Class 26

11/7/2011 (Mon)

Review for Test 2

Test 2 will cover Ch. 5-10: Newton's Law with Friction, Circular Motion, ..., Rotational Kinematics, and basic concepts of Torques. There will be no questions on Static Equilibrium. The venue will be COM101: College of Communications Rm. 101, 640 Comm. Ave. It's in the short building just before the block where Starbucks and Warrens Tower is.)

Newton's Second Law with Friction

Key concepts and skills you are assumed to know:

(1) how to draw a free-body-diagram

(2) how to apply the Newton's second law to a free-bodydiagram (in both the x and y directions)

(3) how to express the normal force and hence the frictional forces in terms of the variables given in the equation, and have a good understanding of when to assume the friction to be the maximum static friction.

(4) how to solve the equations you obtained by combining (2) & (3), which would give you the acceleration of the system.
(5) Once you have the acceleration, you should know how to find the final position and velocity after a certain time.
(6) Graphical representation of the motion.

UNIFORM CIRCULAR MOTION

When to use $a_c = r\omega^2$?

We use it when ω is a constant (e.g. coins on a turntable, gravitron) or when the problem asks for ω or when the problem gives you its value.

When to use $a_c = v^2/r$?

We use it when v is a constant (e.g. a car making a turn) or when the problem asks for v or when the problem gives you its value.

Non-Conservative Force & Work

In this course, the only kind of conservative force you encounter is gravitational force (mg). <u>So, all</u> forces other than mg are non-conservative. These include friction and forces applied by you, etc.

Non-conservative works (W_{nc}) are the works done by non-conservative works. They <u>can be positive</u> <u>or negative</u>. Typical negative non-conservative works arise from friction. Typical positive nonconservative works arise from external forces acted upon the object in its direction of motion.

Collisions -- Conservation of Linear Momemtum

All the collisions we encounter in this course involve isolated systems. Therefore, the law of conservation of linear momentum applies. That is,

P = constant, or

 $m_{1i}v_{1i} + m_{2i}v_{2i} + \dots = m_{1f}v_{1f} + m_{2f}v_{2f} + \dots$

However, energy is not conserved in collisions in general.

23

Total Kinetic Energy

The total kinetic energy before collision is:

 $K_{i} = (\frac{1}{2})m_{1}v_{1,i}^{2} + (\frac{1}{2})m_{2}v_{2,i}^{2} + \dots$

The total kinetic energy after collision is:

 $K_{\rm f} = (\frac{1}{2}){\rm m}_1{\rm v}_{1,{\rm f}}^2 + (\frac{1}{2}){\rm m}_2{\rm v}_{2,{\rm f}}^2 + \dots$

Elastic collision -- $K_{f} = K_{i}$

```
Super elastic collision – K_{\rm f} > K_{\rm i}
```

Inelastic collision – K_f < K_f

Completely inelastic collision - when the objects stick together after colliding. In that case, one often finds that $K_f \ll K_i$ 25

Analogy between 1D (tangential) and rotational motions

Below are several analogies between Linear motion variables and rotational motion variables.

Variable	Linear (tangential) motion	Rotational motion	Connec- tion	r de
Displacement	Δχ	$\Delta \theta$	$\Delta \theta = \frac{\Delta \mathbf{x}}{r}$	
Velocity	v	ω	$\omega = \frac{V_t}{r}$	
Acceleration	а	α	$\alpha = \frac{a_t}{r}$	

The subscript t stands for tangential.

Note that the variables above represent the magnitude of the respective vector quantity. Note also that θ is in rad, ω in rad/s and α in rad/s².

29

