
1

1

Rolling

2

Rolling
Rolling simulation
We can view rolling motion as a superposition of pure rotation 
and pure translation.
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Rolling
Rolling simulation

The above picture shows that

(1) the velocity of a point at the center of mass of the 
disc is v, the translation velocity.

(2) the velocity of a point at the top of the disc is v + 
rω.

(3) the velocity of a point at the bottom of the disc 
(where the disc touches the ground) is v – rω.
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Condition for Rolling Without 
Slipping

When a disc is rolling without slipping, the bottom 
of the disc is always at rest instantaneously. This 
leads to ω =  v/r and α = a/r

where v is the translational velocity and a is 
acceleration of the center of mass of the disc.
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Big yo-yo
A large yo-yo stands on a table. A rope wrapped around 

the yo-yo's axle, which has a radius that’s half that of 
the yo-yo, is pulled horizontally to the right, with the 
rope coming off the yo-yo above the axle. In which 
direction does the yo-yo move? There is friction 
between the table and the yo-yo. Suppose the yo-yo 
is pulled slowly enough that the yo-yo does not slip 
on the table as it rolls.

1. to the right 
2. to the left 
3. it won't move 

F
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Big yo-yo
Since the yo-yo rolls without slipping, the center of mass 
velocity of the yo-yo must satisfy, vcm = rω. With this, the 
direction of vcm (= direction of motion) is determined by 
whether the yo-yo is rolling clockwise or counter-
clockwise.

In this example, the tension on the rope produces a 
clockwise torque, which would cause the yo-yo to roll 
clockwise. So the yo-yo will move to the right.
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An accelerating cylinder 

A cylinder of mass M and radius R has a string wrapped 
around it, with the string coming off the cylinder 
above the cylinder. If the string is pulled to the right 
with a force F, what is the acceleration of the cylinder 
if the cylinder rolls without slipping? (Hint: Consider 
the direction of the frictional force and whether it will 
assist or resist F.)
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We would expect the frictional force to be pointing forward 
since the tensional force would produce a torque that rotates 
the cylinder clockwise, which would produce a tendency of 
the bottom of the cylinder to move backward relative to the 
ground. The net force on the cylinder, being the sum of the 
frictional force and the tensional force, would thus be bigger 
than the tensional force alone. Notice that the friction is static 
friction since there’s no slip or the cylinder is momentarily at 
rest relative to ground. 
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Simulation

An accelerating cylinder

9

An accelerating cylinder – Finding a and Fs

A cylinder of mass M and radius R has a string wrapped 
around it, with the string coming off the cylinder above the 
cylinder. If the string is pulled to the right with a force F, 
what is the acceleration of the cylinder if the cylinder rolls 
without slipping? What is the frictional force acting on the 
cylinder? Use I = ½ MR2.
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An accelerating cylinder

First, draw a free-body diagram for the cylinder
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Take positive to be right, and clockwise positive for torque. 

The normal force cancels Mg vertically. Apply Newton's 
Second Law for horizontal forces, and for torques: 

Forces Torques 

* Only for rolling without slipping can we use 
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An accelerating cylinder – Finding a and Fs
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Forces Torques

Adding these two equations gives                   ,

which leads to the result:              

We can make sense of this by solving for the force of static 
friction from the equation at the top left. 

The positive sign means that our initial guess for the direction
of the friction force being in the same direction as F is correct.

+ − =SF F Ma + =
1
2SF F Ma

=
32
2

F Ma

=
4
3

Fa
M

+ −

= − = −
1 1
4 3

Ma F+ +

An accelerating cylinder – Finding a and Fs

FS = Ma – F = 
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Racing Shapes
We have three objects, a solid disk, a ring, and a solid 

sphere, all with the same mass, M and radius, R. If 
we release them from rest at the top of an incline, 
which object will win the race? Assume the objects 
roll down the ramp without slipping. 

1. The sphere
2. The ring 
3. The disk 
4. It’s a three-way tie 
5. Can't tell - it depends on mass and/or radius. 
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Question: For the situation considered in the previous 
question, find the frictional force for various shapes. Use 
your result to explain why the sphere should win the race.
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Forces (in x) Torques

Mgsinθ – fs = Ma (1): fsR = cMR2(a/R)
α

(2): gsinθ – fs/M = a (3): fs/cM = a

(2) and (3) ⇒ gsinθ – fs/M = fs/cM
⇒ Mgsinθ = fs(1/c+1)
⇒ fs = Mgsinθ/(1/c+1)

Equation (2) shows that fs reduces the linear acceleration a. At 
the same time, equation (3) shows that the shape with the 
biggest moment of inertia requires the biggest fs for a given α or 
a (= rα). So the sphere, with the smallest moment of inertia, 
accelerates the fastest down the incline.
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A race
If we take the winner of the rolling race (the sphere) and 

race it against a frictionless block, which object wins 
the race? Assume the sphere rolls without slipping.

1. The sphere
2. The block 
3. It’s a tie 
4. Can't tell
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Angular momentum
The angular momentum of a spinning object is represented 
by L. 

1.              . 
If the object is a point mass, I = mr2 and L = mr2ω =  
mrvsinθ,  where θ is the angle between v and r so that vsinθ
is the tangential velocity.

2. Angular momentum is a vector, pointing in the direction of 
the angular velocity. So, it’s clockwise or counter-clockwise.

3. If there’s no net torque acting on a system, the system's 
angular momentum is conserved. 

4. A net torque produces a change in angular momentum that 
is equal to the torque multiplied by the time interval over 
which the torque was applied. 
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A spinning figure skater is an excellent example of angular 
momentum conservation. The skater starts spinning with her 
arms outstretched, and has a rotational inertia of Ii and an 
initial angular velocity of ωi. When she moves her arms close 
to her body, she spins faster. Her moment of inertia 
decreases, so her angular velocity must increase to keep the 
angular momentum constant. 

Conserving angular momentum: 

http://www.youtube.com/watch?v=9921LChDlBc&feature=related at 0:28, 1:04
http://www.youtube.com/watch?v=O9B4CBcFlYw at 2:17
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A Figure Skater
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Question: A person standing on a turntable while holding a 
spinning bicycle wheel is an excellent place to observe angular 
momentum conservation in action. Initially, the bicycle wheel is
spinning about a horizontal axis, and the person is at rest. Can
you predict what happens when the person flips the wheel to 
bring the rotational axis vertical?

Solution: The initial angular momentum about a horizontal axis 
contributes no angular momentum to the turntable, which can 
rotate about a vertical axis only. If the person re-positions the 
bicycle wheel so its rotation axis becomes vertical, the person 
must spin (on the turntable) in the opposite direction to 
maintain the total angular momentum (about the turntable’s 
rotational axis) zero at all times.

Flipping the bike wheel over makes the person spin in the 
opposite direction. 

A Bicycle Wheel
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This is an example involving a rotational collision:
Question: Sarah, with mass m and velocity v, runs toward a 
playground merry-go-round, which is initially at rest, and 
jumps on at its edge. Sarah and the merry-go-round (mass M, 
radius R, and I = cMR2) then spin together with a constant 
angular velocity ωf. If Sarah's initial velocity is tangent to the 
circular merry-go-round, what is ωf? 

Simulation

Solution:

What concept should we use to attack this problem?

Conservation of angular momentum.

Jumping on a Merry-go-round

Sarah
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The system clearly has angular momentum after the 
completely inelastic collision, but where is the angular 
momentum beforehand?

It’s with Sarah. Sarah’s linear momentum can be converted to 
an angular momentum relative to an axis through the center 
of the merry-go-around. Here, we can treat Sarah as a point 
mass with mass m and initial velocity vi.

Li = rmvisinθ , where θ is the angle between r and vi.

In this case, θ = 90o and the angular momentum is directed 
counter-clockwise.

Jumping on a Merry-go-round

Li = Rmvisin(90o) = Rmvi 22

Conserving angular momentum:

Let’s define counterclockwise to be positive.

Solving for the final angular speed: 

i fL L=
v v

f
mv

cMR mR
ω =

+

Jumping on a Merry-go-round

+Rmvi = +Itotωf

+Rmvi = +(cMR2 + mR2)ωf




