c is the concentration of ATP. Corre- 
spondence between equation 4 and the Michaelis- 
Menten expression (equation 2) is established through 
Vm, = d.kb and Km = kdk.. In an experiment, the relative 
magnitudes of the terms in the denominator of equation 
4 may be changed by altering the ATP concentration. 

For the case of tight coupling, we require that one (or 
both) of these terms increase with increasing external 
load, L. For example, if k#) happened to be the load- 
dependent rate, then the functional dependence of this 
term could be determined experimentally by measuring 
the force-velocity curve at saturating ATP, where k.c >> 
kb. In this limit, the denominator term corresponding to k. 
becomes negligible, and equation 4 reduces to v(c) = 
d.kb(L). Knowledge of k&) could then be used to predict 
the shape of the force-velocity curve at limiting ATP, 
where k& << kb. In general, this curve will display a very 
different shape from the corresponding curve at saturating 
ATP, independent of the particular load dependence of 
k&); the shapes of the force-velocity curves at saturating 
and limiting ATP are distinct. For example, for loads that 
are sufficient to reduce the velocity to half maximal at satu- 
rating ATP, the velocity at limiting ATP will have decreased 
by a factor approximately equal to (1 - k&/kdO)) = 1, 
i.e., hardly at all. Similarly, if k.(L) happened to be the 
load-dependent rate instead, then the functional depen- 
dence of this term could be determined by measuring the 
force-velocity cuwe at a limiting ATP concentration, such 
that kac << kb, hence v(c) = d.k.(L)*c. By a similar argu- 
ment to the one just presented, the shapes of the force- 



Cell 
780 

Applied Force (pN] 

Figure 10. Normalized Force-Velocity Curves and Predictions Based 
upon Rate-Dependent Biochemistry (Tight Coupling Scenario) 

Data from interferometry were normalized to the zero load velocity as 
determined from linear fits. The normalized force-velocity curve at 
saturating ATP concentrations (2 mM) (solid circles). The normalized 
force-velocity curve at limiting ATP concentrations (10 uM) (open cir- 
cles). First, for the case given by equation 8, an estimate of X(L) was 
derived from a line fit of the normalized 2 mM ATP data (since TV << 
r0 at this ATP concentration, ‘ld was neglected in the denominator of 
equation 6). Together with equation 8, this was used to predict the 
normalized force-velocity relationship at 10 uM ATP (using rdk = 
9 at 10 uM ATP), shown by the solid line. Second, for the case given 
by equation 7, an estimate of X(L) was derived from a line fit of the 
normalized 10 uM ATP data (since Q >> L at this ATP concentration, 
we neglect TV in the denominator of equation 5). Together with equation 
5, this was used to predict the normalized force-velocity relationship 
at 2 mM ATP (using T.&, = l/22 at 2 mM ATP), shown by the dashed 
line. 

velocity curves at saturating and limiting ATP concentra- 
tions will be quite distinct. 

However, if both rate constants k, and kb were indepen- 
dent of load, then it follows that the net distance moved 
per ATP hydrolyzed would decrease according to 

cl 1 

’ = ((k&l + (k&l) X(L) 

(equation 5) where X(L) is some load-dependent factor, 
such that X(L) 2 1, X(0) = 1, and d.X(L)-’ is the average 
distance moved per ATP. Equation 5 predicts that force- 
velocity curves, when normalized to the velocity at low 
loads, should all have the same shape. (Note: equation 
5 also follows when both rate constants happen to have 
an identical dependence upon load, which can then be 
factored out; this possibility is addressed later.) Plotting 
our data in this fashion (Figure 10) shows that the load- 
independent model describes the data fairly well. Since 
the unitary step size of 8 nm is constant and fixed by the 
microtubule lattice, it seems appropriate to interpret the 
coupling ratio in equation 5, E = l/X(L), as the probability 
that hydrolysis leads to a stepwise displacement. This, in 
turn, admits to at least two molecular-level interpretations: 
first, that kinesin molecules manage to make an 8 nm 
step only once every 11~ cycles, or second, that each ATP 
hydrolysis produces one step, but there is a probability 
(l-l/~) per step that the molecule slips backward by ex- 
actly one step, i.e., that the motor works intermittently but 
cannot sustain load. Our data are not able to distinguish 

clearly between these two possibilities. In Some traces, 
slippage was clearly observed, but not in others (see Fig- 
ures 7 and 8). 

Under more general biochemical schemes than equa- 
tion 3, the various different rate constants may be arranged 
into a mathematical form analogous to equation 4, with 
one set of constants dependent upon the ATP concentra- 
tion and the other set independent of it. Although each of 
the terms in thedenominatorwill be acomplicated function 
of several biochemical rate constants, one can neverthe- 
less apply similar reasoning to that just presented to ex- 
clude most tightly coupled models. 

J. Howard and colleagues (personal communication) 
have recently measured single kinesin force-velocity 
curves using viscous agents to apply loads. In contrast 
with elastic forces, purely viscous loads cannot induce 
backward slippage, because viscous forces go to zero 
after a step is completed and the motor is at rest. Since 
their force-velocity curves resemble ours, we suspect that 
kinesin hydrolyzes ATP in a futile manner at high load. 
However, it is noteworthy that even for viscous loading, 
the kinesin molecule actually experiences an elastic load 
that decays with a damping time T = b/a, where f3 is the 
drag coefficient of the load and a is a spring constant 
characterizing the linkage. Since this time could be as 
long as tens of milliseconds, much longer than the time 
required for the motor to make a step, the distinction be- 
tween elastic and viscous loads becomes blurred. In vivo, 
it is unlikely that kinesin and related motors experience a 
significant viscous load (Luby-Phelps, 1993). During vesic- 
ular transport, the dominant load is almost certainly due 
to steric hindrance from elastic protein gels and mem- 
brane structures. During mitotic and meiotic movements 
(Hoyt, 1994) loads may also arise from elastic forces in 
strained MTs. 

Our results are in broad agreement with the model of 
Leibler and Huse, which predicts a linear force-velocity 
curve for the case of strain-independent rate constants 
for transitions between states (Leibler and Huse, 1993). 
The shape of the force-velocity curve in that model follows 
from the fact that the step size decreases linearly with 
load, which is accommodated by placing a continuum of 
binding sites on the substrate. Such a continuum is an 
excellent approximation in the limit of large numbers of 
motors, but the model must be reformulated for single 
motors moving over discrete binding sites. Here, ATP hy- 
drolysis induces a change in strain that will position a 
crossbridge between two binding sites in a way that is 
determined by load. The motor can subsequently rebind 
to the site from which it originated (more probable at high 
load), or attach to a distal binding site (more probable at 
low load). This model is therefore loosely coupled in the 
sense defined previously. The probability functions gov- 
erning transitions will determine the shape of the force- 
velocity curve. Irrespective of such details, however, the 
strain independence of the rate constants in the Leibler- 
Huse model implies that normalized force-velocity curves 
are independent of ATP concentration, consistent with our 
data. 
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Comparison with Other Force Measurements 
Earlier measurements using differing approaches provide 
divergent estimates of kinesin force. One experiment, us- 
ing optical tweezers acting on a latex bead bound to a 
gliding MT whose motion was powered by a single kinesin 
molecule on a glass surface, gave an isometric force of 
1.9 f 0.4pN (SD, n = 14) (Kuo and Sheet& 1993). To 
slow the motor down, GTP, rather than ATP, was used to 
power motion. Short run lengths at high loads were found, 
as well as a load-dependent diminution in speed, both 
in qualitative agreement with our data. The quantitative 
discrepancy might be explained by several factors. First, 
the kinesin preparation may have had different properties, 
a possibility suggested by our observation of significant 
prep-to-prep variations (see Results). Second, GTP might 
not generate the same force as ATP, although in three 
instances, beads driven by ATP also produced -2 pN. 
Third, calibration errors in determining optical forces may 
have been significant. Large distance from the coverglass 
affects trapping force, mainly owing to the increasing 
spherical aberration in light (Svoboda and Block, 1994), 
and it is unclear whether calibration experiments were car- 
ried out at the same distance from the coverglass surface 
as the actual assays, or adjusted for any possible differ- 
ences. Fourth, the geometry of their assays was different, 
and the peak force produced by a kinesin motor along a 
MT might depend on the direction in which it is pulled 
(Figure 5; discussed in Results). Another experiment, us- 
ing a sperm gliding assay and a centrifugal microscope, 
yielded a stall force of only 0.12 f 0.03 pN (Hall et al., 
1993). A force of this size would not permit single kinesin 
molecules to move longer MTs in vitro against their own 
viscous load (F = 0.2 pN for a microtubule 50 hrn long 
moving at 500 rim/s [Brennen and Winet, 19771). Kinesin 
from sea urchin rather than squid optic lobe was used in 
this study, and it is conceivable that this enzyme may be 
orders of magnitude weaker. It has also been suggested 
that the slowing of sperm heads moving in the centrifugal 
microscope may be due to something besides an inertial 
effect, and that the force thereby obtained is artifactually 
low (Hunt and Howard, 1993). 

Recently, stepwise displacements and corresponding 
forces for the actomyosin system were reported, using 
both optical trapping (Finer et al., 1994) and flexible glass 
microneedle technologies (Ishijima et al., 1994). In the op 
tical trapping work, single myosin displacements at rela- 
tively low mechanical loads followed a broad distribution, 
from <5 nm (the measurement noise limit) to - 17 nm, 
with an average value of 11 f 2.4 nm (mean f SD). A 
similarly broad distribution of displacements was found 
using microneidles, with an extrapolated maximum dis- 
placement at zero force of - 17 nm. Single forces were 
also broadly distributed, ranging over roughly l-8 pN in 
both experiments. The maximum force was estimated at 
- 5.7 pN using microneedles, and the average peak force 
was estimated at 3.4 f 1.2 pN (mean f SD) using optical 
traps. Given the differing experimental approaches and 
conditions, these numbers are remarkably consistent. In- 
deed, they are not soverydifferent from the displacements 

(8 nm) and peak forces (5-8 pN) produced by kinesin mo- 
tors. A force of - 5 pN, if maintained throughout the dura- 
tion of an 8 nm step, dissipates some 40 pN. nm of energy, 
which is roughly half of the available free energy of hydroly- 
sis in a molecule of ATP (- 80 pN . nm). In a tightly coupled 
scenario, this dissipation would correspond to an overall 
thermodynamic efficiency of - 50% for a molecular motor. 

Interestingly, Finer and colleagues found that the dura- 
tions of single displacements (stepping times under low 
loads) were somewhat shorter than the durations of single 
forces under isometric conditions (tension times at high 
loads) at saturating ATP levels (cf. their Table 1). These 
data can be understood in terms of a model in which a 
kinetically significant rate constant decreases with strain. 
This is a molecular manifestation of the Fenn effect, 
whereby the energy released by muscle during active 
shortening is higher than during isometric contraction 
(Fenn, 1924; Bagshaw, 1993). In contrast with myosin, our 
data and modeling suggest that kinesin displays little if 
any Fenn effect; that is, the biochemical rates are relatively 
insensitive to applied load, and ATP hydrolysis continues 
at elevated rates even when motors are close to stall. 

Experimental Procedures 

Klnesln and Tubulln Pfqwation 
Unless specified, reagents were from Sigma. Kinesin was purified from 
squid optic lobe by MT affinity as described (Vale et al., 1965). except. 
that sucrose gradients (5%-25%) were run using a TLS55 rotor and 
TL-100 tabletop ultracentrifuge (Beckman) for 4 hr at 55,006 rpm and 
4OC (Bloom et al., 1966). Gradients were 2 ml, - 10 times larger than 
sample volumes. The ATP release step included 100 mM KCI. Kinesin. 
was stored at -20°C in 50% glycerol with 2.5 mg/ml casein, 2.5 mg/ 
ml cytochrome C, and 1 )IM ATP. Stored in this fashion, kinesin was 
essentially unchanged for periods of up to 1 year. Tubulin was purified 
from bovine brain by MT affinity and phosphocellulose purified (Mitchi- 
son and Kirschner, 1964). 

Bead Auays 
Experiments were done at room temperature (22-23.5OC). Assay 
buffer (AB) contained 80 mM PIPES, 4 mM M&l*, 1 mM EGTA, 50 
mM KCI, 1 mM dithiothreitol, 1 mg/ml filtered casein, and 20 BM taxol 
(pH 6.9). Silica beads (5 x 10’ per ml final concentration) were incu- 
bated in AB plus ATP (2 x final concentration). 1 &ml phosphocre 
atine kinase. and 2 mM phosphocreatine (X min) on a rotator at 4OC. 
In some experiments, the last three reagents were replaced by 1 mM 
AMP-PNP. The bead solution was rapidly mixed with an equal volume 
of kinesin (2 x final concentration) in AB. followed by incubation on 
a rotator (- 1 hr. 4OC). Final kinesin concentrations were typically 
1:5,000 to 1:100,000 from stock’(-50 @ml kinesin heavy chain). 
Taxol-stabilized MTs were introduced into a flow chamber in which the 
lower coverslip had been treated with the silanizing reagent 4-ABDMS 
(Huls America). MTs bound tightly to this surface, mainly with their 
long axes parallel to the flow direction, thereby parallel to the direction 
of interferometer sensitivity (see text). The chamber was incubated 
with 1 mg/ml casein (in 60 mM PIPES, 4 mM MgCL, 1 mM EGTA [pH 
6.91) for 5 min and subsequently washed with >5 vol of AB. Kinesin- 
coated beads were introduced at this stage. 

Instrumentation 
We used a modified inverted microscope (Axioverl 35, Carl Zeiss) 
equipped with Nomarski DIC optics (Plan Neofluar 100 x Il.3NA oil 
objective) fixed to a vibration isolation table (Technical Manufacturing 
Corporation). Polarized light from a diode-pumped Nd:YLF laser (CW, 
3W TEMm, 1 = 1.047 mm; TFR, Spectra Physics) was coupled into 
a polarization-preserving, single mode optical fiber (Oz Optics); this 
reduced laser pointing fluctuations. The fiber output coupler provided 
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a clean, collimated Gaussian beam of 5 mm diameter. Power levels 
were controlled by rotating a U2 plate followed by a fixed Glan-Laser 
polarizer. Beam steering was accomplished by small translations of 
the rear lens of a telescope arrangement (Svoboda and Block, 1994). 
To avoid fluctuations due to air currents or dust, the laser beam path 
was enclosed. An x-ypiezo stage (P-775.00, Physik Instrument@ was 
used to position specimens with picometer precision under computer 
control. Experiments were controlled by a Macintosh computer 
equipped with a multifunction board (NB-MIO-16H-9, National Instru- 
ments) running Labview software (National Instruments). The interfer- 
ometer output was anti-alias filtered and digitized at 1 kHz, then stored 
on magneto-optical disks (DGR Technology). Data analysis was per- 
formed off line. 

Displacement Measurement 
Interferometer response was calibrated using an x-y piezo stage 
mounted with its y direction parallel to the interferometer shear axis. 
The piezo stage was driven by a computer-generated voltage se- 
quence that produced a linear, triangle wave displacement (sawtooth) 
of the stage at a constant, slow speed (1.080 pm peak-peak; v, = 
91 f 0.02 urn/s; mean f SD, n = 30; nonlinearity < +3%). The 
required nonlinear voltage sequence for this movement was deter- 
mined separately by nanometer-level video tracking of single beads 
bound to a coverglass and calibrated against a diamond-ruled grid 
with 10 urn spacing (Gelles et al., 1988; Svoboda et al., 1993). When 
a bead moves from the center of the detector toward its edge, the 
difference-over-sum signal, V,,,, increases monotonically up to a satu- 
ration voltage, V,,, then begins to decrease (Denk and Webb, 1990). 
V,, occurred 280 nm from the center of the trap, but even for smaller 
displacements, the response curve (Figure 2a) displayed substantial 
nonlinearity. To determine distance up to - 200 nm from the center 
of the trap, the response curve was fit to the cubic equation V,., = 
ay + bf + cf. Corrected displacement, y(f), was derived from V.,(t) 
using a root of the fitted cubic. We define q = a/3c - (b/3# and r = 
(ab) + Vwr(t)c)/sc? - (b/3@. Let sI = (r + (@ + 3”)” and .s2 = (r - 
(@ + r*)*)*. The displacement is y(t) = -(s, + ~$2 - b13c - id3(sl - 
&)/2. This procedure effectively linearized the response curve out to 
displacements of 200 nm and somewhat beyond (Figure 2b). In princi- 
ple, a different response curve, parameterized by a particular set of 
the coefficients a, b, and c, is required for every particle size and focal 
position. Decreases in particle size or slight defocusing rescale the 
response by a factor <I. By measuring V,,,,, a unique set of coefficients 
can be found. Calibration experiments showed that a and c were linear 
functions of V,,, whereas b was independent of V,,: a = 1.8 x 10m3 
Vlnm + (4.9 x 10.Ynm)V,,; c = -3.37 x 1 Om8 VYnm - (42.36 x 1 Om8 
V/nm)V,,; b = 1.60 x 10m5 Vlnm2). At high loads, V,, could not be 
measured, because beads never reached the edge of the trap. In 
this case, an averaged set of coefficients was used. To reduce errors 
arising from variations in bead size, we employed custom-made silica 
beads with low polydispersity (0.520 f 0.007 urn; mean f SD, n = 
20; gifts of Egon Matijevic). Furthermore, the center of the trapping 
zone was adjusted to be - 250 nm above the focal plane of the micro- 
scope, so that by focusing on the MT, the optical trap was vertically 
centered on the bead. Control experiments with beads bound by AMP- 
PNP showed that this could be done with a high level of reproducibility. 
In other control experiments, beads stuck directly to the coverglass 
were moved through the detector zone at v,; displacement measure- 
ment errors were estimated to be < f 5% over the range O-200 nm. 

To characterize the elasticity of the kinesin-bead linkage, we used 
beads bound to MTsvia kinesin in the presence of AMP-PNP. Results 
were identical to those obtained with beads attached in a rigorlike 
state in the absence of nucleotide. The stage was moved at v. and 
the velocity of the bead, vD, measured as a function of bead displace- 
ment. For each power level, the ratio (vdv,) was derived from >250 
velocity estimates using lo-15 beads. 

At very low loads, kinesin velocity was measured using high resolu- 
tion video tracking of the centroid of the bead (Gelles et al., 1988). 
Optical tweezers were used to place beads against microtubules, and 
the laser trapping light was shuttered as soon as movement began. 

Laser Power at the Specimen Plane 
To estimate the power delivered to the sample, we used P = Po. J; J., 
where P. is the power measured at a point before it enters the micro- 

scope, J, = 0.58 is the measured transmissivity of the microscope 
objective at 1.064 urn (Svoboda and Block, 1994) and J. = 0.86 is 
the transmissivity of the back aperture of the objective for this optical 
setup, where the beam radius equals the aperture radius. 

Force Measurement 
To characterize the position-dependent optical load, we held a bead 
in the trap, typically 2 urn above the coverglass surface, and moved 
the chamber plus fluid in a sinusoidal motion at a large amplitude 
(A = 1 urn; calibrated by video tracking). For low frequencies, the 
applied force is F = PnpAf, where f is the driving frequency. To com- 
pute 6, we computed the viscosity of water from u(7) = 1.456 cp - 
0.023 cp. J/V (Weast, 1987). Bead displacement with respect to the 
center of the trap was y(f). Applied force as a function of the absolute 
value of y(f) was linear out to 200 nm for 0.52 urn beads (Figure 2~); 
hence, a, was constant. Determined in this way, udP = 5.04 f 0.14 
x 1 Om4 pN/nm/mW (n = 20, in water). A Brownian particle in a parabolic 

potential exhibits thermal fluctuations with a Lorentzian power spec- 
trum, S(r) = (kT/2n38)(t + fz)-’ where (p(t)) = 2s 1:.9(f) df. Measure- 
ments off, gave adP = 5.28 + 0.14 x IO-’ pN/nm/mW (n = 20, in 
water), in close agreement with the former value. Insofar as possible, 
stiffnessforeverybeadusedwasmeasured bythelattermethodduring 
experiments. To monitor the change in stiffness with distance from 
the coverglass surface, we measured the mean square fluctuation in 
position and made use of the Equipartition Theorem, a, = keTl(y2(r)), 
where y(f) is the thermal displacement of the bead and keJ is the 
thermal energy. This estimate of a, is independent of the drag, which 
changes dramatically at distances h < a, where h is the distance be- 
tween the bead center and the surface: a, was not found to change 
as we moved the trap close to the surface over the range O-2 urn. 

Two uncertainties in force measurements remain. First, in the motil- 
ity assays, the bead is largely confined to the specimen plane, while 
during force calibration, unconstrained beads tend to move in the axial 
direction (down beam) toward the edge of the trap. For the beads used 
in these experiments, this movement was small, as judged by DIG 
microscopy, which has a depth of field of - 300 nm. Calculations sug- 
gest that the difference in maximal transverse force between the equi- 
librium plane and the specimen plane, i.e., the calibration error, is 
also small (<5%) (Ashkin, 1992). Second, the optical force applied to 
the bead tends to torque the bead about its point of attachment to the 
MT, increasing the bead interaction with the glass and MT surfaces 
(Figure 3). Since beads rarely stuck to the surface, this interaction 
may be considered a surface-enhanced drag. Tension in the tether 
tends to pull the bead toward the surface. For the largest trap stiff- 
nesses used in these experiments, the mean square distance from 
the surface due to thermal agitation is J(i) > IO nm. This implies 
a drag enhancement of 5 = 2-3, corresponding to a total viscous 
force <O.Ol pN at kinesin velocities of -600 nmls. The surface- 
enhanced drag is therefore negligible. 

Optical forces in assay buffer were slightly smaller than in water 
(Figure 2d), adP = 4.90 f 0.10 pN/nm/mW (n = 50; determined from 
Brownian fluctuations), an effect stemming from the increase in the 
index of refraction due to dissolved salt and protein. Whenever a bead 
became stuck or was lost before trapping stiffness could be deter- 
mined, we used this stiffness to compute forces. 

Constructlon of Force-Velocity Curves 
Interferometer output was converted to distance as described above. 
Bead displacements over the range 50-200 nm were used for analysis. 
Bead velocities were computed and corrected for the linkage compli- 
ance (Figure 5). To compute velocity, individual displacement records 
were averaged over either 50 ms or 20 ms intervals, at 10 uM ATP 
or 2 mM ATP, respectively, reducing Brownian noise. Line fits were 
made to successive 20 nm segments of these records, and the velocity 
for each such segment was determined as well as the mean force 
during the segment. Velocities were then binned at fixed intervals of 
force and plotted against average force. The high load force-velocity 
curve was constructed from 50 runs at 15 mW, 45 runs at 30 mW, 
and 169 runs at 62.5 mW. The low load force-velocity curve was con- 
structed from 9 runs at 15 mW, 13 runs at 30 mW, and 17 runs at 
62.5 mW. 
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Phenomenologlcal Theory 
The ATP-dependent kinesin velocity at low loads has been shown to 
obey a Michaelis-Menten-type relation, which can be recast as 

ti vdc) = - 
To + Lid(c) 

(equation S), where 6 is the coupling ratio at low loads, defined earlier. 
7. is independent of c, while r,,(c) = 4/c, and both quantities have 
units of time: in general, 4 and f. are complicated functions of the 
biochemical rate constants (Johnson, 1992). Correspondence be- 
tween equation 3 and the Michaelis-Menten expression (equation 2) 
is established through v, = s&o and K,,, = 4/~~. Since clustering 
of 8 nm steps is not observed at limiting ATP concentrations (Svoboda 
et al., 1993). we assume b < 1. For example, if two ATP molecules 
are hydrolyzed for every 8 nm step, then E, = rh. 

How does an external load enter into equation 67 The unitary step 
size is presumably fixed by the MT lattice and is thereby independent 
of load. Since increasing load decreases the velocity, some load- 
dependent factor (X(L), defined earlier) must multiply one (or both) of 
the times in the denominator of equation 6. Consider first the case 
where the ATP turnover rate is reduced in direct proportion to the 
motor velocity as load increases. This corresponds to a tightly coupled 
situation, and the overall motor efficiency increases with load until it 
is maximal approaching stall. The implications of this assumption for 
the shapes of the force-velocity curves in the context of a simplified 
kinetic scheme (equation 1) are discussed in the text. In the general 
case, however, our analysis depends only on being able to group the 
biochemical rates into two lumped functions (band rd in equation S), 
one of which is independent of the ATP concentration, and the other 
of which is inversely proportional to it. In addition, r0 and r’d have to 
be functions of distinct subsets of the kinetic rate constants. The ability 
to perform this decomposition into r0 and rd depends upon three addi- 
tional facts first, hydrolysis reversals do not occur (km2 = 0) (Hackney, 
1968); second, ADP release is irreversible (k-, = 0), a reasonable 
assumption for the very low ADP concentrations present in our assays; 
and third, ADP release is at least partially rate limiting (k, < k2, kS) 
(Hackney, 1968). For the simplified kinetic scheme of equation 1, r0 
= k2-’ + ks-’ + k;’ and t, = (k-, + k+)/k,ks. The mean time between 
ATP hydrolysis and ADP release is (% - l/k& while the mean time 
between ADP release and ATP hydrolysis is (r6+ It). The time scale 
containing the loaddependent rate constant will depend on load and 
hence can be written in the form r(L) = r.X(L). where X(L) can be 
measured. For example, if k-, increases with load, or if k20r k, decrease 
with load, then 

v&L) = 6d 
To + Td (c) X(L) 

(equation 7). At limiting ATP, where rd >> 7.. the factor X’(L) is simply 
the force-velocity curve normalized to unity at zero load (Figure 9b). 

Given a measurement of the force-velocity curve at limiting ATP 
and a knowledge of K,,,, we can then predict the shape of the force- 
velocity curve for saturating ATP, where rd << rO. For our data at 2 
mM ATP, we estimate rd = rd22. At this concentration, velocii will 
not decrease appreciably until loads become such that X(L) 5 20. 
Under limiting ATP wndiiions. the velocity will have decreased roughly 
*fold for similar loads. Therefore, the force-velocity curves will have 
distinctively different shapes at the two different ATP concentrations, 
as illustrated in Figure 10. 

If either k,, ks, or k, decreases with increasing load, then 

v(c,L) = Sod row + L+(c) 
(equation 6). In this case, the factor X-‘(L) is now identified as the 
force-velocity curve normalized to unity at saturating ATP. Similar 
arguments to those just made above show that the predicted force- 
velocity cuwes at limiting ATP will have a distinctly different shape 
from that at saturating ATP (Figure 10). 

There are two possible mechanisms that accommodate load- 
dependent biochemistry and nevertheless lead to equation 4 (see text), 

thereby accounting for the experimental data. First, the rate constants 
in equation 1 might depend upon load in such a way that r6 and % 
are both modified wlth load by the same multiplicative factor, allowing 
X(L) to be factored out in the denominator and reproducing equation 
4. For example, if strain modified the rate for ADP release and ATP 
binding in an identical manner, i.e., if k,(L) OL k,(L) and k, << kz, ks, it 
is conceivable that such a scenario would hold. Note that this scheme 
requires that ATP binding energies increase with load, while ADP 
binding energies decrease in similar proportion. We consider this sce- 
nario to be an unlikely explanation for the data. Second, strain might 
act upon k, alone, with k., >> k2 and k2 >> kS, k,. In this case, both 
time scales (TV and r..) in the denominator of equation 6 would be 
multiplied by X(L), again leading toequation4. However, kineticstudies 
have shown that ADP release is at least partially rate limiting (Hackney, 
1986) implying k, < k,, invalidating this explanation. If the klnesin 
mechanochemistry were largely toad independent, on the other hand, 
then a diminution in velocity with load implies that a decreasing fraction 
of hydrolysis cycles leads to stepping. In this case, the mean time per 
step is (T@ + 7,)X(L), which leads naturally to equation 4. 
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