PY501 Fall 2024 Problem Set 6: Calculus on Manifolds II Due Mon., Oct. 21

Problem Set 6: Calculus on Manifolds 11

1 Electromagnetism (30 points)

The electromagnetic field strength two form is
1 " y
F= *gFfw dz# A da”, (1)

with coordinates (20, z', 22 2%) = (¢,7,y, ), and metric g = dt*> — do? — dy? — dz? (here, I am using the
sloppy notation dt? = dt ® dt etc., and adopting the mostly minus metric convention, which necessitates the
unfortunate minus sign above). In terms of the components of the usual electric and magnetic fields,

o E, E, E,
|-E. 0o -B. B,
Fow = -E, B. 0 -B,|" (2)

-E. -B, B, 0

Furthermore, let the one-form current J = pdt — j, dv — j, dy — j. dz, where p, j are the usual charge density
and current density vector respectively. Note that we can write

F=-E,dtNde - EydtANdy— E,dt ANdz+ B,de Ady — Bydz Adz + B, dy Adz. (3)

(a) Show that dF' = 0 is equivalent to the two homogeneous Maxwell equations. Notice that if we introduce
A such that F' = dA, then the homogeneous Maxwell equations are automatically satisfied.

SOLUTION:
We have

1
dF = —iaaF,“, dz® Adz* Adz” =0. (4)

There are four independent components in this sum, namely {a,p,v} =
{0,1,2},{0,1,3},{0,2,3},{1,2,3}, and so each of these components have to separately
be zero. Let’s look at the {0, 1,2} combination first. There are six terms, but e.g.

%301712 dz® A dat A daz? + 8y Foy dz® A dz? A dat = 9y Fia dz® A dat A da? (5)
Therefore, the components must satisfy
OoF12 + 01 Fo + OoFpn =0 = OB, + 0, B, —0,E, =0. (6)
The other components are similarly

OoFo3 + O2F30 + 03Fg =0 — 0,B, + ayEz = 8ZEy =0,
OoF13 + 01F30 + 03Fp1 =0 — —6tBy +0,FE, —0,FE, = 0,
O1Fo3 + 0o F31 + 03F1o =0 — 0,B, + ayBy +0,B,=0. (7)

The last expression is clearly V - B= 0, while the other three are equivalent to V - E=-6,B ,
which are the two homogeneous Maxwell equations.

(b) Show that d x F' = %J is equivalent to the two inhomogeneous Maxwell equations.
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SOLUTION: First, let’s begin by calculating the Hodge dual of J:
*J =pde Ady ANdz — jodt Ady Adz + jydt Ade Adz — j.dt Ade Ady. (8)
On other other hand,
*F =E,dyNndz — E,de ANdz+ E.de ANdy + B, dt Adz + Bydt Ady + By dt Adz.  (9)
and therefore

d* F =(0,Ey; — 0yB, + 0,By)dt Ndy Adz + (0, Ey + 0yEy + 0, E,)dx Ady A dz
+ (—0Ey — 0B, + 0.B,)dt ANdx Adz + (O.E, — 0, By + 0yB,)dt Adz Ady. (10)

Equating this with xJ gives
0By + 0, Ey+0.E, =p,
8tE:1: — 8sz ol 8sz = _jw7
_815Ey —0:B, 4+ 0.8, = Jy )
OE. — 0,8y +0y,B, = —j. . (11)

The first equation reads V - E= p, while the remaining three equations can be combined into
V x B = j + 0;F, which are the two inhomogeneous Maxwell equations.

(¢) Show that d+J = d(dxF') = 0 is equivalent to the continuity equation for charge 9;p+ V . =0. Thus,
the conservation of charge follows directly from the inhomogeneous Maxwell equations.

SOLUTION:
From our previous results, we have immediately that

d*J =0ipdt Ndz Ady Adz — Oj, dx Adt Ady Adz
+ 0yjydy ANdt Adz Adz — 0,5, dz Adt Adz Ady
=(0wp + Opju + Oyjy + 0.7, )dt Adx Ady Adz. (12)

d*J = d(d xF) = 0 therefore implies that
Op+V-j=0, (13)

as required.

(d) Defining A = A, da# = ¢dt — A, de — A, dy — A, dz, where ¢ and A are the usual scalar and vector
potential, show that F' = —dA leads to E=-0,A- V¢ and B=V x A.

SOLUTION:
We have, component by component,

dA = (=00 — 0;A;) dt ANdx + (—0y¢ — 0L A,) dt Ady + (—0.¢ — 0, A,) dt Adz
= (0yAy — 0, Ay)dz ANdy + (0, A, — 0, A;)dx Adz + (0.4, — 0yA,)dy Adz. (14)
Comparing this with —F gives

E; =— z¢ — 01 A Ey = - y¢ - atAy E,=— z¢ — OA, (]-5)
“B, = 0,Ay — 0,4, B, =08,A, —9,A, —By=08,A,—0,A,. (16)

Instructor: Hongwan Liu Page 2 of 8



PY501 Fall 2024 Problem Set 6: Calculus on Manifolds II Due Mon., Oct. 21

which is precisely E=-0,A- V¢ and B=VxA.

(e) Show that the gauge transformation A — A + dy for arbitrary smooth y leaves the field strength F’
invariant.

SOLUTION:
Under the gauge transformation A — A + dy, we have

F —d(A+dx)=—-dA-d’x=-dA=F, (17)

and hence the field strength tensor is invariant.

(f) The action for the electromagnetic field on Minkowski spacetime is a local functional of the potential A.
There are two 4-forms that we can construct for the field strength F' = —dA, so the simplest possible
action is

S[A] = /}Rm (aF AxF+0F NF) , (18)

where a, € R are coefficients. Rewrite this action in terms of E and B.

SOLUTION:
Repeating our earlier results, we find

F=-FE, dANdx - EydtANdy — E,dt Adz + B, dx Ady — Bydox ANdz + By dy A dz,
*F=FE,dyANdz — Eyde Adz+ E,de Ady+ B, dt Adz + B, dt Ady + B, dt Adz. (19)

Performing the wedge product, we find

FAxF =(-E2—E.—E;+B}+B.+ B2)dt Adz Ady A dz
= (B? - E*)dt Adz Ady Adz. (20)

On the other hand,

FAF =2(-E,B, — E,B, — E.B,)dt Adz Ady A dz
= —2(E-B)dt Adz Ady Adz. (21)

Therefore, the action becomes

S[E, B :/ dt Adz Ady Adz (a(1§2_E2)_29E.1§) . (22)
RL:3

(g) Return to the action given in Eq. (18), find the equations of motion for A by varying A — A + 04,
and assuming that A — 0 at infinity. What role does 6 play?

SOLUTION:
Under the variation A — A + A, we have

F s —d(A+6A4) = F — d(6A), (23)
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Figure 1: A parametrization of the torus.

from which we see first that

FAF — (F—d(0A)) A (F —d(s4))
=FAF—d(6A)ANF — F Ad(0A)
=FAF—2d(6A)AF, (24)

where in the last line I have used the fact that d(6A) A F' = F Ad(dA), since d(0A) and F are
both 2-forms. However, we now also have

d(JA)ANF =d(6ANF), (25)
since dF = d24 = 0. Next, we have

FAXF — (F —d(0A)) A *(F —d(64))
=FAxF —d(6A) AxF — F Axd(0A)
= FAxF —2d(6A) A xF
= FAxF —2d(6AAxF) —25A AN d*F, (26)

by a very similar set of arguments as above, except that d x F' £ 0, and in the last line we used
d(wAn) = (dw) An+ (=1)Pw A (dn), for w a p-form.
Hence, under the variation,

5S= [ a[-2d(5ANA*F)—25AAd*F]+20[2d(5A A F)] . (27)
R1.3

However, we can drop the total derivative terms, since by Stokes’ theorem, they simply become
an integral over the boundary at infinity. This leaves

5S = —2a / (5A A d«F) (28)
R1.3

for an arbitrary variation  A. Therefore, we must have d xF' = 0, which is simply the inhomo-
geneous Maxwell equation with no sources, as should have been anticipated. € did not play any
role here, since it is proportional to a term that is a total derivative.

2 The Torus (20 points)

Fig. 1 shows a cross-section of a solid torus embedded in R3 with major radius R and minor radius a, taking
a cut through the torus at some angle ¢ with respect to the z-axis of R3. A convenient parametrization for
the solid torus is also shown.
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(a) Show that in terms of the parametrization shown, the volume element is

dw = p(R+ pcosyp)dp AdC Ady. (29)

SOLUTION:
The relation between Cartesian coordinates and the parametrization shown is

x=(R+ pcost)cos(,
y=(R+pcosy)sin(,
z = psiny. (30)

The metric induced on the solid torus is then

ozx® 0z®

9ij = Z ot @7 (31)

where £ = (p, ¥, (), and a runs over the Cartesian coordinates. Working through everything,

we find

Gpp = (costpcos €)? + (cosypsin()? + (sin)? =1,

gp¢c = (costpcos ) (—(R+ pcostp)sin() + (cospsin () ((R + pcostp) cos() =0,
Gpy = (cos ) cos () (—psiny cos () + (cospsin ) (—psintsin() + psinepcostp =0,
(R+ peos)sin¢)? + (R + peosts) cos ) = (R + peosy)?,

5;; = E—ﬂsiniﬁcos Q) (=(R+ pcosp)sin() + (—psinysin ()((R + pcostp) cos¢) =0,
gy = (=psingpcos () + (—psinysin¢)? + (pcosy)* = p°. (32)
Therefore,
V3= p(R+ peost), (33)
and the volume element is
dw = p(R+ pcosyp)dp AdC A dy. (34)

You can check that this choice of the orientation agrees with the choice of conventional choice
of orientation in R? by setting ¢ = 0, and noting that p = &, ( = 4 and ¢ = 2.

J

(b) Calculate the total volume V' of the solid torus by performing a direct integral over the volume form
of the solid torus.

SOLUTION:
The total volume of the solid torus is therefore

27 27 a 5
' / dc/ d¢/ dp p(R+ peost) = 4n*R- = 2n°Ra’, (35)
0 0 0

since cos 1 integrates to zero over a full period.

(¢) Calculate the total volume V of the solid torus by using Stoke’s theorem and converting the integral
to one over the surface of the torus. Check that the result agrees with the previous part.
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SOLUTION:
By Stoke’s theorem,

/dw:/ w,
T T

can see that

P, P
w = <2R+ 3cosw> d¢ Ady.

Integrating this over the boundary of the torus gives
27 27 Cl2 a2
V= / d(/ dap (R—i— cosz/)) = 21%a’R,
0 0 2 3

previous result.

where T" and 0T are the solid torus and the boundary of the torus respectively. Therefore, We

dropping the cost term since it integrates to zero over a full period. This agrees with the

(36)

(37)

(38)

(d) Calculate the total surface area A of the torus by deducing the appropriate area form and integrating

appropriately.

SOLUTION:

containing the ¢ and ¢ components, setting p = a. The area form is therefore

The area form for the 2D surface of the torus can be obtained directly from the previous
calculation, by noting that the induced metric is just the 2 x 2 submatrix of the full metric

dn = a(R+ acosy)d¢ Ady. (39)
Integrating over the torus gives
27 27
A= / d(/ dia(R+ acost)) = 4n%aR, (40)
0 0
where we once again drop the cos term since it integrates to zero over a full period.
3 Complex Analysis Warm-Up (10 points)
(a) Prove the triangle inequality for complex numbers,
|21 + 22| < |21 + |22 (41)
for any zq, 29 € C.
SOLUTION:
First, we see that
|21 + 222 = (21 + 22)* (21 + 22)
= (2 + 23)(21 + 22)
= |z1|? + 2tz + 252 + |2|?, (42)
Instructor: Hongwan Liu Page 6 of 8



PY501 Fall 2024 Problem Set 6: Calculus on Manifolds II Due Mon., Oct. 21

However, 2]z + 2521 = 2Re(2722) < 2|27 22|, since

Re(zi22) < 1/ [Re(z122)]2 + Im(f 22)]? = |2f . (43)
Thus,
|21 + 2|* < |21]? + 2|21 22| + |22f? = |21 [* + 2|zl 22| + |22 = (21| + |22])?, (44)
or
|21 + 22| < |21] + |22] - (45)
(b) Prove the following: for z € C, z # 1,
1— n+1
l4z+224 o= o (46)
1—-=2
Use this to derive Lagrange’s trigonometric identity, which for 6§ # 27k, k € Z, reads
1 in|(2 1)6/2
1+cos€+cos29+-~-+cosn9—2+W (47)
SOLUTION:
Denote S =1+ z+ 22+ --- + 2™ Then,
9 = gk a7 e Y o L g (48)
and
1— zntt
§—28=1-2"" = §=—"", (49)
as required.
Taking z = €%, we have
) ) ) 1— i(n+1)0
1+610+6120+.“+61n9: € i
1— et
I 0/2 o=i(nt1)0/2 _ giln+1)0/2
R —10/2 _ if/2
_ gind/2 —2isin[(n + 1)0/2]
—2isin(0/2)
_ Sin[(.n + 1)0/2] ein0/2 (50)
sin(6/2)
Now, taking the real part on both sides gives
i 1)6/2
1+ cosf +cos20 + -+ cosnf = SIII[S(Z;?_G/Q))/] cos(nf/2)
1
= ———— (2si 1)6/2 0/2
ST (2sinl(n+ 10/2] cos(n02)
1
= ———  (sin|(2 1)6/2 in(6/2
s (S0 + 16/ + sin0/2)
1 in|(2 1)6/2
2 2sin(6/2)
as required.
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(c) Sketch the following sets of points: i) |z —1+d| =1, ii) |z — 1| = |z + 4|, and iii) |22* + 4| < 4. Please
label your sketches clearly with key features (radii, intercepts, etc.). If these are lines, please specify
their gradients (i.e. the usual Ay/Ax where the y-axis should be taken to be the imaginary axis, and
the z-axis the real axis).

SOLUTION:

i) This is a circle of radius 1 centered on 1 — 7.

ii) This is a line passing through the origin, gradient —1.

iii) We have |2z* +1i| = |2z — |, and so this is equivalent to |z —i/2| < 2 is a filled circle centered
on i/2, radius 2.
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