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Materials and Methods

The B. subtilis strains used are all derivatives of strain 168 (BD630) and are described in

Table 1. Bacteria were grown either in liquid competence minimal medium (CMM) (1) or

on Luria-Bertani (LB) agar supplemented with chloramphenicol, erythromycin or

kanamycin (5 µg/ml) or spectinomycin (100 µg/ml). B. subtilis competent cells were

prepared as described previously (1). E. coli DH5a (Invitrogen) was used for cloning.

DNA manipulation and other molecular biological procedures were performed using

standard protocols.

Strain and Plasmid Construction

comK-9aa-cfp* fusion

The cfp* (codon optimized for B. subtilis) gene including the open reading frame was

synthesized by polymerase chain reaction (PCR) using Primer 1 and Primer 2 (Table 2)

and the plasmid pDR200 (gift from Dr. David Rudner, Harvard Medical School) as

template. The product was cut with XhoI and BssHII ligated to pED359, previously

digested with the same enzymes and transformed into E. coli DH5a, with selection for

ampicillin resistance. pED359 was derived from pFG10 (a gift from F. Guerrero and R.

Losick) and contained a comk sequence that bears the comK promoter, the ribosome

binding site and the first 9 codons of the comK open reading frame (ORF) fused to cfp.

The resulting plasmid was pED1021. pED1021 was used to transform BD630 with

selection for kanamycin resistance by Campbell-like transformation, placing PcomK-9aa-

cfp* under control of the comK promoter and leaving the endogenous copy of comK
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unaltered, thus producing BD4374. This plasmid was also used to transform BD2955

(rok) to produce BD4375.

comK-96aa-cfp* fusion

A comk sequence including the promoter region and the first 96 codons of the comK ORF

was synthesized by PCR using Primer 3 and Primer 4, and BD630 genomic DNA as

template. The product was cut with EcoRI and XhoI and ligated to pED1021 digested

with the same restriction enzymes. The resulting plasmid (pED1022) was transferred in

BD630 as described above generating BD4376. This plasmid was also used to transform

BD2955 (rok), producing BD4377.

comK-M2 fusion

A DNA fragment containing 32 head-to-tail tandem repeats of the 50 nucleotide sequence

5'-CAGGAGTTGTGTTTGTGGACGAAGAGCACCAGCCAGCTGATCGACCTCGA-

3', was cut from pGEMT-M2 (2,3) using EcoRI and BamHI, and was cloned into the

same sites of the pAC5 plasmid (4), producing the plasmid, pED1025. The comK

sequence containing the promoter and 9 codons of the ORF was obtained by PCR with

Primer 3 and Primer 5, then cut with EcoRI and ligated to pED1025 digested with EcoRI.

The resulting plasmid (pED1026) was used to transform BD630, BD4374, and BD4375

with selection for chloramphenical resistance. The transformants were screened on starch

plates, and then exposed to I2, to confirm the insertion of the construct at the amyE locus.

The resulting strains were BD4378, BD4379, and BD4380, respectively.

comK deletion

A 734 bp fragment upstream of the comK ORF was synthesized by PCR using Primers 6

and 7, and then cloned into pUC19 at the Acc65I and SmaI sites. The resulting plasmid
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was digested with BamHI and ligated to the erm gene cut with BamHI from the plasmid

pED209 (5), producing pUCComKupERM. A 778 bp fragment downstream from comK

was produced by PCR with Primers 8 and 9, digested with SalI and SphI and cloned into

pUCComKupERM cut with the same enzymes. The resulting plasmid, pED1027, was

used to transform BD630 and BD4378 by double crossing over, deleting comK totally

and replacing it with erm , producing BD4381 and BD4382, respectively. The

replacement was checked by the loss of transformation ability of the strain and by PCR,

using BD630 (control), BD4381 and BD4382 genomic DNAs as templates with Primers

3 and 9.

Construction of the low-noise strain

The initiation codon ATG in the comK-96aa-cfp construct was mutated to GTG by PCR

mutagenesis using Primers 10 and 11, and the plasmid pED1022 as template. The

resulting plasmid was confirmed by sequencing and was used to transform BD2955 with

selection for kanamycin resistance by Campbell-like transformation. The genomic DNA

of several individual transformants was extracted and used as templates for PCR with

Primer 3 and 12. The PCR products were purified and sequenced. Only clones having the

mutation in the initiation codon of the full-length comK were selected for further

characterization. The selected strain (BD4383) was transformed with BD4378 genomic

DNA, to introduce comK-M2, with selection for chloramphenicol resistance, leading to

BD4384.
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Probes for in situ hybridization

The probes used for the in situ hybridization were DNA oligonucleotides synthesized on

an Applied Biosystems 394 DNA synthesizer using mild phosphoramidites (Glen

Research). The oligonucleotide sequences were

P1: 5’-GGCAATTGRTGCGCCGTRCACTTCARACGATTC–3’;

P2: 5’-CGAAGGGRCCACCATGARCGGCGGCTTGRGTGAAAT–3’;

P3: 5’-ATAAGAGARCGGCAGCRCCATCGTTTRCCCATTG –3’;

P4: 5’-TTTGGTTCRGAGCCACGCRGTTCGGTARACCTGGTT-3’;

P5:5’-CCGCTCTRCTTTCGGGRACAGCARAAATTCC-3’;

P6:5’-ATACCGTRCCCCGAGCRCACGCAAAARAAAATCA-3’,

PM2:5’-RCGAGGTCGARCAGCTGGCTGGRGCTCTTCGRCCACAAACA-3’ where

P1, P2, P3, P4, P5 and P6 are complementary to comK  messenger and PM2 is

complementary to the repeated sequence in M2. The “R”s represent locations where an

amino-dT was introduced in place of a regular dT. The oligonucleotides were synthesized

on a controlled pore glass column (Glen Research) that introduced an additional amine

group at the 3’ end of the oligonucleotide and an additional amine group was added to the

5’ in the final synthesis step. The amine groups of P1-P6 were then coupled to

tetramethylrhodamine (Molecular Probes) to create the following probes: P1-TMR, P2-

TMR, P3-TMR, P4-TMR, P5-TMR, P6-TMR. These six probes were quantified and

combined at a concentration of 50 ng/µl each, creating the probe pool C6-TMR. The

amine groups of PM2 were coupled to the Alexa 594 fluorophore (Molecular Probes),

yielding PM2-Alexa-594. All probes were individually purified on an HPLC column to

isolate oligonucleotides displaying the highest degree of coupling of the fluorophore to
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the amine groups.

Preparation of cells for microscopy

To measure the number of competent cells throughout stationary phase, the strains were

grown in CMM and samples were taken throughout growth for microscopy. Cells were

attached to polylysine-coated slides. Cross walls were visualized by staining nucleic acids

with propidium iodide (10 µg/ml). Samples were mounted in Slow Fade (Molecular

Probes) for imaging.

For time-lapse microscopy, cells were grown in CCM to mid-log, then pelleted and

resuspended in conditioned CMM, One or two microliters of cell suspension were

layered onto a 20 µl pad of 1% agarose dissolved in conditioned CMM, covered with a

cover slip that was then sealed to the slide. Bright field and fluorescence pictures were

taken to follow cell growth on the pad and competence development. Temperature was

maintained at near 35 °C.

For the in situ hybridization experiments, cells were fixed with 10% formaldehyde for 10

min at room temperature, washed with PBS, and then allowed to attach to polylysine-

coated multichambered coverglasses (Lab-Tek, Nalgene Nunc). The cells were

permeabilized by treatment with lysozyme (2 mg/ml) for 2 min and then washed with

PBS. FISH was then performed using combinations of probe pool C6-TMR or PM2-

Alexa 594 at a concentration of 1 ng/µl each, following the procedure outlined in Femino

et al. (6). The optimal level of formamide used during hybridization and washing for

maximum signal to background was empirically determined to be 25% to detect M2
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messenger and 10% to detect the comK messenger.

Microscopy
Routine microscopy was performed with an upright Nikon Eclipse 90i microscope

equipped with an Orca-ER Digital Camera (Hamamatsu), and a Nikon TIRF 1.45 NA

Plan Neo-Fluor 100 X oil immersion objective. Velocity software (Improvision) and

Adobe Photoshop were used for image acquisition and processing. Three images were

captured for each field of cells: DIC and fluorescence images for CFP and PI.

Appropriate Semrock Optical filter sets were used for each fluorophore.

After in situ hybridization, cells were imaged using an Axiovert 200M inverted

fluorescence microscope (Zeiss), equipped with a 100X oil-immersion objective, a

CoolSNAP HQ camera (Photometrics, Pleasanton, California, United States), cooled to -

30 °C; and standard filter sets obtained from Omega Optical. Openlab acquisition

software (Improvision) was used to acquire the images. For three-dimensional imaging,

randomly chosen fields were imaged by taking adjacent Z-axis optical sections that were

0.3 µm apart.

Image analysis

Custom software written in MATLAB (The Mathworks, Natick, MA) was used to

analyze the fluorescence in situ hybridization images. Broadly, the method consisted of

first locating individual cells from the differential image contrast image using

morphological operations to reduce non-uniformities in the background, after which a
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simple threshold was used to separate the cells. Incorrectly segmented cells were

discarded based on size and shape. For the fluorescence images, individual molecules

were isolated by first running a median filter to remove shot noise, after which a custom

linear filter loosely based on the discrete Laplacian (3) was applied to enhance particular

signals. Using the cell boundaries and locations determined from the DIC image, the

number of mRNA in each cell was counted by using a simple threshold to distinguish

particles. Since the number of comK mRNA molecules was relatively low, overlapping

mRNAs did not pose much of a concern, and the cell boundaries were expanded slightly

to account for possible frame shifts between the DIC and fluorescent images. To exclude

the competent cells from the determination of the mean and variance of the number of

mRNA molecules, we manually set a threshold for the CFP and TMR fluorescence; cells

above either of those fluorescence levels were deemed competent.  Thresholds for both

channels were required because when cells initially become competent, the CFP has not

yet had time to fold, but comK mRNA are in high abundance (>20 per cell), thus allowing

one to determine which cells are competent using the TMR channel.  Later in stationary

phase, though, the mRNA signal vanishes due to an unknown comK shutdown

mechanism; however, the CFP signal remains, allowing one to still distinguish competent

cells from non-competent ones.

Spectrofluorimetry

The strains carrying the comK-96aa-cfp* fusion were grown in competence medium in

duplicate and samples were taken throughout growth. Cells were pelleted, washed once

and resuspended in Spizizen salts (7). The total fluorescence in the samples was
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measured using a spectrofluorimeter (Photon Technology International) using 437 nm as

the exciting wavelength and 475 nm as the emission wavelength. In each experiment the

background fluorescence was measured using BD630 (wild type strain without cfp) at

different growth stages and subtracted from the values obtained for the strains containing

the fusions. All measured values were normalized to the optical densities values, as a

measure of cell density. The mean CFP fluorescence values for the wild type, rok and

low noise strains were 148, 408, 274 at T-0.5 and 667, 1083, 856 at T0, respectively.
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Table 1: Strains

Strain Genotype Source

BD630 his leu met Laboratory strain

BD2955 his leu met rok::spca Tran et al 2001

BD4374 his leu met comK-9aa-cfp* (CBLb, kana) This study

BD4375 his leu met rok::spca comK-9aa-cfp* (CBLb, kana) This study

BD4376 his leu met comK-96aa-cfp* (CBLb, kana) This study

BD4377 his leu met comK-96aa-cfp* (CBLb, kana) rok::spca This study

BD4378 his leu met amyE:: comK-M2  (cata) This study

BD4379 his leu met amyE:: comK-M2  (cata) comK-9aa-cfp* (CBLb,

kana)

This study

BD4380 his leu met amyE:: comK-M2  (cata) comK-9aa-cfp* (CBLb,

kana) rok::spca

This study

BD4381 his leu met ∆comK::erma This study

BD4382 his leu met amyE:: comK-M2  (cata) ∆comK::erma This study

BD4383 his leu met comKc comK-96aa-cfp* (CBLb, kana) rok::spca This study

BD4384 his leu met amyE:: comK-M2 comKc comK-96aa-cfp* (CBLb,

kana) rok::spca

This study

a. kan, cat, erm and spc stand for resistance to kanamycin, chloramphenicol, erythromycin and

spectinomycin, respectively.

b Inserted by Campbell like integration

c a mutated allele of comK in which the start codon ATG was switched to GTG

* codon optimized version of CFP to use in B. subtilis.
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Table 2. Primers

Name Sequencea Use
Primer 1 5’-CC CTCGAG GGA ATG GTT TCA AAA GGC GAA

GAA C-3’
comK-9aa-cfp*
fusion

Primer 2 5’-CG GCGCGC TTAC TTA TAA AGT TCG TCC-3’ comK-9aa-cfp*
fusion

Primer 3 5’-GAC ATC GAATTC TTT TGT T-3’ comK-96aa-cfp*
fusion

Primer 4 5’-TCA G CTCGAG CG AAG AAA GTG GGA ATA
AAA AG-3’

comK-96aa-cfp*
fusion

Primer 5 5’-GGAATTC CCCGGG TTCAAG CTT AGG TGC
CTC TGT TTT CTG ACT-3’

comK-M2

Primer 6 5’-CG GGTACC G CTT CAA TTA CCG CCT ATA
AAG-3’

comK deletion

Primer 7 CAT AAG ACT TGC CGG TTT ACG comK deletion
Primer 8 5’-GC GTCGAC G AGA TGT CAC ATA GCT TGA

ATT C
comK deletion

Primer 9 5’-CAT GCATGC CAA AAG AAC ATG AAG CCT
GTC-3’

comK deletion

Primer 10 5’-GGC CAT AAT GTG AGT CAG AAA ACA GAC
GCA CCT-3’

comK
mutagenesis

Primer 11 5’-AGG TGC GTC TGT TTT CTG ACT CAC ATT ATG
GCC-3’

comK
mutagenesis

Primer 12 5’-ACATGCATGCATTGACATCTCAGGTATATGG-3’ Check comK
deletion

a Restriction sites are in bold and mutagenic codons are underlined.
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Stochastic model of competence initiation

In this supplement, we describe a model of competence initiation in B. subtilis. Our modeling

effort had two specific goals: 1) to show that modulating the rate of comK transcription can

significantly alter the rate of transitions to the competent state, thus explaining the “window

of opportunity”, and 2) showing that reducing the noise in the number of ComK proteins

while keeping the mean the same (by increasing the transcription rate and decreasing the

translation rate) can lead to a dramatic decrease in the rate of transitions to the competent

state. Our model is able to reproduce both of these findings, thus presenting a simple unified

model of competence initiation.

We first summarize the basic features of competence germane to any model of this be-

havior, after which we formulate the model mathematically and explore its behavior through

the use of stochastic simulations.

Summary of competence behavior

The core of the network that controls the onset of competence in B. subtilis is shown in

Figure 1A. We will define time Tx as amount of time x from the entry into stationary phase.

Essentially, at time T0, the concentration of ComS proteins in the cells is dramatically in-

creased, largely due to the accumulation of the pheromone ComX in the growth medium (8).

Since both ComK and ComS are degraded by the MecA/ClpC/ClpP complex, the increased

numbers of ComS proteins effectively reduces the degradation rate of ComK through com-

petition. The increased overall amount of ComK protein allows for stochastic transitions

from the non-competent state to the competent state (Figure 1C). This is due to positive

feedback in the form of ComK stimulating its own production by binding to its promoter in

a cooperative manner (9); the cooperativity is required for the establishment of a bistable

system (10). These transitions continue for around 2 hours, at which point the transitions

stop occurring and cells that are not yet competent are no longer able to become competent
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while those cells which are competent remain competent.

Once a cell transitions to the competent state, it produces a very large amount of ComK,

ultimately on the order of 50,000 protein dimers (11). This huge amount of protein keeps the

cell in the competent state until the cell is diluted into fresh medium. At that time, ComK

is degraded at a constant rate before the cell may resume exponential growth (11). This

linear decrease indicates that the MecA/ClpC/ClpP complex is saturated, corroborated by

estimates of the abundance of MecA/ClpC/ClpP protease at only around 300 per cell (11).

Since cells are unable to transition from the competent state to the non-competent state

but the final percentage of competent cells is well below 100%, it is necessary to assume that

there is a “window of opportunity” during which cells can transition into the competent

state; otherwise, cells would continue to transition to competence until all the cells are

competent. This window of opportunity appears to coincide with a decrease in the mean

number of comK mRNAs in non-competent cells as the cells continue into stationary phase

(Figure 2D). A natural inference is that the cells are producing too few mRNAs to allow for

the transitions to occur, as not enough ComK protein is around to induce transitions to the

competent state. We address this assertion quantitatively later in this supplement.

Although we do not directly address the issue of the exit from competence in this work,

there are a few points about ComK dynamics after competence is initiated that are relevant

for our model, in particular concerning the possibility of transitions from the competent state

to the non-competent state. As stated previously, under our experimental conditions, cells

are unable to transition from the competent state to the non-competent state, at least during

the time-scales we observe. Most evidence shows that competent cells only leave competence

upon dilution into fresh medium, at which point ComK is degraded to non-competent levels

over a period of around 1.5 hours, after which the cells resume exponential growth.

Furthermore, we found that comK transcription was turned off once the cells had been

competent for a certain length of time. This indicates that comK expression is inactivated

once ComK reaches very high levels. The mechanism by which this occurs may either be the
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same as the mechanism that reduces the transcription of comK in the non-competent cells

observed in Figure 2D, or it may be some other mechanism specific to comK regulation in

competent cells. It is also important to note that the levels of ComK are extremely high at

this point (∼50,000 dimers per cell). This is likely due to the fact that ComK production

continues unchecked, as the MecA/ClpC/ClpP degradation mechanism quickly saturates at

the higher level of ComK production instigated upon activation of the positive feedback

loop. Of course, the cell is not capable of producing infinitely much ComK protein, so an-

other mechanism must eventually shut down production of ComK. Although the mechanism

responsible for this shut down is unknown, we found some evidence that it acts by shutting

down transcription of the comK gene. When comparing the level of comK mRNA and the

amount of fluorescence emitted by CFP under control of the comK promoter at different

times during stationary phase, we found that at the start of stationary phase, some cells had

large levels of mRNA fluorescence without yet having much CFP fluorescence, indicating

that the cells had already triggered the positive feedback loop but had not yet produced

appreciable amounts of fluorescent CFP, with the lag presumably due to the folding time

of the fluorescent protein. However, as time progressed in stationary phase, we found that

the cells with large amounts of CFP had little fluorescent mRNA signal. This indicates

that competent cells eventually turn off transcription of the comK gene once they have a

large number of ComK protein molecules1, although this is not to say that the high levels

of ComK proteins are necessarily responsible for the shutdown in comK transcription. We

make no attempt to include this mechanism in our model, since we are primarily concerned

with the initiation of competence rather than the behavior of the cell once competence is

underway. This mechanism is, however, relevant in the sense that we assume that this

unknown mechanism prevents runaway ComK production, so our model does not have to

include the ComK degradation mechanism stabilizing the “on” state as is required in most

1This is a different mechanism than that proposed by Suel et al. (12), in which comK transcription is
shut down by deactivation of the comK positive feedback loop, which is only possible upon degradation of
ComK to non-competent levels.
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models of bistable gene expression (10). This allows for a much broader set of parameters

admitting random competence initiation, since the parameters governing the degradation

rate in the non-competent cells (through the MecA/ClpC/ClpP degradation complex) only

need to stabilize the “off” state.

Model

Here, we formalize our stochastic model for competence initiation in B. subtilis. Since even

the most basic model of competence must necessarily involve a large number of unknown

parameters, we focused our efforts on creating the simplest model that recreated the exper-

imental behavior observed and then sought to alter the network in such as way as to find

novel qualitative behavior that could be tested experimentally.

The key features we incorporated were the MecA/ClpC/ClpP degradation mechanism

and the ComK positive feedback loop. The MecA/ClpC/ClpP degradation mechanism was

modeled by allowing both ComK and ComS to bind to MecA/ClpC/ClpP, followed by degra-

dation of the protein. ComS is also assumed to have another MecA/ClpC/ClpP independent

degradation mechanism (12).

For ComK, we first assumed that ComK dimerization was essentially instantaneous,

allowing us to assume that all ComK proteins were in the dimeric state. Since this is the

functional form of the ComK protein, we henceforth use the term ComK to refer to the

ComK dimer. To model the positive feedback loop, we utilized the known fact that ComK

binds at two sites to its own promoter. We incorporated cooperativity in this binding by

assuming that the binding of the first ComK molecule greatly facilitated the binding of the

second ComK molecule, an assertion backed up by gel-shift experiments indicating a high

degree of cooperativity in the interaction of ComK with its own promoter (9).

The reactions are as follows:
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mK
δmK→

mK
µK→ mK + K

M + K
kMK→ MK

MK
δMK→ M

M + S
kMS→ MS

MS
δMS→ M

PcomK + K
λK→ PcomK,K

PcomK,K
γK→ PcomK + K

PcomK,K + K
λKK→ PcomK,KK

PcomK,KK
γKK→ PcomK,K + K

PcomK
µmK→ PcomK + mK

PcomK,K

µmK,K→ PcomK,K + mK

PcomK,KK

µmK,KK→ PcomK,KK + mK

µmS→ mS

mS
δmS→

mS
µS→ mS + S

S
δS→

The symbols are defined in the following way: K is ComK protein (in the dimer form),

mK is comK mRNA, M is the MecA/ClpC/ClpP protease, MK is the MecA/ClpC/ClpP

complex when bound to a molecule of ComK, mS is comS mRNA, S is ComS protein, MS is

the MecA/ClpC/ClpP complex when bound to a molecule of ComS, PcomK is the promoter

of ComK without any ComK molecules bound, PcomK,K is the promoter of ComK with one of
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the ComK binding sites occupied, and PcomK,KK is the promoter of ComK with both ComK

binding sites occupied.

The rates are defined in Table 3. When possible, rates were chosen to be close to physical

estimates. The rate of mRNA degradation was set to correspond to a half-life on the order

of 1.5 minutes. The rate of comK transcription was then varied to give something close to

the experimentally determined mean number of mRNA per non-competent cell (for instance,

a basal transcription rate of 0.008 molecules−1 sec−1 would lead to a mean of 1 mRNA per

cell). The rate of translation was chosen to yield an average of µK/δmK = 125 ComK proteins

translated per mRNA, in line with what might be expected from the strong Shine-Dalgarno

sequence present in the comK gene. There is little data on the rates of the protein-protein

interactions, but we were able to make an estimate of the rate at which the MecA/ClpC/ClpP

complex is able to degrade ComK (δMK), since previous work has shown it takes roughly

1.5 hours for the 300 molecules of the MecA/ClpC/ClpP complex to degrade 50,000 ComK

dimers. The other protein-protein and protein-promoter interactions were chosen to be fast

relative to the rate of transcription, thereby reducing their stochastic effects.

Given this set of reactions, one can determine the threshold of ComK dimers beyond

which cells are likely to transition to the competent state. by examining the production and

degradation rates of ComK. To do so, we analyze the deterministic version of the model,

computing both the production and degradation rate of K (the number of ComK dimers)

as a function of K. A straightforward computation shows that the production of ComK is

given by

µtotal
K =

µK

δmK

(
µmK + µmK,KK1K + µmK,KKK1K2K

2

1 +K1K +K1K2K2

)
(1)

where µK is the total rate of protein production of K, K1 ≡ λK/γK is the affinity constant

for the first K binding to the comK promoter and K2 ≡ λKK/γKK is the affinity constant for

the second K binding.

The computation of the degradation rate is made somewhat more complex by the active

degradation mechanism employed by the cell to degrade ComK. To find the degradation
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Rate parameter Value Description

δmK 0.008 molecules−1 sec−1 comK mRNA half-life of 1.5 min
µK 1 molecules−1 sec−1 ComK translation rate
kMK 0.1 molecules−2 sec−1 ComK binding to protease
δMK 0.03 molecules−1 sec−1 ComK “degradation” rate
kMS 0.1 molecules−2 sec−1 ComS binding to protease
δMS 0.03 molecules−1 sec−1 ComS “degradation” rate
λK 0.1 molecules−2 sec−1 First ComK binding to promoter
γK 226.42 molecules−1 sec−1 First ComK dissociating from promoter
λKK 0.1 molecules−2 sec−1 Second ComK binding to promoter
γKK 2.2642 molecules−1 sec−1 Second ComK dissociating from promoter
µmK 0.008 molecules−1 sec−1 Basal comK transcription (varies)
µmK,K 0.008 molecules−1 sec−1 Basal comK transcription (varies)
µmK,KK 0.8 molecules−1 sec−1 Activated comK transcription (varies)
µmS 0.33 molecules−1 sec−1 comS transcription (varies)
δmS 0.008 molecules−1 sec−1 comS mRNA half-life of 1.5 min
µS 0.3 molecules−1 sec−1 ComS translation rate
δS 0.18 molecules−1 sec−1 ComS degradation rate

Table 3: Parameters used in stochastic simulations of the competence circuit in B. subtilis.
Parameters labeled “varies” are time-dependent as described in the text.

rate, we first write down the following system of ODEs representing the system’s dynamics:

dS

dt
= µtotal

S − kMSMS − SγS (2)

dK

dt
= µtotal

K − kMKMK (3)

MK

dt
= kMKMK − δMKMK (4)

MS

dt
= kMSMS − δMSMS (5)

where µtotal
S ≡ µmSµS

δmS
is the total ComS protein production per unit time, MK is the number

of MK complexes, and MS is the number of MS complexes. The number of free degradation

complexes is given by M , which can be obtained from the conservation relation M0 =

M +MK +MS.

Since we are interested in the degradation of K in the steady state, we must find the

time-independent solution to this system as a function of K while ignoring the dynamic
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equation for K’s evolution. The degradation rate will then be given by kMKMK. The task

then becomes to find out the equilibrium value of M . Setting the last two dynamic equations

to zero and using the conservation relation yields

M =
M0

1 + kMK

δMK
K + kMS

δMS
S

(6)

Setting the first dynamic equation to zero and solving for S yields

S =
1

2

(
µtotal

S

γS

− δSM0

γS

− δS
kMS

K̃

)
+

√
1

4

(
µtotal

S

γS

− δSM0

γS

− δS
kMS

K̃

)2

+
δSµtotal

S

γSkMS

K̃ (7)

where

K̃ = 1 +
kMK

δMK

K (8)

Using these expressions, one can compute the degradation rate of K as a function of K. A

graph showing both the rate of production and degradation of K as a function of K (com-

puted with parameters at T0) is shown in Figure S2 for a few different comK transcription

rates. The second intersection point, representing an unstable fixed point in the dynamics,

is then the threshold.

Stochastic simulations

In the absence of stochastic fluctuations, it would be impossible for a cell to transition to the

competent state, since the above analysis shows that such a state is stable. However, in the

presence of stochastic gene expression, fluctuations in the level of K can lead to transitions

as occasional fluctuations push the number of Ks past the threshold.

We explored the stochastic properties of our model by using the Gillespie algorithm for

generating exact trajectories of the stochastic system (13). The simulations incorporated

a time-dependent rate of comK transcription based on the mean mRNA measurements

obtained from the wild-type FISH experiments. The simulations were started 8 hours before
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T0 and comS transcription is turned on 15 minutes before T0
2, and the total number of

MecA/ClpC/ClpP complexes was set to 300. We found that, given the rates chosen, only

a fraction of the randomly generated trajectories would transition to competence, whereas

the rest of the trajectories would maintain low basal rates of ComK production. A few

sample realizations for a particular set of parameters are given in Figure S3. It is worth

pointing out that once a cell transitions to competence in our model, the production of

ComK continues unchecked. This is because, as mentioned previously, we do not explicitly

model the unknown shutdown of the comK gene once the cells become competent; such

behavior is not relevant for our purposes, however, as our model is mostly concerned with

the initiation of competence3.

In Figure 4, we show the distribution of comK mRNA and ComK proteins in non-

competent cells at T0 as computed by our model. Cells were scored as non-competent by

choosing cells with mRNA counts less than or equal to 9 mRNA per cell. The protein

threshold given by the vertical red line was computed as outlined in the previous section.

The Fano factor for the mRNA distributions in the wild-type strain was 1.29 and 1.12 for

the low-noise strain, in agreement with the experimental data show in Figure S6.

Given that our experiments showed that the rate of competence transition seemed to

depend heavily on changes in the transcriptional efficiency of comK (Figure 2), we then

proceeded to examine how our model responded to changes in the rate of comK transcription

by simulating a large ensemble of “cells” to determine when transitions to competence were

most likely. It is important to note that both the basal and activated transcription rates of

comK are modulated during stationary phase. This is supported by experimental evidence

showing that comK transcription is modulated by repressors both when ComK is bound to

2There is data indicating that comS transcription begins up to 45 minutes before T0. However, ComS only
begins to accumulate to appreciable amounts at around T0. This is likely due to the gradual accumulation
of ComX, which is the upstream activator of ComS transcription. For modeling purposes, we ignore the
effects of ComX and instead simply begin the transcription of comS at a time closer to T0.

3It should be noted, however, that removing the requirement of a stable competent state admits a much
larger range of parameters under which one may observe transitions, since the system only has to transition
from the non-competent state to the competent state and not vice-versa.
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the promoter and when it is not bound (14). It is also possible that the modulation of comK

transcription is due to a global decrease in transcriptional activity, but the interpretation

does not change in that case, since any global decrease (caused by, say, a decrease in the

number of RNAP enzymes) would affect the promoter regardless of whether or not ComK

is bound.

A histogram of transition times is shown in Figure S4A along with the cumulative number

of competent cells. Clearly, there is a dramatic reduction in the number of cells that become

competent after around T2, showing that relatively small changes in the rate of transcription

can completely inhibit transitions to competence. Furthermore, the fact that transitions

essentially stop after the level of comK transcription decreases indicates that noise in the

level of ComS does not play a significant role in making cells transition to competence.

The rate of transition to competence in our model is, however, sensitive to the mean

level of ComS produced during stationary phase. Upon increasing or decreasing the rate of

comS transcription during stationary phase, the number of competent cells would change

markedly (Figure S4B), as observed experimentally (15). This strong parameter sensitivity

is typical of the behavior of noise-induced transitions between metastable states (16).

Modulation of noise in ComK levels and its effect on competence initiation

In our model, it is the noise in gene expression of comK that leads to transitions to the

competent state; the occasional random production of a large number of ComK molecules

is what triggers activation of the positive feedback loop. Thus, it is reasonable to assume

that different levels of noise in the expression of comK could lead to different frequencies of

competence initiation. We examine this possibility by first using a simple model of stochastic

gene expression to gain intuition about the behavior of noise and then proceed to apply the

intuitive results to our full model of competence initiation to see whether reducing noise

indeed results in a lowered rate of competence initiation.

To gain some intuition for stochastic gene expression, we noted recent work (17; 18)
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showing that the mean level of gene expression and noise in gene expression (defined by the

standard deviation divided by the mean), is dependent on the rates of transcription and

translation as given by the following formulae:

〈p〉 =
µmµp
δmδp

,
var(p)

〈p〉2
=

δmδp
µm (δm + δp)

+
1

〈p〉
(9)

where p is the number of proteins, µm and µp are the mRNA transcription rate and protein

translation rates, and δm and δp are the mRNA and protein degradation rates, respectively.

Note that the rates given here do not relate to those given earlier for the full model; here, we

are presenting simpler results to gain an intuition for the function of the complete system,

which we will examine shortly.

We should mention here that our expression for the “noise” is rather different than that

given in Thattai and van Oudenaarden (17). In that article, the noise was defined to be the

variance divided by the mean, also known as the Fano factor, which allows one to measure

deviations from a Poisson distribution (in which case the Fano factor is 1). However, the Fano

factor is not a particularly useful definition for measuring the size of variations relative to the

mean. That quantity, given by the standard deviation divided by the mean (or, equivalently,

the variance divided by the square of the mean), is more relevant and the expressions we

have given reflect that choice.

One can simplify the expression for the noise by considering reasonable values for the

parameters in Equation (9). If we assume a mean number of ComK proteins of around 100,

that there is roughly 1 mRNA per cell and that the translation rate is roughly 50 times that

of the mRNA degradation rate (i.e., 50 proteins per mRNA), then the protein degradation

rate must be roughly half that of the mRNA degradation rate. Using this information, one

can show that the first term in the noise expression is around 0.5, while the 1/ 〈p〉 term is

0.01. This indicates that in the relevant parameter regime, one can ignore the 1/ 〈p〉 term,
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thus leading to the following expression for the noise:

var(p)

〈p〉2
=

δmδp
µm (δm + δp)

(10)

This expression shows that the noise in gene expression is inversely proportional to the

rate of transcription while not depending significantly upon the rate of translation. Thus,

one can reduce the noise while keeping the mean protein level the same by increasing the rate

of transcription while reducing the rate of translation4. It seems reasonable to assume that

this reduction in the amount of noise should then lead to fewer transitions to competence,

since the number of cells exhibiting a large enough amount of ComK to initiate a transition

should be reduced.

We then proceeded to check whether increasing the rate of transcription while reducing

the rate of translation in the complete stochastic model would in fact result in a lowered

rate of competence initiation. As before, we ran an ensemble of simulations of the stochastic

model, but now with the translation rate reduced by a factor rcomK , while simultaneously

increasing the transcription rate by the same factor. Importantly, the transcription rates in

all the promoter states are increased by this factor; if only the basal rates of transcription

(i.e., when ComK is not bound to the promoter) are changed without changing the rate

of transcription when ComK is fully bound to the promoter, the threshold beyond which

competence occurs is also altered. In other words, if the transcription rate of the activated

comK gene were the same in the low-noise and wild-type strains, then the effective strength

of the positive feedback would be lower in the low-noise strain due to the lowered translation

efficiency. Recent experimental examinations of the mechanisms by which transcription

factors act at the comK promoter, however, show that transcription when both ComK and

Rok are bound to the promoter is significantly weaker than when ComK alone is bound (14),

meaning that the strength of the feedback is likely the same in the low-noise and wild-type

4While it is true that one may also reduce the noise about the same mean by varying the rates of mRNA
and protein degradation, these manipulations are difficult to perform experimentally and so we do not
consider this case any further.
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strains, justifying our model. The results of the simulations for a few values of rcomK are

shown in Figure S5. Clearly, the rate of competence initiation strongly decreases as the noise

is decreased, validating the intuitive picture outlined above. The experiments detailed in the

main text confirmed this prediction, providing a powerful corroboration of the model.

Measurements of mRNA noise

In the model, we assume that the comK promoter transitions are all fast relative to the

rate of transcription from the comK promoter. In the absence of feedback, this would lead

to a Poisson distribution of mRNA numbers. However, we found that the variance was

consistently higher than the mean in all the strains we examined, as measured by the Fano

factor (variance/mean) shown in Figure S6 This is likely due to either the small extrinsic

component of the noise or to some mild bursting.

In particular, it is interesting to note that the wild-type strain Fano factor was consis-

tently somewhat higher than that of the comK strain. This is likely due to some small

amount of positive feedback of ComK at its own promoter, causing some mild bursting.

Similar statistics were observed in the rok strain, consistent with the model. The increase

in the Fano factor at later times in stationary phase is likely due to the occasional inclusion

of a competent cell in the analysis at those time points.

Propagation of extrinsic transcriptional fluctuations to

protein noise

In the main text, we made the assumption that if two genes driven by the comK promoter

produced relatively uncorrelated numbers of mRNA, then the noise in ComK protein expres-

sion would also be primarily intrinsic. However, since the number of mRNA molecules we

have observed is very low, the intrinsic contribution to the variations is necessarily large. Un-
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der certain conditions, one could imagine a case where small extrinsic variations in mRNA

numbers could become significant at the protein level. This could happen if the protein

degradation rate is very slow; in that case, translation effectively acts as an averaging filter,

smoothing out the random fluctuations in mRNA levels5. If the extrinsic fluctuations in

mRNA are sufficiently slow, the averaging effects of translation would result in both genes

following the extrinsic variations in transcription while smoothing over the uncorrelated

random fluctuations in mRNA production and degradation.

This argument, however, rests on the protein degradation rate being sufficiently low. To

show that the lack of correlation we observe in the mRNA counts of the two genes should

result in a lack of correlation between the two proteins in our case, we performed stochastic

simulations in which the transcription rate varied in a coordinated fashion, thus simulating

extrinsic transcriptional noise. In the stochastic simulations, we had two copies of a gene,

each with the same mRNA degradation rate (0.008 molecules−1 sec−1), translation rate (1

sec−1) and protein degradation rate (0.2 molecules−1 sec−1). The burst parameter (i.e.,

number of proteins per mRNA, or the translation rate divided by the mRNA degradation

rate) was chosen to be large, as might be expected for a gene with a strong Shine-Dalgarno

sequence, such as comK, and the degradation rate was chosen to yield 5 protein molecules

per cell, on average, given a mRNA mean of 1 molecule per cell, which corresponds with the

results of the stochastic simulations outlined previously. The transcription rate was chosen

to vary periodically on the order of a cell cycle between 0.003 and 0.013 molecules sec−1 as

shown in Figure S7A; the resulting mean number of mRNAs per cell is roughly 1, in line

with our experimental results. The results of the simulations gave an mRNA correlation

coefficient of around 0.176, with a protein correlation of around 0.162 (protein correlation

shown in Figure S7B). This shows that, for parameters chosen to be reasonable to our case,

the extrinsic variations in transcription rates do not propagate to correlations in protein

5Another way to see this is that, as shown in the previous section, reducing the protein degradation rate
can reduce the intrinsic protein noise. If the intrinsic protein noise is decreased, then extrinsic effects will
become more apparent.
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number. Essentially, this is because we were able to set a reasonable lower bound on the

rate of protein degradation. Since we know the mean number of mRNA at T0 is roughly

1, the mean number of proteins is simply µp/δp. Given that we know that the number of

proteins is very low (since fluorescent protein levels in non-competent cells are essentially

undetectable) and that the Shine-Dalgarno sequence of the gene is close to optimal, we

know that µp/δp must be small but µp must be large. This means that δp must also be large,

thus precluding the possibility of translation acting as a filter. The active degradation of

ComK proteins by the MecA/ClpC/ClpP complex is the most likely reason that the protein

degradation rate is relatively large.
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Figure S1: Comparison of the statistical properties of the number of comK (blue) 
and comK-M2 (red) mRNA per non-competent cell in the wild-type strain.  A) Mean number of 
mRNA per cell; B) Variance in the number of mRNA per cell.  Error bars were obtained by 
bootstrap resampling.



0 50 100 150
0

5

10

15

20

25

30

K (number of molecules)Ra
te

 o
f p

ro
te

in
 p

ro
du

ct
io

n 
an

d 
de

gr
ad

at
io

n 
(m

ol
ec

ul
es

 p
er

 s
ec

)

Figure S2: ComK production (red) and degradation (blue) as a function of the 
number of ComK dimers.  The intersections of the graphs are fixed points of 
the deterministic dynamical system, with the lower fixed point being stable and 
the upper fixed point, corresponding to the threshold, being unstable.  The 
thick red line corresponds to the production rate at T0 with mRNA mean of .92, 
whereas the thin red lines correspond T0.75  and T2, where the decreased 
transcription rate resulted in mRNA means of 0.55 and 0.30, respectively.
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Figure S3: Realizations of stochastic simulations admitting competence.  A) 
Time course of the number of ComK molecules in a simulation run not resulting 
in competence.  B) Time courses of the number of ComK molecules in three 
simulation runs resulting in competence at different times during stationary 
phase.
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Figure S4: Probability of transition as a function of time.  A) The distribution of 
transition times for wild-type parameters, computed from 10,000 total 
simulation runs.  B) Percentage of competent cells as a function of time.  The 
thick blue line corresponds to the wild-type rate of ComS transcription, while 
the thin blue lines represent the percentage of competent cells with the 
indicated increase or decrease in rate of ComS transcription.
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Figure S5: Percentage of competent cells as a function of time for different 
values of rcomK.  For the wild-type strain rcomK  = 1, with the percentage 
indicated by the thick blue line.  The percentage of competent cells for the 
value of rcomK corresponding to that expected in the low-noise strain is given 
by the thick red line.
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Figure S6: Fano factor for mRNA distributions for the wild-type strain (blue), 
the comK strain (green) and the rok strain (red).  The Fano factor is defined as 
the variance divided by the mean.  Error bars were obtained by bootstrap 
resampling.
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Figure S7: Propagation of extrinsic noise in transcription to protein levels.  A) 
The time-dependent transcription rate of genes 1 and 2, conferring some 
measure of extrinsic noise to the system.  B) Scatter plot of the number of 
protein molecules of genes 1 and 2.  The correlation coefficient is 0.162.



Movie S1. Time lapse experiment showing growth and competence development of the 

wild type strain carrying a comK-yfp fusion. Cells were deposited on an agarose pad 

containing competence medium and pictures were taken every 10 to 15 minutes after the 

first hour of growth. 


