Name:	_ BU ID:	Lab Section:
Partner's name:	_ BU ID:	Date:
TF's signature:		

PY105 Momentum, Energy, and Collisions (MBL) Report Sheet

Fill in all the blanks and answer all the questions. Check with your TF to make sure that you have done everything before you leave.

Part I. -- Measurements

Mass of plunger cart: _____ Mass of collision cart: _____ Extra mass: _____

Perform at least 10 trials including the 9 trials described in the manual.

Table 1. Fill the empty boxes in the table. Remember that velocity is a vector. Give your measurement by taking right to be positive. (**1.78 points maximum**: 0.04 point \times 43 + 0.01 point \times 12 for the last two lines. This includes 0.06 bonus points)

Trial	Mass of	Mass of	Velocity of	Velocity of	Velocity of	Velocity of
	cart 1 (kg)	cart 2 (kg)	cart 1 before	cart 2 before	cart 1 after	cart 2 after
			collision	collision	collision	collision
			(m/s)	(m/s)	(m/s)	(m/s)
1			0			
2			0			
3			0			
4			0			
5			0			
6			0	0		
7			0	0		
8			0			
9			0			
10						
11(See Q4						
below)						

Part II Data Analysis

Fill the tables below by using momentum = mv and kinetic energy, $KE = mv^2/2$. Note that momentum is a vector. Give your measurement by taking right to be positive.

Table 2. (1.98 points maximum: $0.04 \text{ point} \times 48 + 0.01 \text{ point} \times 12$ for the last two lines where data in the last column is not counted. This includes 0.06 bonus point.)

Trial	Momentum	Momentum	Momentum	Momentum	Total	Total	Ratio of
	of cart 1	of cart 2	of cart 1	of cart 2	momentum	momentum	total
	before	before	after	after	before	after	momentum
	collision	collision	collision	collision	collision	collision	after/before
	(kg·m/s)	(kg·m/s)	(kg·m/s)	(kg·m/s)	(kg·m/s)	(kg·m/s)	
1	0						
2	0						
3	0						
4	0						
5	0						
6	0	0			0		undefined
7	0	0			0		undefined
8	0						
9	0						
10							
11(See Q4							undefined
below)							

Table 3. (1.98 points maximum: 0.04 point $\times 48 + 0.01$ point $\times 12$ for the last two lines where data in the last column is not counted. This includes 0.06 bonus point.)

Trial	KE of cart	KE of cart	KE of cart	KE of cart	Total KE	Total KE	Ratio of
	1 before	2 before	1 after	2 after	before	after	total KE
	collision	collision	collision	collision	collision	collision	after/before
	(J)	(J)	(J)	(J)	(J)	(J)	
1	0						
2	0						
3	0						
4	0						
5	0						
6	0	0			0		undefined
7	0	0			0		undefined
8	0						
9	0						
10							
11(See Q4							undefined
below)							

(0.4 point) Q1. (a) When you rolled one cart along the track and measured the cart's velocity at several consecutive times, what did you observe? (0.1 point) (b) Was momentum conserved? (0.1 point) (b) Explain if you think that the Law of Conservation of Momentum applies here.(0.2 point)

(0.84 point) Q2. (a) Did you observe the momentum to be very close (within about 15%) to being conserved in the trails where the carts do not stick together after the collision? (0.1 point) (b) Do we expect momentum to be conserved in such situations if friction and air resistance can be ignored? (0.2 point) (c) State how Newton's second law is related to the law of conservation of momentum. (0.34 point) (d) Does it make a difference if the carts stick to each other or bounce from each other? (0.2 point)

(0.52 point) Q3. (a) You observe the kinetic energy to be better conserved in collisions where ...

(0.13 point) [] the carts bounce off from each other. [] the carts stick to each other after the collision. [] the carts stick to each other after the collision.

Elastic collisions are the ones in which KE(final/initial) = 1. But in practice, there are losses. Let's allow for 15% losses, and count those collisions where $100\% \ge \text{KE}(\text{final/initial}) \ge 85\%$ to be elastic. Then,

(b) the collision you found for trial 1 is ...

(0.13 point) [] super-elastic	[] elastic	[] inelastic	[] completely inelastic
(c) the collisions y	ou found for tria	ls 4 a	and 5 are				
(0.13 point) [] super-elastic	[] elastic	[] inelastic	[] completely inelastic
(d) From your result, the collisions you found for trials 6 and 7 are							
(0.13 point) [] super-elastic	[] elastic	[] inelastic	[] completely inelastic

(0.5 point) Q4. Is it possible to set up a collision in which two moving carts both stop after the collision even if there is no friction? If your answer is yes, state a condition for the collision. (0.2 point) Would momentum (0.15 point) and kinetic energy (0.15 point) be conserved in this collision? Show you data in Tables 1 to 3 for Trial 11.

Pre-lab:	$(10 \times 20\% = 2 \text{ points})$	
Lab:	$(10 \times 80\% = 8 \text{ points})$	
	Punctuality (1 ponint) + performance (1point):	(2 points)
	Report sheet (8 points)	
Total:		
TF:	Grader:	