PY106 EQUATION SHEET I

Constant Acceleration Equations

$$x = x_o + v_o t + \frac{1}{2} a t^2$$
 $v = v_o + at$

$$v = v_o + at$$

$$v^2 = v_o^2 + 2a(x - x_0)$$

Newton's Laws

Newton's second law: $\Sigma F = m a$ Newton's third law: $F_{12} = -F_{21}$

Energy and Work:

Work: $W = F d \cos\theta$ Kinetic Energy: $K = \frac{1}{2}mv^2$ $W_{net} = \Delta K$

Gravitational Potential Energy: U = mgh

Energy Conservation: $U_i + K_i + W_{nc} = U_f + K_f$ where W_{nc} is work done by non-conservative forces

Momentum: p = mv Centripetal acceleration: $a_c = \frac{v^2}{r}$

Constants: $k = \frac{1}{4\pi c} = 9.0 \times 10^9 \text{ N m}^2/\text{C}^2$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N m}^2)$ $e = 1.60 \times 10^{-19} \text{ C}$

Magnitude of the Electric Field of a charge: E = $\frac{k |q|}{r^2}$ Magnitude of the Force : $|F| = \frac{k |q_1 q_2|}{r^2}$

Force-Field connection $\overrightarrow{F} = q\overrightarrow{E}$

Potential of a charge: $V = \frac{k q}{r}$

Potential Difference

For a uniform field: $|\Delta V| = Ed$

Potential Energy for two charges: $U = \frac{k q_1 q_2}{r}$ Potential Energy of a charge: U = qV

Electric field in a dielectric: $E = \frac{E_{vac}}{\kappa}$ Electric field in a parallel plate capacitor: $E = \frac{Q}{\kappa \varepsilon_0 A}$

Capacitance: $C = \frac{Q}{|AV|}$

 $C = \frac{\kappa \epsilon_0 A}{d}$

 $U = \frac{Q|\Delta V|}{2} = \frac{Q^2}{2C} = \frac{C(\Delta V)^2}{2}$

1