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Waves

What is a wave?

A wave is a periodic disturbance that carries 
energy from one place to another.
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Classifying waves

1. Mechanical Waves - e.g., water waves, sound waves, 
and waves on strings. The wave requires a medium 
through which to travel, but there is no net flow of mass 
though the medium, only a flow of energy. We'll study 
these this week.

2. Electromagnetic Waves - e.g., light, x-rays, microwaves, 
radio waves, etc. They're the same kind of waves, just 
with different frequency ranges, and they don't need a 
medium. We'll look at these a little later. 

3. Matter Waves - waves associated with things like 
electrons, protons, and other tiny particles. We'll do these 
toward the end of this course. 
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Another way to classify waves

Transverse Waves - the wave disturbance 
oscillates in a direction perpendicular to the way the 
wave is traveling. A good example is a wave on a 
string or electromagnetic waves traveling in free 
space. 

Longitudinal Waves - the wave disturbance 
oscillates along the same direction as the way the 
wave is traveling. Sound waves are longitudinal 
waves.

Simulation
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Longitudinal Waves

Note: In longitudinal waves, compressions and rarefactions 
occur about points where the displacement of the particles in 
the medium is momentarily zero.
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Transverse Waves

Simulation
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Transverse representation of a 
longitudinal wave

Compression Rarefaction

A longitudinal Wave

A transverse representation

V > 0V > 0

V < 0 V < 0

Figure legend: The dashed sine-wave in the upper drawing denotes the transverse 
representation found at a slightly earlier time. The red arrows in the lower drawing 
denote the direction of the disturbance velocity in different parts of the wave. 
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Connection with simple harmonic motion

Consider a single-frequency transverse wave. 
Each particle experiences simple harmonic motion in the y-
direction. The motion of any particle is given by: 

Simulation

( ) sin( )y t A t  
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Describing the motion

For the simulation, we could write out 81 equations, one for 
each particle, to fully describe the wave.  Which 
parameters would be the same in all 81 equations and 
which would change? 

1. The amplitude is the only one that would stay the same. 

2. The angular frequency is the only one that would stay the 
same. 

3. The phase is the only one that would stay the same. 

4. The amplitude is the only one that would change. 

5. The angular frequency is the only one that would change. 

6. The phase is the only one that would change. 

7. All three parameters would change. 

( ) sin( )y t A t  
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Describing the motion at ALL points of a wave
Each particle oscillates with the same amplitude and 
frequency, but with its own phase angle. 

For a wave traveling right, particles to the right lag behind 
particles to the left. The phase difference is proportional 
to the distance between the particles. 
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So, for a wave traveling right, if we say the motion 
of the particle at x = 0 is given by:  

The motion of a particle at another x-value is: 

y(x,t) = Asin(t - kx)    (Right-traveling wave)

where k is a constant known as the wave number. 
Note: this k is not the spring constant.

This one equation describes the whole wave. 

Similarly, for a wave traveling left, the motion of 
the particle at position x is:

y(x,t) = Asin(t + kx)  (Left-traveling wave)

(0, ) sin( )y t A t

Describing the motion at ALL points of a wave
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What is k?
A particle a distance of one wavelength away from another 
particle would have a phase difference of       . 

when x = λ, so the wave number is

The wave number is related to wavelength the same way the 
angular frequency is related to the period. 

The angular frequency:
2

T
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Wavelength and period
The top picture is a photograph of a wave on a string at a 
particular instant. The graph underneath is a plot of the 
displacement as a function of time for a single point on the 
wave.

To determine the 
wavelength, do 
we need the 
photograph, the 
graph, or both?
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Wavelength and period
The top picture is a photograph of a wave on a string at a 
particular instant. The graph underneath is a plot of the 
displacement as a function of time for a single point on the 
wave.

To determine the 
wavelength, do 
we need the 
photograph, the 
graph, or both?

Ans. The 
photograph.

Wavelength
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Wavelength and period
The top picture is a photograph of a wave on a string at a 
particular instant. The graph underneath is a plot of the 
displacement as a function of time for a single point on the 
wave.

To determine the 
period, do we 
need the 
photograph, the 
graph, or both?
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Wavelength and period
The top picture is a photograph of a wave on a string at a 
particular instant. The graph underneath is a plot of the 
displacement as a function of time for a single point on the 
wave.

To determine the 
period, do we 
need the 
photograph, the 
graph, or both?

Ans. The graph.

Period
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Wavelength and period
The top picture is a photograph of a wave on a string at a 
particular instant. The graph underneath is a plot of the 
displacement as a function of time for a single point on the 
wave.

To determine the 
maximum speed 
of a single point in 
the medium, do 
we need the 
photograph, the 
graph, or both?
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Maximum speed of a single point
Each point experiences simple harmonic motion, so we think 
back to last semester:

We can get both the amplitude and the period from the graph.

Note that the maximum speed of a single point (which 
oscillates in the y-direction) is quite a different thing from the 
speed of the wave (which travels in the x-direction).

max

2
(2 )v A A f A

T

       
 
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Wavelength and period
The top picture is a photograph of a wave on a string at a 
particular instant. The graph underneath is a plot of the 
displacement as a function of time for a single point on the 
wave.

To determine the 
speed of the 
wave, do we need 
the photograph, 
the graph, or 
both?
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Wave speed

The wave travels a distance of one wavelength in a time of 
one period, so we need both the photograph and the graph:

In general:

• frequency is determined by whatever excites the wave

• wave speed is determined by properties of the medium. 

Given the frequency of the excitation source and properties 
of the medium (and hence wave speed), the wavelength is 
determined by the equation above:

Simulation

1
,      but  ,     so   v f v f

T T

   

v
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 
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Speed of a wave on a string?

Which of the following determines the wave speed of a 
wave on a string?

1. the frequency at which the end of the string is shaken 
up and down

2.  the coupling between neighboring parts of the string, 
as measured by the tension in the string

3. the mass of each little piece of string, as characterized 
by the mass per unit length of the string.

4. Both 1 and 2

5. Both 1 and 3

6. Both 2 and 3

7. All three.
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A wave on a string
What parameters determine the speed of a wave on 
a string?

Ans. Properties of the medium: the tension in the 
string, and how heavy the string is.

where μ is the mass per unit length of the string.

/
T TF F

v
m L 

 
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Speed of a wave on a rope

A rope, supported at the top, hangs vertically down. The 
bottom end is free to move. If a pulse is sent down 
the rope from the top, what does it do? 

1. Speeds up 

2. Slows down

3. Travels at a constant velocity 

Ans. The gravitational force causes the tension in the 
rope, which determines the speed of the pulse, v = 
(T/)1/2.
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Making use of the mathematical 
description

The general equation describing a transverse wave moving in 
one dimension, in the positive x-direction is:

Sometimes a cosine is appropriate, rather than a sine.

If the wave goes in the negative x-direction, we use:

( , ) sin( )y x t A t kx 

( , ) sin( )y x t A t kx 
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Making use of the mathematical 
description

Here’s a specific example:

(a) Determine the wave's amplitude, wavelength, and 
frequency. 

(b) Determine the speed of the wave. 

(c) If the string has a mass/unit length of μ = 0.012 kg/m, 
determine the tension in the string. 

(d) Determine the direction of propagation of the wave. 

(e) Determine the maximum transverse speed of the string. 

1 1( , ) (0.9 cm)sin (5.0 s ) (1.2 m )y x t t x    
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Making use of the mathematical 
description

(a) Determine the wave's amplitude, wavelength, and 
frequency. 

The amplitude is the coefficient that is multiplying the sine. 
A = 0.9 cm 

The wavenumber k is the coefficient that is multiplying the x: 
k = 1.2 m-1. The wavelength is:

The angular frequency ω is the coefficient that is multiplying 
the t. 
ω = 5.0 rad/s. The frequency is: 

1 1( , ) (0.9 cm)sin (5.0 s ) (1.2 m )y x t t x    

0.80 Hz
2

f



 

2
5.2 m

k

  
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Making use of the mathematical 
description

(b) Determine the speed of the wave. 

The wave speed can be found from the frequency and 
wavelength: 

1 1( , ) (0.9 cm)sin (5.0 s ) (1.2 m )y x t t x    

(0.80 Hz)(5.2 m) 4.2 m/sv f   
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(c) If the string has a mass/unit length of μ = 0.012 kg/m, 
determine the tension in the string. 

1 1( , ) (0.9 cm)sin (5.0 s ) (1.2 m )y x t t x    

TFv




2 2(0.012 kg)(4.17 m/s) 0.21 NTF v  

Making use of the mathematical 
description

30

(d) Determine the direction of propagation of the wave.

To find the direction of propagation of the wave, just look at 
the sign between the t and x terms in the equation. In our 
case we have a minus sign.

A negative sign means the wave is traveling in the +x 
direction. 

A positive sign means the wave is traveling in the -x direction.  

1 1( , ) (0.9 cm)sin (5.0 s ) (1.2 m )y x t t x    

Making use of the mathematical 
description

31

(e) Determine the maximum transverse speed of the string.

All parts of the string are experiencing simple harmonic 
motion (SHM). In SHM, the maximum speed is: 

In this case we have A = 0.9 cm and ω = 5.0 rad/s, so: 

This is quite a bit less than the 4.2 m/s speed of the wave!

1 1( , ) (0.9 cm)sin (5.0 s ) (1.2 m )y x t t x    

Making use of the mathematical 
description

maxv Au

max (0.9 cm)(5.0 rad/s) 4.5 cm/sv A  u
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Sound

33

Speed of sound

Sound waves are longitudinal waves consisting of 
periodic compression and rarefaction of the medium in 
which the sound wave is traveling. Sound waves are 
created by a vibrating source. 

In which medium does sound travel faster, air or water? 

1. Sound travels faster through air 

2. Sound travels faster through water 
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Speed of sound
In general, the speed of sound is the highest in solids, then 
liquids, then gases. Sound propagates by molecules passing 
the wave on to neighboring molecules, and the coupling 
between molecules is the strongest in solids. 

Medium Speed of sound 

Air (0°C) 331 m/s

Air (20°C) 343 m/s

Helium 965 m/s

Water 1400 m/s

Steel 5940 m/s

Aluminum 6420 m/s

Speed of sound in air:
(331 m/s) (0.6 m/(s C)) Cv T    (Tc is temperature in oC)
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The range of human hearing
Humans are sensitive only to a particular range of 
frequencies, typically from 20 Hz to 20000 Hz. Whether you 
can hear a sound also depends on its intensity - we're most 
sensitive to sounds of a couple of thousand Hz, and 
considerably less sensitive at the extremes of our frequency 
range. 

We generally lose the top end of our range as we age. 

Other animals are sensitive to sounds at lower or higher 
frequencies. Anything less than the 20 Hz that marks the 
lower range of human hearing is classified as infrasound -
elephants, for instance, communicate using low frequency 
sounds. Anything higher than 20 kHz, our upper limit, is 
known as ultrasound. Dogs, bats, dolphins, and other animals 
can hear sounds in this range. 
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Biological applications of ultrasound
• imaging, particularly within the womb

• breaking up kidney stones

• therapy, via the heating of tissue

• navigation, such as by dolphins (natural sonar)

• prey detection, such as by bats

In imaging applications, high 
frequencies (typically 2 MHz and 
up) are used because the small 
wavelength provides high 
resolution. More of the ultrasound 
generally reflects back from high-
density material (such as bone), 
allowing an image to be created 
from the reflected waves. Picture from Wikipedia.
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Sound intensity
The intensity of a sound wave is its power/unit area. 

In one dimension, the intensity is constant as the wave 
travels. In two or three dimensions, the intensity decreases as 
one gets farther from the source. In three dimensions, for a 
source emitting sound uniformly in all directions, the intensity 
drops off as 1/r2, where r is the distance from the source. 

To understand the r dependence, imagine a sphere of radius r
surrounding the source. All the sound, emitted by the source 
with power P, passes through the sphere. When the sound 
reaches the sphere, its intensity is:  

That's the surface area of a sphere in the denominator. 

Double the distance and the intensity drops by a factor of 4.

P
I

A


24

P
I

r
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The decibel scale
The decibel scale is logarithmic, much like the Richter scale 
for measuring earthquakes. Sound intensity in decibels is 
given by: 

where I is the intensity in W/m2 and I0 is a reference intensity 
known as the threshold of hearing.  I0 = 1 x 10-12 W/m2 .

Every 10 dB represents a change of one order of magnitude 
in intensity. 120 dB, 12 orders of magnitude higher than the 
threshold of hearing, has an intensity of 1 W/m2. This is the 
threshold of pain. 

A 60 dB sound has ten times the intensity of a 50 dB sound, 
and 1/10th the intensity of a 70 dB sound. 

10
0

(10 dB)log
I

I


 
  

 
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Relative decibels

An increase of x dB means that the sound has 
increased in intensity by some factor. For instance, 
an increase by 5 dB represents an increase in 
intensity by a factor of 3.16 (= 10(5/10)).

The decibel equation can also be written in terms of 
a change. A change in intensity, in dB, is given by: 

10(10 dB)log f

i

I

I


 
   

 


