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1. De Haas-van Alphen Effect 
 
A powerful technique for measuring the Fermi Surface is based on the de Haas-van 
Alphen effect discovered by de Hass and van Alphen in 1930. In this effect, the 
magnetization, normalized by the applied field, of a sample of bismuth was found to 
oscillate with H-1. Later experiments have reproduced the oscillatory effect in the 
measurements of magnetic susceptibility,  = dM/dB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similar oscillatory behavior has been observed not only in magnetic susceptibility, but 
also in the conductivity for which the effect is referred to as the Shubnikov-de Haas 
effect, the magnetostriction (dependence of sample size on magnetic field) and when 
measured with sufficient care, in almost all other quantities.  
 
In 1952, Onsager pointed out that the change in 1/B through a single period of oscillation 
is determined by: 
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where Ae is any extremal cross-sectional area of the Fermi surface in a plane normal to 
the B field. 
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Since altering the magnetic field direction brings different extremal areas into play, all 
extremal areas of the Fermi surface can be mapped out. In practice, rather than 
disentangling the geometrical information from the data, it is often easier to guess at what 
the surface is then later refine the guess by testing it against the data. 
 
In the semiclassical model, the electron states are quantized in units of 3k = (2)3/L3. 
But (1) requires the degenerate states involved in the closed orbits for the electronic 
motion projected on a plane perpendicular to the field to be quantized differently. 
Observation of the dHvA effect thus shows that the semi-classical treatment is inadequate.  
 
 
2. Free Electrons in a Uniform Magnetic Field 

To find the energy levels of electrons in a magnetic field, one must in principle 
return to the Schrodinger equation for an electron in the periodic crystalline potential in 
the presence of the magnetic field. The full solution of this problem is a formidable task, 
which has been accomplished only in the simple case of free electrons (i.e., zero periodic 
potential) in a magnetic field. The results are presented below below.  

The orbital energy levels of a free electron in a cubical box with sides of length L 
parallel to the x-, y- and z-axes are determined in the presence of a uniform magnetic 
field B along the z-direction by two quantum numbers,  and kz: 
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Equation (2) says that the energy of motion perpendicular to the field, which would be 
ħ2(kx

2 + ky
2)/2m if no field were present, is quantized in steps of ħc. 

The set of all levels with the same  (and arbitrary kz) is collectively called the th 
Landau levels.  
 
Each level is highly degenerate. The number of levels with energy given by eqn. (2) for a 
given  and kz (including the factor of 2 for spin degeneracy) is: 
 

N0 = (2e/h)BL2 = BL2/0                                             (4) 
 

where                                0 ≡ h/2e = 2.067e-15 Wb                                           (5) 
 
is a magnetic flux quantum. Equation (4) shows that the degeneracy of a Landau level is 
independent of  and kz. It only depends on the cross-sectional area of the specimen. 
 
 
 
 
3. Levels of Bloch Electrons in a Uniform Magnetic Field 
 
As discussed earlier, to solving the Schrodinger equation for this problem is a formidable 
task if the crystal potential is not zero. To treat the Bloch electrons, where the crystal 
potential is not zero, we adopt the approach used by A&M. As shown below, the Landau 
levels at the Fermi energy correspond to fairly high quantum numbers, .  With this, one 
may use the correspondence principle in quantum mechanics, where  can be 
related to the semi-classical value 2ħ/T, where T is the period of orbital motion derived 
earlier for Bloch electrons in the semi-classical treatment. Following this, one may 
discuss how the dHvA oscillations occur. 
 
We first justify the use of the correspondence principle, which states that when the action 
of a system is much bigger than ħ, it behaves classically. For electrons in a magnetic field, 
that can be translated to requiring that the quantum number  of the Landau level is >> 1.  
 
Landau level energy per magnetic field, ħc/B = eħ/me = ħ/me eV/T = 1.16e-4 eV/T. 
 
As it is those states near the Fermi energy contribute to the transport properties, we 
consider the levels with energy  F. Since F is typically several eV, even in fields as 
high as 1 T,  will be of order 1e4.  
 
Energies of levels with very high quantum numbers can be accurately calculated with 
Bohr’s correspondence principle: The difference in energy of two adjacent levels is 
Planck’s constant times the frequency of classical motion at the energy of the levels. 
Since kz is a constant of the semiclassical motion, we apply this condition to levels with a 
specific kz and quantum numbers  and +1. 
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(kz) - (kz) = h/T((kz), kz),                                      (6) 
 
where T((kz), kz) is the period of semiclassical motion on the orbit specified by  and kz. 
Note that T = 2/c only if the cyclotron effective mass is used for c. However, the 
estimated value obtained by assuming m* = me usually gives within ±2 the correct order 
of magnitude.  
 

T((kz), kz) = (ħ2/eB)A(,kz)/ 
 
and A(,kz) is the k-space area enclosed by the orbit. Combine (6) and (7), we get: 
 

((kz) - (kz))A()/2eB/ħ                                    (8) 
 
Because we are interested in  on the order of F, we expect that the energy difference 
between neighboring Landau levels will be of order ħc, which is ~1e4 times smaller 
than the energies of the levels themselves. It is thus a good approximation to take: 
 

A()/A() - A() - 
 
Placing this in (8), we find: 
 

A = A() - A() = 2eB/ħ                                    (10). 
 
At B = 1 T, A = 9.53e15 m-2. 
 
Another way of stating (10) is that, at large ,  
 

A((kz), kz) = ()A,                                        (11). 
 
where  is a real number independent of . 
 
 
 
4. Origin of the Oscillatory Phenomena 
 It turns out the quantization condition (11) causes the electronic density of levels, 
g() to peak whenever  is equal to the energy of an extremal orbit, as illustrated by the 
cartoon shown in Fig. 14.5. In panel (a) of this figure, a “Landau tube” is shown, 
containing the electrons orbits in the th Landau level (so their areas are constant given by 
eqn. (11)) lying on constant energy surfaces  = (kz). The contribution to g() from the 
orbits on the Landau tube will be the no. of such levels with energies between  and +d. 
This in turn is proportional to the area of the portion of the tube contained between the 
constant-energy surfaces of energies  and +d. Fig. 14.5b shows this portion of tube 
when the energy  of the orbits in the portion are not extremal (i.e., they do not intersect 
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the extremal of the k =  constant energy surface). Figure 14.5c shows the portion of the 
tube when there is an extremal orbit of energy  on the tube. Evidently, the area of the 
portion of the tube is enormously enhanced in the latter case due to the very slow energy 
variation of levels along the tube near the extremal orbit.  

Most electronic properties of metals depend on the density of levels at the Fermi 
energy, g(F). It follows from the above discussion that g(F) will peak whenever the 
value of the magnetic field causes an extremal orbit to overlap with the Fermi surface. 
Suppose these extremal orbits have quantum labels  and kz. The condition for g(F) to 
peak is that the area of these orbits, A((kz), kz) is equal to Ae(F), the extremal area of 
the Fermi surface.  In other words, ()A = Ae(F).  Substitute Eqn. (10) for A in 
here, we find: 
 

 ()(2eB/ħ) = Ae(F)  ()(2e/(ħAe(F))) = 1/ B              (12) 
 

Since  (12) give:             2e/(ħAe(F)) = (1/ B)  
 
                                               or, (1/ B) = (2e/ħ) (1/Ae(F)).                                       (13) 
 
As the RHS of this equation is a constant, this explains the 1/B oscillatory phenomena. 
 
Note that for the oscillations to be seen, the temperature must be low enough for kBT < 
ħc to be valid. Validity of this condition can be assessed by the quantity: 
 

eħ/mkB = 1.34 K/T. 
 
This shows that for a 10 T field, the temperature can only be a few degrees K to avoid the 
Landau levels from being washed out by thermal agitations. 
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5. Quantum Hall Effect 
 
Quantum Hall Effect is not a Fermi surface probe.  But as in the dHvA effect it also 
arises from quantization of the electronic states into Landau levels. In 1985 Klaus von 
Klitzing won the Nobel Prize for the discovery of the Quantum Hall effect in a 2D 
electronic system. The major features of the phenomenon are depicted in the figure below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.warwick.ac.uk/~phsbm/qhe.htm 
 
In this figure the plateau indices are, from right to left, 1, 2, 3, 4, 6, 8.... Odd integers 
correspond to the Fermi energy being in a spin gap and even integers to an orbital LL gap. 
As the spin splitting is small compared to the LL gaps, the odd integer plateaus are only 
seen at the highest magnetic fields (or lowest values of ). The units of resistance, h/e2  
25k  is called 1 klitzing. 
 
In Hall effect, the Hall coefficient is defined to be RH = Ey/Bjx, where jx = vxnq . We have 
shown that RH =1/nq. The Hall resistivity, xy, defined to be Ey/jx is thus, B/nq.   
 
For free electrons in 2D, the density of states is g() = m/ħ2, a constant. When a B field 
is applied, the available states clump into LL separated by the cyclotron energy, with 
regions of energy between the LLs where there are no allowed states. As the B field is 
increased, the LLs move relative to the Fermi surface as shown in the figure below.  
 

Rxy 
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http://www.warwick.ac.uk/~phsbm/qhe.htm 
 
 
Because of Zeeman splitting, each LL splits into a pair, one for spin up and one for spin 
down. The energy difference between the split levels is 2BB  eħB/m and has the same 
energy scale as that of the LLs. It can be shown that each split LL has a degeneracy of 
eB/h per sample area, i.e., half of the value for the case without splitting. 
 
Given the above background, we may now discuss the original of the observed 
quantization in Rxy (i.e., Rxy = (h/(e2i) ~ 1/i, where i is an integer). The number of current-
carrying states per sample area in each LL per unit area of the sample is eB/h. So, if there 
are i LLs at energies below the Fermi energy, the density of electrons (i.e., number of 
electrons per unit volume) that can contribute to xy is (eB/h)(i)/d, where d is the 
thickness of the sample. So, xy =  B/ne = hd/(e2i). The Hall resistance, Rxy = xyL/(Ld) = 
h/(e2i), where L is the length of the sample in the transverse direction. 
 
Lastly, we examine the origin of zero resistivity, xx. That xx = 0 means that the 
resistivity tensor can be written as: 
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Correspondingly, the conductivity tensor is: 
 

























 




0

0

0

01
1

1

2
1

xy

xy

xy

xy

xy 






 . 

 
 



Measuring the Fermi Surface 

 8

One may thus perceive the peculiar behavior of xx = 0 found in QHE is a mathematical 
consequence of xx being small and dominated by xy. 
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Appendix: Inverse matrix of a 2x2 matrix: 
 
 
 
 
 
 
 
 
 
 


