
PY501 Fall 2025 Problem Set 2: More Linear Algebra Due Wed., Sep. 24

Problem Set 2: More Linear Algebra

1 Index Notation 3 (10 points)

Following on from last week’s problem, consider an n×nmatrixX with entriesXij , each being an independent
variable that can be varied. Suppose X is invertible. A useful expression for its inverse is (assume it is a
matrix with real entries, so we don’t have to care about index positions)

(X−1)ij =
1

det(X)

1

(n− 1)!
ϵji2···inϵik2···kn

Xi2k2
· · ·Xinkn

. (1)

(a) Show that the expression above is correct (you may need to look up some general properties of the
n-dimensional Levi-Civita symbol).

SOLUTION: Let

Aij =
1

det(X)

1

(n− 1)!
ϵji2···inϵik2···knXi2k2 · · ·Xinkn , (2)

Let’s multiply both sides by Xjm. This gives

AijXjm =
1

det(X)

1

(n− 1)!
ϵji2···inϵik2···kn

XjmXi2k2
· · ·Xinkn

=
1

det(X)

1

(n− 1)!
ϵik2···kn

ϵmk2···kn
det(X)

=
1

(n− 1)!
· (n− 1)!δim

= δim , (3)

where we have used the identity

ϵik2···kn
ϵmk2···kn

= (n− 1)!δim . (4)

We have therefore shown that Aij is a left-inverse of Xjm. By a similar argument we can also
show that XmjAji = δmi, showing that Aij is indeed the inverse of Xij .

(b) Use this and the definition of the determinant to show that

∂

∂Xij
det(X) = det(X)(X−1)ji . (5)

SOLUTION: The expression for the determinant is

det(X) =
1

n!
ϵi1···inϵj1···jnXi1j1 · · ·Xinjn . (6)

Taking the derivative, we find

∂

∂Xij
det(X) =

1

n!
ϵi1···inϵj1···jn (δi1iδj1jXi2j2 · · ·Xinjn +Xi1j1δi2iδj2j · · ·Xinjn + · · ·

+Xi1j1 · · ·Xin−1jn−1
δiniδjnj

)
=

1

(n− 1)!
ϵii2···inϵjj2···jnXi2j2 · · ·Xinjn , (7)

where the last line follows from symmetry: for each of the terms, after contracting with the
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Levi-Civita symbols to get e.g. ϵi1,··· ,ip−1,i,ip+1,··· ,inϵj1,··· ,jp−1,j,jp+1,··· ,jn , we can move both i and
j to the front by the same number of swaps for each Levi-Civita symbol, and so the net effect
of all of the swapping is +1. Comparing this with our expression for the inverse, we find

∂

∂Xij
det(X) = det(X)(X−1)ji (8)

as required.

2 (SG 10.15) Symmetric Integration (15 points)

Show that the n-dimensional integral of

Iαβγδ =

∫
dnk

(2π)n
kαkβkγkδf(k

2) (9)

is given by

Iαβγδ = A(δαβδγδ + δαγδβδ + δαδδβγ) , (10)

where

A =
1

n(n+ 2)

∫
dnk

(2π)n
k4f(k2) . (11)

Here, k⃗ is a regular vector in Rn.
Similarly evaluate

Iαβγδϵ =

∫
dnk

(2π)n
kαkβkγkδkϵf(k

2) . (12)

SOLUTION: To solve this, we want to show that Iαβγδ is invariant under O(n) transformations.
Under an orthogonal transformation O, we see that

Iαβγδ 7→ Oα
α′O

β
β′O

γ
γ′O

δ
δ′Iαβγδ =

∫
dnk

(2π)n
Oα

α′kαO
β
β′kβO

γ
γ′kγO

δ
δ′kδf(k

2) . (13)

Let’s relabel k̃α′ = Oα
α′kα, noting that k̃2 = k2, since the transformation is orthogonal. We can also

perform a change of variables in the integral, with

dnk =

∣∣∣∣∣∂k⃗∂ ˜⃗k
∣∣∣∣∣ dnk̃ , (14)

where
∣∣∣∂k⃗/∂ ˜⃗k∣∣∣ is the absolute value of the Jacobian associated with the transformation. Since kα =

(O−1)α
′

αk̃α′ , and O−1 is orthogonal, we have dnk = dnk̃. Putting this altogether, we find

Iαβγδ 7→
∫

dnk̃

(2π)n
k̃αk̃β k̃γ k̃δf(k̃

2) = Iαβγδ , (15)

since we can simply relabel again k̃ → k.
We therefore conclude that Iαβγδ is invariant under O(n), and can be written as

Iαβγδ = Aδαβδγδ +Bδαγδβδ + Cδαδδβγ . (16)
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First, note that under the swap of any index, e.g. α ↔ β, Iαβγδ = Iβαγδ, and so symmetry enforces
A = B = C. Now, let’s contract α and β, as well as γ and δ. We get

Iα γ
α γ = δαβδγδIαβγδ = Aδαβδγδ(δαβδγδ + δαγδβδ + δαδδβγ)

= A(δαβδαβδ
γδδγδ + δαβδαγδ

γδδβδ + δαβδαδδ
γδδβγ)

= A(n2 + δβγ δ
γ
β + δβδ δ

δ
β)

= A(n2 + n+ n) = An(n+ 2) . (17)

On the other hand,

Iα γ
α γ =

∫
dnk

(2π)n
k4f(k2) , (18)

and therefore

A =
1

n(n+ 2)

∫
dnk

(2π)n
k4f(k2) , (19)

as required.
Now let’s consider Iαβγδϵ. Under a change of variables corresponding to a reflection, i.e. substituting

k̃α = −kα, we have

kαkβkγkδkϵ = −k̃αk̃β k̃γ k̃δk̃ϵ , (20)

k2 = k̃2, and

dnk =

∣∣∣∣∣∂k⃗∂ ˜⃗k
∣∣∣∣∣ dnk̃ = |(−1)n|dnk̃ = dnk̃ . (21)

Thus, under the reflection change of variables,

Iαβγδϵ =

∫
dnk

(2π)n
kαkβkγkδkϵf(k

2) =

∫
dnk̃

(2π)n
(−k̃αk̃β k̃γ k̃δk̃ϵ)f(k̃

2) . (22)

Dropping the tilde in the last expression since it is simply an integration variable, we can see that
Iαβγδϵ = −Iαβγδϵ = 0. More generally, this is true for any odd number of kα’s.

3 Moment-of-Inertia Tensor (20 points)

In this problem, you will construct the moment-of-inertia tensor for a 3D rigid body, with mass density given
by ρ(x⃗). A rigid body can be thought of as a collection of particles with positions x⃗I (here I indexes the
particles) that do not move relative to each other as the whole body moves. The length between any two
particles is a constant, and the angles between the vectors connecting any two pairs of particles are also
constant. This can be summarized by the condition that (x⃗I − x⃗J) · (x⃗K − x⃗L) remains constant for any four
particles I, J,K,L for any moving rigid body.

Consider a rigid body moving in such a way that the position of the particles after some infinitesimal
time dt is given by some linear transformation T i

j , i.e. x
i
I 7→ T i

j x
j
I .

(a) Argue that T has to be a special orthogonal transformation, i.e. the matrix representing T is in
SO(3). This just means that rigid body is rotating about some arbitrary origin (the other possibility
is translation, which is not a linear transformation, but we’ll ignore it here).
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SOLUTION: Under the transformation T , we see that

(x⃗I − x⃗J) · (x⃗K − x⃗L) 7→ (T (x⃗I)− T (x⃗J)) · (T (x⃗K)− T (x⃗L))

= T (x⃗I − x⃗J) · T (x⃗K − x⃗L) , (23)

In coordinates, this is

T i
j (x⃗I − x⃗J)

jTik(x⃗K − x⃗L)
k = δjk(x⃗I − x⃗J)

j(x⃗K − x⃗L)
k (24)

for all I, J,K,L, from which we see that

T i
j Tik = δik . (25)

This means that the matrix T is orthogonal, i.e. T ⊺ = T−1. It is easy to see that as dt → 0, T
must tend to the identity, which has determinant 1, and therefore we need det(T ) = 1 as well.
Thus, T ∈ SO(3) as required.

(b) As dt → 0, T must tend toward the identity transformation. We can therefore write T i
j = δij −Ai

jdt,

for some components Ai
j . Use the fact that T i

j is orthogonal to show that Ai
j is antisymmetric.

SOLUTION: From the orthogonality condition, we have

T i
j Tik = (δij −Ai

jdt)(δik −Aikdt) = δ − (Ajk +Akj)dt+O(dt2) . (26)

Since this must equal δjk for all dt, we see that Ajk + Akj = 0, i.e. Ai
j is antisymmetric as

required.

(c) Show that the instantaneous velocity of particle I, viI , can be written as viI = ϵijkωj(xI)k, where

ωi =
1

2
ϵijkA

jk , (27)

for any particle I. Explain the physical meaning of the vector ωi.

SOLUTION: Under the infinitesimal transformation T , we have

xi
I 7→ (T i

j −Ai
jdt)x

j
I = xi

I −Ai
jx

j
Idt , (28)

and so the instantaneous velocity is given by

viI = −Ai
j(xI)

j . (29)

Now,

ϵmnkωk =
1

2
ϵmnkϵkijA

ij =
1

2
(δmi δnj − δmj δni )A

ij = Amn , (30)

and so

viI = −Aij(xI)j = −ϵijkωk(xI)j = ϵijkωj(xI)k , (31)

as required.
We see that in terms of vectors, v⃗I = ω⃗× x⃗I , and so ω⃗ is the angular velocity vector of the rigid
body.
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(d) The angular momentum of a single particle is given by Li
I = ϵijk(xI)j(pI)k, where piI = mIv

i
I is the

linear momentum of particle I. Let’s consider the continuum limit, where we can break up the rigid
body into infinitesimal volume elements with mass d3x⃗ ρ(x⃗), and position x⃗. Show that the angular
momentum of the purely rotating rigid body can be written as

Li =

∫
d3x⃗ ρ(x⃗)ϵijkxjvk . (32)

Hence, show that Li = Iijωj , where

Iij =

∫
d3x⃗ ρ(x⃗)(xkxkδ

ij − xixj) (33)

is the moment-of-inertia tensor of the rigid body.

SOLUTION: For each volume element d3x⃗, the linear momentum is d3x⃗ρ(x⃗)vi, and the angular
momentum is

dLi = ϵijkxj(ρ(x⃗)d
3x⃗ vk) (34)

and hence integrating over all volume, we find

Li =

∫
d3x⃗ ρ(x⃗)ϵijkxjvk . (35)

However, we showed that vi = ϵijkωjxk, and so

Li =

∫
d3x⃗ ρ(x⃗)ϵijkxjϵ

klmωlxm

=

∫
d3x⃗ ρ(x⃗)

(
δilδjm − δimδjl

)
xjωlxm

=

∫
d3x⃗ ρ(x⃗)(xjxjω

i − xixjω
j)

=

(∫
d3x⃗ ρ(x⃗)(xkxkδ

ij − xixj)

)
ωj

= Iijωj , (36)

where

Iij =

∫
d3x⃗ ρ(x⃗)(xkxkδ

ij − xixj) , (37)

as required.

(e) Find the moment-of-inertia tensor of a uniform density sphere of radius R and massM . (Hint: isotropic
tensors are your friends).

SOLUTION:With spherical symmetry, I expect the moment of inertia tensor to be an isotropic
tensor, i.e. Iij = Cδij for some constant C. To find C, let’s take the trace of both sides.

δjiI
ij = Cδjiδ

ij = Cδjj = 3C . (38)
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On the other hand, since the density is a constant ρ,

δjiI
ij =

∫
d3x⃗ ρ(xkxkδjiδ

ij − δjix
ixj)

=

∫
d3x⃗ ρ(3xkxk − xjxj)

= 2

∫
d3x⃗ ρxkxk . (39)

Thus,

Iij =
2

3
δij

∫
d3x⃗ ρxkxk

=
2

3
δij4πρ

∫ R

0

dr r4

=
8π

3
ρ
R5

5
δij . (40)

However, since ρ = M/(4πR3/3), we have finally

Iij =
2

5
MR2δij . (41)

4 The Mechanics of Eigenvalues and Eigenvectors (15 points)

(a) Without using computer algebra system (it’s fine to use it to check your answer), find the eigenvalues
and corresponding eigenvectors of the following matrix:

M =

1 −2 −3
0 3 0
0 −1 −1

 . (42)

SOLUTION:
The eigenvalues solve the following characteristic equation:

(1− λ)(3− λ)(−1− λ) = 0 , (43)

and so the eigenvalues are λ1 = 1, λ2 = 3, and λ3 = −1 respectively. For each eigenvalue, we
can find the corresponding eigenvector by solving (M − λiI)x⃗i = 0. For λ1, we have0 −2 −3

0 2 0
0 −1 −2

 x⃗1 = 0 , (44)

The second row tells us that x2 = 0, while the first row tells us that −2x2 − 3x3 = 0, implying
that x3 = 0. Finally, the last row implies x1 can have any value, and so we can set it to 1.
Next, for λ2 = 3, we have −2 −2 −3

0 0 0
0 −1 −4

 x⃗2 = 0 , (45)

The third row says that −x2−4x3 = 0, while the first row gives −2x1−2x2−3x3 = −2x1+5x3 =
0. Setting x3 = 2 arbitrarily (eigenvectors are only defined up to overall normalization), we find
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x1 = 5, and x2 = −8. Finally, for λ3 = −1, we have2 −2 −3
0 4 0
0 −1 0

 x⃗3 = 0 , (46)

and so the second and third rows tell us that x2 = 0, and now the first row says 2x1−2x2−3x3 =
2x1 − 3x3 = 0. We can thus choose x3 = 2, and x1 = 3. We therefore have the following
eigenvalue/eigenvector pairs:

λ1 = 1 , x⃗1 =

1
0
0

 ,

λ2 = 3 , x⃗2 =

 5
−8
2

 ,

λ3 = −1 , x⃗3 =

3
0
2

 . (47)

(b) Consider a diagonalizable n× n matrix A, with eigenvalues λi, with i = 1, · · · , n. Show that det(A) =
λ1λ2 · · ·λn, and that Tr(A) = λ1 + λ2 + · · ·+ λn.

SOLUTION:
Since A is diagonalizable, we can write A = PDP−1, where D is a diagonal matrix with the
eigenvalues λi on the diagonal. The determinant of A is then given by

det(A) = det(PDP−1) = det(P )det(D)det(P−1) = det(D) = λ1λ2 · · ·λn , (48)

where we have used the fact that det(P−1) = 1/det(P ), and that the determinant of a diagonal
matrix is simply the product of its diagonal elements.
Similarly, the trace of A is given by (this time in index notation)

Tr(A) = Ai
i = P i

j D
jkP−1

ki = P−1
ki P i

j D
jk = δkjD

jk = Dj
j = λ1 + λ2 + · · ·+ λn . (49)

(c) Suppose v⃗ is an eigenvector for the n×n matrices A and B. Is v⃗ an eigenvector for A+B? How about
AB?

SOLUTION:
Suppose Av⃗ = λv⃗ and Bv⃗ = µv⃗. Then,

(A+B)v⃗ = Av⃗ +Bv⃗ = λv⃗ + µv⃗ = (λ+ µ)v⃗ , (50)

and so v⃗ is indeed an eigenvector of A+B, with eigenvalue λ+ µ.
However, for the product, we have

ABv⃗ = A(Bv⃗) = A(µv⃗) = µ(Av⃗) = µ(λv⃗) = (µλ)v⃗ , (51)

and so v⃗ is also an eigenvector of AB, with eigenvalue µλ.

(d) Suppose λ, µ are eigenvalues for the n× n matrix A. Is λ+ µ an eigenvalue for A?
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SOLUTION:
Not necessarily. For example, consider the matrix

A =

(
1 0
0 2

)
, (52)

which has eigenvalues λ = 1 and µ = 2. However, λ+ µ = 3 is not an eigenvalue of A.

(e) Given that λ is an eigenvalue of A, find an eigenvalue of A2.

SOLUTION:
If Av⃗ = λv⃗, then

A2v⃗ = A(Av⃗) = A(λv⃗) = λ(Av⃗) = λ(λv⃗) = λ2v⃗ , (53)

and so λ2 is an eigenvalue of A2.

(f) Prove that det(A) = det(A⊺), where ⊺ is the transpose. Hence, show that A and A⊺ have the same
eigenvalues.

SOLUTION:
We can write the determinant of (A⊺)ij = A i

j as

det(A⊺) =
1

n!
ϵi1···inϵj1···jn(A

⊺)j1i1 · · · (A
⊺)jnin

=
1

n!
ϵi1···inϵj1···jnA

j1
i1

· · ·A jn
in

=
1

n!
ϵi1···inϵ

j1···jnAi1
j1
· · ·Ain

jn

= det(A) . (54)

The characteristic equation for A⊺ is

det(A⊺ − λI) = 0 =⇒ det((A− λI)⊺) = 0 =⇒ det(A− λI) = 0 . (55)

Here, we have used the fact that (A+B)⊺ = A⊺+B⊺, and that the identity matrix is symmetric.
We have shown that the characteristic equation for A⊺ is the same as that for A, and hence
they have the same eigenvalues.

5 (SG 10.11) Invariant Content of a (1,1)-Tensor (10 points)

Let T i
j be the 3× 3 array of components of a tensor. Consider the objects

a = T i
i , b = T i

j T
j
i , c = T i

j T
j
k T

k
i . (56)

Show explicitly that c is an invariant, i.e. show how each T transforms under a change of basis, and check
that the transformation law reduces to that of an invariant. Describe these objects in terms of properties of
the matrix T i

j .

Assume that T i
j has 3 distinct eigenvalues. Show that the eigenvalues of the linear map represented by

T can be found by solving the equation

λ3 − aλ2 +
1

2
(a2 − b)λ− 1

6
(a3 − 3ab+ 2c) = 0 . (57)
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(Hint: Choose a good basis!)

SOLUTION:
Under a change of basis,

T i
j T

j
k T

k
i 7→ ai

′

i(a
−1)jj′T

i
j a

j′

l(a
−1)mk′T l

m ak
′

n(a
−1)pi′T

n
p

= ai
′

i(a
−1)jj′a

j′

l(a
−1)mk′ak

′

n(a
−1)pi′T

i
j T

l
m Tn

p

= δjl δ
m
n δpi T

i
j T

l
m Tn

p

= T i
j T

j
k T

k
i , (58)

as required. In terms of the matrix T i
j , we have a = Tr(T ), b = Tr(T 2), and c = Tr(T 3).

The eigenvalues of the linear map represented by T are the roots of the characteristic equation

det(T − λI) = 0 (59)

for T in any basis. Since the eigenvalues λ1, λ2, λ3 are distinct, T is diagonalizable, and hence we can
choose the eigenbasis where T i

j = diag(λ1, λ2, λ3). Therefore, the eigenvalues satisfy the equation

(λ− τ1)(λ− τ2)(λ− τ3) = 0 (60)

where I have simplified the notation so that τi = T i
i , with no summation being implied here. Also in

this basis,

a = τ1 + τ2 + τ3 , b = τ21 + τ22 + τ23 , c = τ31 + τ32 + τ33 . (61)

From these relations, we can see that

τ1τ2 + τ2τ3 + τ3τ1 =
1

2

[
(τ1 + τ2 + τ3)

2 − (τ21 + τ22 + τ23 )
]
=

1

2
(a2 − b) , (62)

and

6τ1τ2τ3 = (τ1 + τ2 + τ3)
3 − (τ31 + τ32 + τ33 )

− 3(τ1 + τ2 + τ3)(τ
2
1 + τ22 + τ23 ) + 3(τ31 + τ32 + τ33 )

= a3 + 2c− 3ab (63)

Thus, we finally have

(λ− τ1)(λ− τ2)(λ− τ3) = λ3 − λ2a+
1

2
(a2 − b)λ− 1

6
(a3 − 3ab+ 2c) = 0 . (64)

as required.
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