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We examine the dynamics of a neural code in the context of stimuli whose statistical properties are themselves evolving
dynamically. Adaptation to these statistics occurs over a wide range of timescalesÐfrom tens of milliseconds to minutes. Rapid
components of adaptation serve to optimize the information that action potentials carry about rapid stimulus variations within the
local statistical ensemble, while changes in the rate and statistics of action-potential ®ring encode information about the ensemble
itself, thus resolving potential ambiguities. The speed with which information is optimized and ambiguities are resolved
approaches the physical limit imposed by statistical sampling and noise.

More than forty years ago it was suggested that neural codes may
constitute ef®cient representations of the sensory world1,2. Within
the framework of information theory, ef®cient coding requires a
matching of the coding strategy to the statistics of the input signals3.
Recent work shows that the sequences of action potentials from
single neurons provide an ef®cient representation of complex
dynamic inputs4±7, that adaptation to the distribution of inputs
can occur in real time8±10 and that the form of the adaptation can
serve to maximize information transmission10,11. However, adap-
tation involves compromises. An adaptive code is inherently
ambiguous: the meaning of a spike or a pattern of spikes depends
on context, and resolution of this ambiguity requires that the system
additionally encode information about the context itself. In a
dynamic environment the context changes in time and there is a
tradeoff between tracking rapid changes and optimizing the code
for the current context. Here we examine the dynamics of adapta-
tion to statistics in motion-sensitive cells in the visual system of a ¯y,
Calliphora vicina, and ®nd that different aspects of adaptation occur
on timescales that range from tens of milliseconds to several
minutes. The speed of adaptation to a new input distribution
must be limited by the need to collect statistics. Adaptation of the
neural input/output relation to optimize information transmission
approaches this theoretical maximum speed. This rapid adaptation
of the input/output relation leaves the longer timescales in the
response dynamics as a nearly independent channel for informa-
tion, resolving potential ambiguities of an adaptive code.

Multiple timescales in statistical adaptation
Codes are de®ned by the response not just to a particular stimulus,
but to a statistical distribution of inputs, which provides the
context. Statistical adaptation involves matching the neural code
to this input distribution. If the input signals are gaussian the only
quantities that can govern statistical adaptation are the mean (as in
light±dark adaptation in the retina) and the correlation function.
Here we consider signals with a ®xed, short correlation time and
zero mean, so that the only free statistical parameter is the variance.
We record action potentials from an identi®ed motion-sensitive
neuron in the ¯y visual system (H1 (refs 12, 13)). The input signal is
the angular velocity of motion across the visual ®eld; a sudden
change in variance might mimic what happens as a ¯y makes a
transition from cruising ¯ight14 (Sr:m:s:,230 degrees s21) to acro-
batic or chasing behaviour15 (Sr:m:s:,1;200 degrees s21). To track the
cell's response to changes in the local stimulus statistics, we
modulate a (nearly white) zero-mean signal z(t) in time with a
slowly varying amplitude j(t), such that the angular velocity
stimulus is given by S�t� � z�t�j�t� (see Methods). Thus the

stimulus has a time-varying distribution that is locally characterized
solely by its (varying) standard deviation.

A simple probe of adaptation to statistics is a switching
experiment8, shown in Fig. 1a, where the standard deviation
switches periodically between j1 and j2, with a cycle time of T; we
choose a new random sequence z(t) in each cycle. Averaging over
many cycles we obtain the spike rate as a function of time, which
re¯ects the dynamics of the response to j(t). As in related
experiments8,16, the rate after an abrupt increase in j ®rst jumps
to a high value, then gradually decreases almost to a steady state over
the period of the switch (Fig. 1c). It is tempting to identify this
transient as the (unique) timescale of adaptation, but as the
experiment is repeated with increasing periods T, from 4 to 40 s,
the apparent decay time also increases (Fig. 1b). In fact, the decay
time scales linearly with the switching period T (Fig. 1c). This
scaling holds for the transient after increases but not decreases in
variance, suggesting that different mechanisms may be at work in
the different directions of adaptation. Similarly, in response to
sinusoidal modulations in j(t), the rate is shifted in time with
respect to j(t) by a ®xed fraction of the modulation period T, for T
from 10 to 240 s (data not shown; see ref. 17). The adaptation of the
®ring rate clearly has access to many timescales18, and the observed
timescale depends on the design of the experiment.

Input/output relations and information transmission
If the spike rate changes when stimuli remain statistically the
sameÐas for adaptation after a switchÐthe system's rule for
generating a spike must be changing; we will quantify this by
constructing an input/output relation. Under stationary conditions,
the input/output relation of H1 is adapted to the stimulus ensemble
in such a way that the stimulus input is rescaled by its standard
deviation10. It is natural to assume that slow transients in the rate
dynamics are indicative of or caused by the progress of this
adaptation, so we follow the evolution of the input/output relation
after a sudden change in statistics, as in the switching experiment.

Even for statistically stationary signals, the spiking probability
can be affected by the history of the motion stimulus in a 400-ms
window preceding the spike. Thus `the stimulus' at time t really is a
high-dimensional object describing the whole history S(t) for
tspike 2 400 ms , t , tspike. To study the input/output relation we
require a lower-dimensional description of the stimulus, and, as in
ref. 10, we do this by linearly projecting or ®ltering the signal S(t) to
obtain a single number s for each spike time (see Methods). The
most relevant projection is a smoothed version of the velocity.
Although there are interesting adaptations in these linear ®lters that
are analogous to those previously observed9,19,20Ðpossibly also

© 2001 Macmillan Magazines Ltd



implicated in information maximization, as has been suggested in
other cases9,21Ðour focus here is on the nonlinear relation between
the spike-®ring probability and the smoothed velocity signal.

The measured input/output relations are shown in Fig. 2 for
selected points in the cycle. When measured in physical units, the
input/output relations in the two halves of the cycle differ strongly:
when the dynamic range of the signal is large, signi®cant modula-
tions in ®ring probability require proportionately large variations in
the signal; when the dynamic range is small, a much smaller change
in input evokes the same modulation in output. The effect is large:
under different adaptation conditions the ®ring probabilities in

response to the same input can differ by orders of magnitude. Thus,
the input/output relation is not a static property of the system, but
adapts, dynamically, so that the input seems to be measured in units
proportional to the local standard deviation.

Strikingly, the differences in the input/output relation are estab-
lished within the ®rst second after the switch, by which point the
input/output relation (and the locally computed linear ®lter; data
not shown) is already very similar to the steady-state form (Fig. 2).
More precisely, the transient and steady-state input/output relations
differ simply by a scale factor in the spike rate, as seen by
comparison with the curves shown in normalized units, where the
transient and steady-state curves collapse. This scale factor corre-
sponds to an overall modulation by the time-varying spike rateÐ
the scaling with respect to the input remains the same. Thus the
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Figure 1 Variance-switching experiment. a, The stimulus is a white-noise velocity signal

modulated by a square wave envelope that switches between two values, j1 and j2, with

period T. b, Averaged rate as a function of time relative to the cycle, for

T � �4; 10; 20; 40� s, represented by a progressively lighter grey scale. c, The same

curves as in b but with the time axis normalized by the period T and with the rate

normalized to a mean of zero and unit standard deviation. d, The decay timescale t,

extracted from the curves of a by ®tting an exponential to the decay of spike rate after an

upward switch in variance, plotted as a function of T.

Normalized velocity s/σ

–400 –200 0 200 400 600 800

Fi
rin

g 
ra

te
 (s

p
ik

es
 s

–1
)

0.1

1

10

100

Time (s)

0 5 10 15 20

R
at

e 
(s

p
ik

es
 s

–1
)

0

20

40

60

80

100

–2 –1 0 1 2 3 4

N
or

m
al

iz
ed

 fi
rin

g 
ra

te

0.01

0.1

1

10

Projected velocity s (degrees s–1)

Figure 2 Input/output relations from the switching experiment. Input/output relations

were constructed from the 1-s-wide time windows indicated in the rate plot. For the two

variance conditions, we compare a window in the initial transient regime after a transition

with the ®nal second of the segment, representing the steady state. For a given value, the

input/output relation in the transient is identical up to a multiplicative factor to that in the

®nal window, showing that the rescaling of the input by variance is completed in under 1 s.

The multiplicative factor stems from the modulation of the rate by the slowly varying

adaptive process. The top graph shows the same plots in normalized units. For a given

variance, the curves now overlay. The curves for the two different variances are very

similar, differing only by a slight shift.
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slow, transient change in spike rate after a sudden change in
statistics is associated with an evolution of the input/output
relation, but only in that the output is multiplied by a factor; the
rescaling of the input seems to happen almost immediately on a
timescale much shorter than the change in rate. If adaptation
involved a single processÐa change in neural threshold or the
adjustment of inhibitory inputsÐthen the continuous changes in
spike rate during the adaptation transient would be accompanied
by a continuous stretching or compression of the input/output
relation. Instead the stretching happens rapidly, and scaling of the
output is independent of the processes that rescale the inputs. The
rate dynamics seem to be a separate degree of freedom in the coding
scheme, and may be an independent channel for information
transmission.

Rescaling of inputs serves, under stationary conditions, to opti-
mize information transmission10; it would be attractive if we could
observe this optimization dynamically during the adaptation
transient. Previous efforts16,22 to measure information transmission
during adaptation have used the stimulus reconstruction method23.
Here we use a direct method6 that estimates the local information
transmission rate without any assumptions about the structure of
the code and allows us to follow very rapid changes (see Methods).
The information transmission as a function of time throughout a
switching cycle, with a switch at t � 0, is shown in Fig. 3. First, the
information per spike is a constant 1.5 bits in the two halves of the
experiment, suggesting that maintaining a ®xed information per
spike may be a design principle of the system24. After a downward
switch, the information per spike dips brie¯y and recovers with a
time constant of ,40 ms, returning to its maximal level within
100 msÐmuch faster than the return of the spike rate to steady
state. After an upward switch, there is no detectable transient in the

information transmission. Adaptation to variance changes requires
that the system gather evidence that signals come from a new
probability distribution and are not just outliers in the old dis-
tribution. The speed of this sampling is limited by the noise level in
the system. As discussed below (see Methods) the minimal source of
noise in the photoreceptors sets a physical limit of about 40 ms for
the adaptation timescale after a decrease in variance given the
conditions of our experiments. Adaptation after an increase in
variance can happen more rapidly25. The recovery timescale that
we derive theoretically and observe experimentally is remarkably
fast, given that the stimulus correlation time is around 10 ms as a
result of ®ltering by the photoreceptors: the system receives barely a
few independent samples from the new ensemble. Both the time-
scale of the information recovery and the asymmetry between
increasing and decreasing variance are consistent with adaptation
at a speed near the limit set by physical and statistical considerations.

Resolving ambiguity
The fast recovery of information about the rapid variation in the
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Figure 3 Time dependence of the information transmission. The information/spike was

computed using a switching experiment in which the fast component z(t ) of the stimulus is

a set of 40 ®xed, white-noise `probe' segments of 2 s in duration, presented in random

order. These were modulated by a square wave envelope for a period of 4 s. The probes

were out of phase with the modulation so that each probe straddled a transition from j1 to

j2. The response of the cell was represented by binary `words' from ten consecutive 2-ms

time bins. The presence of a spike in a single bin is represented by 1, the absence by 0.

We compute how much information/word the distribution of words at time t (relative to the

switch) conveys about which probe was used, and how much information/word is

transmitted about the variance j (see Methods). The information/word is divided by the

mean number of spikes per word to obtain the information/spike. The information/spike is

plotted as a function of time surrounding an upward and a downward switch in j. After a

downward switch, there is a dip in the information transmission for a duration of

,100 ms; after an upward switch, no change in the information transmission rate is

detectable. The steady-state information/spike is the same in the two regimes, despite

signi®cant differences in spike rate. The information/spike conveyed about j is also

shownÐit remains at a steady rate throughout the experiment.
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Figure 4 A stimulus with randomly modulated variance. a, The stimulus is a white-noise

velocity signal modulated by an exponentiated random gaussian process, with correlation

time 3 s and cycle length 90 s. b, Averaged rate. Overlaid is the logarithm of j(t ) for this

experiment, normalized to zero mean and unit standard derivation. c, Input/output

relations from selected windows of width 3 s throughout the experiment. d, The same

input/output relations as in c, rescaled along the x-axis by the local standard deviation,
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stimulus means that one of the possible problems of adaptation is
solved, that is, the slow relaxation of the spike rate does not
correspond to a similarly long period of inef®cient coding. How-
ever, the rapid adjustment of the neuron's coding strategy could
exacerbate the problem of ambiguity: if the cell encodes a con-
tinuously rescaled version of the input signal, how can an observer
of the spike train know the overall scale of the stimulus? Although it
is possible that other neurons in the network might encode the scale
factor, our information-theoretic analysis suggests that H1 itself
retains this information; at least in the context of the switching
experiment the spike train provides information about the variance
at a nearly constant rate per spike (Fig. 3). However, it would be
useful if one could extract this information to generate a running
estimate of the stimulus variance. An approach to this problem is
shown in Fig. 4, where we deliver stimuli in which the variance itself
varies at random with a correlation time of 3 s. The result is an
intermittent stimulus that is locally gaussian, capturing some of the
statistical properties of natural signals in vision26 and in audition27.
Under these conditions the spike rate provides an almost linear
readout of the logarithm of the variance. At the same time, as before,
the system shows continuous adaptation: the input/output relations
were calculated in bins throughout the experiment (Fig. 4c), and
when the input is normalized by the local standard deviation, the
curves coincide (Fig. 4d). This suggests that ®ne structure of the
normalized signal is encoded by the precise placement of spike
patterns, generating the information I(W;z) that we measure in
Fig. 3, whereas the normalization factor or overall dynamic range of
the signal is coded by slower variations in spike rate.

With a sudden change in variance, however, the spike rate
remains ambiguous because the representation of the variance is
confounded with the time since the last sudden change. Indeed, the
stimulus-dependent decay time of the rate could be viewed as
coding the time since the switch28. Although the rate may not
encode the variance well, this information is present in other
statistics of the spike train, as hinted at in ref. 29. Instead of
averaging to obtain the time-dependent spike rate, we can collect,
for example, all of the interspike intervals, sorted by the order in
which they occur after the switch. More than a second after the

switch, when the interval distributions (Fig. 5) have reached a steady
state, these steady-state distributions for the two variances are
distinctÐthe mode interval is shifted (Fig. 5); these and other
data10 indicate that the interval distribution provides a `®ngerprint'
for the variance, an example of distributional coding30. Figure 5
further shows that by the second or third interval, the distributions
are nearly indistinguishable from the steady state. Thus, even while
the rate is changing slowly, providing ambiguous information about
the stimulus variance, the interspike intervals become typical of the
new variance after just a few spikes. We can construct a simple
readout scheme for deciding whether the variance is large or small
(see Methods), and this readout reaches reliable discrimination with
just a few spikes (Fig. 5c), corresponding to a decision time of only
43 ms after a switch to larger variance or 120 ms after a switch to
lower variance. These timescales are comparable to those for
recovery of information about the normalized stimulus (Fig. 3),
and the limit set by the need to gather statistics about the noisy
inputs. We conclude that within 100 ms the system both adjusts its
coding strategy to optimize information about the rapid (normal-
ized) stimulus variations and provides an unambiguous signal
about the overall stimulus scale.

It may seem paradoxical that the spike rate changes over a
timescale of seconds when the interspike interval distribution
reaches steady state in roughly 100 ms. This can be understood
from the structure of the interval distributions, which have three
main features: (1) an exponential tail at long intervals; (2) a peak at a
preferred interval; (3) a refractory `hole' at small intervals. A small
change in the weight of the tail, or in its slope, can cause signi®cant
changes in spike rate, thus the interval distribution can appear
almost stationary while the rate changes, and conversely counting
spikes (to measure the rate directly) can obscure large changes in the
structure of the distribution at shorter times. Both the preferred
interval and the shape of the refractory hole depend strongly on the
stimulus, in particular on its variance, and these are the features that
provide the basis for rapid, reliable discrimination of the variance
change (Fig. 5). These effects can be seen even in the response of
simple conductance-based models for single neurons responding to
injected currents (B. AguÈera y Arcas; personal communication) and
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in networks of model neurons31. This emphasizes that the relative
probability of short intervals need not be determined by a ®xed
absolute or relative refractory mechanism, but can respond to input
signals and provide information able to resolve the ambiguities
introduced by adaptation.

Discussion
These results suggest a multilayered coding scheme that allows the
spike train to convey information about the stimulus through
several channels independently: the timing of individual spikes or
short spike patterns encodes stimulus features that are normalized
to the stimulus ensemble, the statistics of interspike intervals on
slightly longer timescales encode the stimulus ensemble, and the
spike rate can carry information about the changes in ensemble on
yet longer timescales. Although we are not yet able to identify
speci®c mechanisms at work in the visual system of the ¯y to
produce these dynamics, any mechanism must display the existence
of multiple timescales, from the ,100 ms recovery of information
(Fig. 3) to the minute-long relaxation of the ®ring rate (Fig. 1).
Recent biophysical studies32 indicate that such a range (,103) of
timescales can arise even in a single cell from the complex inactiva-
tion kinetics of NaII channels. Although multiple timescales could
arise also from network dynamics, it is appealing that important
aspects of adaptive coding could be implemented by cellular
mechanisms. A complementary question concerns the readout of
information, for example from the distribution of intervals. This is
a classical problem in neural coding, and it has been demonstrated
that single neurons are sensitive to the temporal pattern of synaptic
inputs33. Recent work shows how the diverse dynamics of synapses
can extract and transmit different aspects of a spike train34,35,
providing speci®c mechanisms for readout of a distributional
code.

Many features of adaptation in H1 have analogues in the
mammalian visual system. Adaptation to the distribution of
image velocities in H1 is most closely analogous to the adaptation
to contrast distributions in retinal ganglion cells8,36, where many
different gain-control processes span multiple spatial and temporal
scales37,38. As with H1, statistical adaptation in retinal ganglion cells
is observed at the output of a network; however, recent work shows
that aspects of this adaptation can be seen in the response of
individual ganglion cells to injected currents39, strengthening the
connection to ion channel dynamics. Several nonlinear effects in
neural responses in visual cortex have been described in terms of a
`normalization' model40 that has a conceptual connection to the
rescaling of the input/output relation in H1. Although the phenom-
ena in cortex usually are not described as adaptation to the
distribution of inputs, it has been emphasized that the form of
these nonlinearities may be matched to the distribution of natural
scenes, so that as in H1 their function would be to enhance the
ef®ciency of the neural code41. The present work shows that such
effects can occur very rapidly, and that this rapidity is expected if
the system is statistically ef®cient, so that nearly instantaneous
events may nonetheless re¯ect adaptation to the distribution of
inputs.

In traditional demonstrations of adaptation (including in H1
(refs 9, 19)) a long-duration adapting stimulus is presented,
followed, after some delay to allow a return to baseline, by a
standard probe signal. This adapt-and-probe design has the advan-
tage of showing explicitly that adaptation involves a memory of the
adapting stimulus. The dif®culty is that it requires a clear separation
of timescales between the adaptation process (or its decay) and
the transient response to the probe. Instead we ®nd that the
nonlinear input/output relation of H1 can change on a timescale
comparable to its transient response, and that adaptation involves
an apparently continuous range of timescales from tens of milli-
seconds to minutes. Furthermore, there is evidence for adaptation
to the variance and correlation time of speci®c stimulus features

(motion) as well as to the more general correlation properties of the
visual input9. Adaptation to statistics over multiple timescales is
almost impossible to characterize fully in an adapt-and-probe
design, and so here and in ref. 10 we have tried to characterize the
response of the neuron to stimuli as they appear in their statistical
context. Statistical adaptation can equally well be considered as an
example of context dependence in the neural code. According to
information theory ef®cient codes are always context-dependent in
this sense, there are limits to how rapidly context can be established,
and there are tradeoffs between context-speci®c coding and ambi-
guity about the context itself. The neural code for visual motion in
H1 seems to be optimal in all these senses, encouraging us to think
that information theory may provide a framework for thinking
about context dependence of neural coding and computation more
generally. M

Methods
Preparation

A ¯y C. vicina, immobilized with wax, viewed a Tektronix 608 display through a circular
diaphragm (diameter: 14 horizontal interommatidial spacings), while action potentials
were recorded extracellularly. Data in each ®gure come from a single ¯y, but all
experiments were duplicated on several ¯ies, yielding similar results.

Stimulus

A computer-controlled random, vertical bar pattern, with frames drawn every 2 ms, moves
horizontally with velocity S�t� � j�t�z�t�, where z(t) is a sequence of unit variance,
uniformly distributed random numbers, drawn independently every tz � 2 ms. The
standard deviation, j(t), varies on a characteristic timescale tj q tz .

Input/output relation and dimensionality reduction

The input/output relation is the probability distribution P(spike|stimulus). Accumulating
the full distribution is impractical owing to the high dimensionality of the time-dependent
stimulus history before each spike. Previous analysis of H1 shows that only a few
dimensions control spiking probability. Reverse correlation4,42 identi®es one of these
dimensions: spikes occur at times {ti}, and we compute the spike-triggered average stimulus,

h�t� � ^
N

i�1

S�t 2 t i�=N

We normalize h(t) to hn(t) to produce unit gain for a constant velocity. The projections,
si � edt hn�t�S�t i 2 t�, of the stimulus preceding each ti, onto the relevant stimulus
dimension hn, provide samples of the response-conditional distribution26 P(s|spike). The
input/output relation follows from Bayes' rule, P�spikejs� � P�sjspike�P�spike�=P�s�,
where P(s) is the (gaussian) distribution of all projected stimuli from the experiment and
P(spike) is the mean spike rate.

Physical limits to the speed of adaptation

Adaptation to a change in variance of the input signal requires enough time to make a
reliable measurement of that variance. This trade between speed and reliability depends on
what the system can assume about the nature of the inputs. Suppose we observe a signal
x(t) for a time t and must decide from which of two gaussian distributions it was drawn.
For large times t the probability of error in this decision is dominated by an exponential
decay, Perror ~ exp� 2 kt�, with

k �
1

4 #
dq

2p
2 2

X��q�

X2�q�
2

X2�q�

X��q�

� �� �2

#
dq

2p
1 2

X��q�

X2�q�

� �� �21

where X+(q) and X-(q) are the power spectra of the two gaussian processes with standard
deviations j+ and j- respectively43,44. Here, x(t) is the brain's internal representation of the
angular velocity stimulus, containing components both from the presented signal and
from noise. Comparing the contrast signals generated by our visual stimulus with
photoreceptor voltage noise measured under comparable conditions45 we ®nd that the
signal-to-noise ratio is very high up to some critical frequency, f c < 50±100 Hz, above
which the effective contrast noise rises steeply. This suggests that we approximate X6(q) as
signal-dominated for q , 2pf c and noise-dominated for q . 2pf c. As the two signals are
gaussian, their power spectra have the same shape but different variance; this difference is
large (´102) under the conditions of Fig. 4.

With these approximations we ®nd k � f c=2, so that the fastest possible relaxation time
is about 20±40 ms. Additional noise sources in the visual pathway will necessitate longer
times for reliable adaptation. Here the error probability is asymmetric: the prefactor of the
exponential is larger for misidentifying a small variance signal as a large variance,
predicting that transients will be easier to observe after a decrease in variance. An
alternative is to consider continuous estimation of the variance, in which case the
asymmetry between increasing and decreasing variance appears as a difference in the
timescale of relaxation rather than as a prefactor25.
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Information transmission

We calculate information conveyed about the stimulus S�t� � z�t�j�t� as a function of
time. At time t, z is one of N probe sequences {zj}j�1;¼;N and j one of {j1 ; j2}. The cell's
responses are expressed as binary `words'6 (see Fig. 3 legend), discretized at 2 ms, which is
approximately the cell's absolute refractory time. Reliable sampling of word distributions
requires a compromise between long words and high resolution. Much larger data sets
allow ®ner discretization, possibly yielding higher information rates6, but are unlikely to
affect our conclusions qualitatively. Interpreted strictly, our results apply only to the case
of 2 ms resolution.

With Pj�W�t�jz�Ðthe distribution of word responses at time t for a given probe, z,
modulated by jÐthe information/word about the probe is

Ij�W�t�; z� � H�Pj�W�t��� 2 ^
N

j�1

P�zj�H�Pj�W�t�=zj��

where H is the entropy of the word distribution:

H�P�W�t��� � 2
Ŵ

P�W�t�� log2�P�W�t���

Similarly, the information that the distribution of words provides about j(t) is computed
from Pz�W�t�=j�:

Iz�W�t�; j� � H�Pz�W�t��� 2 ^
2

j�1

P�jj�H�Pz�W�t�jjj��

We average this quantity over all probes zj to obtain the average information, I�W�t�; j�.

Discrimination

We wish to determine whether a sequence of n interspike intervals �d1; d2 ; d3;¼; dn� is the
response to a stimulus with standard deviation j1 or j2. Optimal discrimination requires
computing the log-likelihood ratio,

Dn � log�P��d1; d2; d3;¼; dnjj1�jP�d1; d2; d3;¼; dnjj2��

but the multidimensional distributions again are dif®cult to sample. We obtain a lower
bound to discrimination performance using a simpler decision variable which would be
optimal if there were no signi®cant correlations among successive intervals,

Dn � ^
n

i�1

log�P�di=j1�=P�di=j2��

We measure the reliability of discrimination by the signal-to-noise ratio,
SNR � hDni2

=hDn 2 hDnii2
.
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