

Ionization Energy of Li²⁺

 Li^{2+} is a lithium atom (*Z*=3) with only one electron. What is the ionization energy of Li^{2+} in the ground state? (n.b. lonization energy is the minimum energy required to just free an electron from its atom.)

1. -(13.6 eV)(3²/1²)

- 2. +(13.6 eV)(3²/1²)
- 3. -(13.6 eV)(3²/2²)
- 4. +(13.6 eV)(3²/2²)
- 5. Cannot be determined

Ionization Energy of Li²⁺

Ionization energy is the minimum energy required to just free an electron from its atom. So the final state of the electron should have zero total energy (i.e., K = U = 0.) Thus, the ionization energy is $0 - E_{\rm p} = -E_{\rm p}$.

Because an Li^{2+} ion has only one orbiting electron, it is like a hydrogen atom with a nuclear charge of +3e. We can use Bohr's model to find the ground state energy, E_1 :

$$E_n = -(13.6 \text{ eV})\frac{Z^2}{n^2} = -(13.6 \text{ eV})\frac{3^2}{1^2} = -122 \text{ eV}$$

Ionization energy = +122 eV

Four Quantum Numbers of an Atom

The full quantum mechanical description of atoms actually involves solving the Schrödinger's equation named after Erwin Schrödinger who shared the Nobel Prize in 1933 for his contribution leading to quantum mechanics. The solution to Schrödinger's equation reveals that four different quantum numbers are required to describe the electronic state of an atom.

1. The principal quantum number n.

This number determines the total energy of the atom and can have only integer values. It is the same n that appears in Bohr's Energy Levels.

$$n = 1, 2, 3, \dots$$

11

Four Quantum Numbers of an Atom 1. The orbital quantum number *l***.** $\ell = 1, 2, 3, ..., (n-1)$ This number determines the orbital angular momentum, *L*, of the electron by: $L = \sqrt{\ell(\ell+1)} \frac{h}{2\pi}$

Four Quantum Numbers of an Atom

4. The spin quantum number m_s

This number is needed because the electron has an intrinsic property called spin.

$$m_s = +\frac{1}{2}$$
 or $-\frac{1}{2}$

14

Filling the electrons – Shell Model The table shows some examples of electronic configurations of elements successfully predicted by the Shell Model.

These are what would			
give the lowest	Element	Number of Electrons	Configuration of the Electrons
possible energy the	Litement	Literiona	or the theertons
atoms can have and	Hydrogen (H)	1	Ist
so is called the	Helium (He)	2	1s ²
ground-state If the	Lithium (Li)	3	1s ² 2s ¹
ground-state. If the	Beryllium (Be)	4	1s ² 2s ²
electronic	Boron (B)	5	1s ² 2s ² 2p ¹
configuration of an	Carbon (C)	6	1s ² 2s ² 2p ²
atom deviates from	Nitrogen (N)	7	1s ² 2s ² 2p ³
that of the ground-	Oxygen (O)	8	1s ² 2s ² 2p ⁴
state. the atom is in	Fluorine (F)	9	1s ² 2s ² 2p ⁵
an excited state. De-	Neon (Ne)	10	1s ² 2s ² 2p ⁶
availation of an atom	Sodium (Na)	11	1s2 2s2 2p6 3s1
	Magnesium (Mg)	12	1s2 2s2 2p6 3s2
leads to emissions.	Aluminum (Al)	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹