
PY501 Fall 2024 Problem Set 6: Calculus on Manifolds II Due Mon., Oct. 21

Problem Set 6: Calculus on Manifolds II

1 Electromagnetism (30 points)

The electromagnetic field strength two form is

F = −1

2
Fµν dx

µ ∧ dxν , (1)

with coordinates (x0, x1, x2, x3) ≡ (t, x, y, z), and metric g = dt2 − dx2 − dy2 − dz2 (here, I am using the
sloppy notation dt2 ≡ dt⊗ dt etc., and adopting the mostly minus metric convention, which necessitates the
unfortunate minus sign above). In terms of the components of the usual electric and magnetic fields,

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

 . (2)

Furthermore, let the one-form current J = ρdt−jx dx−jy dy−jz dz, where ρ, j⃗ are the usual charge density
and current density vector respectively. Note that we can write

F = −Ex dt ∧ dx− Ey dt ∧ dy − Ez dt ∧ dz +Bz dx ∧ dy −By dx ∧ dz +Bx dy ∧ dz . (3)

(a) Show that dF = 0 is equivalent to the two homogeneous Maxwell equations. Notice that if we introduce
A such that F = dA, then the homogeneous Maxwell equations are automatically satisfied.

SOLUTION:
We have

dF = −1

2
∂αFµν dx

α ∧ dxµ ∧ dxν = 0 . (4)

There are four independent components in this sum, namely {α, µ, ν} =
{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, and so each of these components have to separately
be zero. Let’s look at the {0, 1, 2} combination first. There are six terms, but e.g.

1

2
∂0F12 dx

0 ∧ dx1 ∧ dx2 + ∂0F21 dx
0 ∧ dx2 ∧ dx1 = ∂0F12 dx

0 ∧ dx1 ∧ dx2 (5)

Therefore, the components must satisfy

∂0F12 + ∂1F20 + ∂2F01 = 0 =⇒ ∂tBz + ∂xEy − ∂yEx = 0 . (6)

The other components are similarly

∂0F23 + ∂2F30 + ∂3F02 = 0 =⇒ ∂tBx + ∂yEz − ∂zEy = 0 ,

∂0F13 + ∂1F30 + ∂3F01 = 0 =⇒ −∂tBy + ∂xEz − ∂zEx = 0 ,

∂1F23 + ∂2F31 + ∂3F12 = 0 =⇒ ∂xBx + ∂yBy + ∂zBz = 0 . (7)

The last expression is clearly ∇ · B⃗ = 0, while the other three are equivalent to ∇ · E⃗ = −∂tB⃗,
which are the two homogeneous Maxwell equations.

(b) Show that d ⋆ F = ⋆J is equivalent to the two inhomogeneous Maxwell equations.
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SOLUTION: First, let’s begin by calculating the Hodge dual of J :

⋆J = ρ dx ∧ dy ∧ dz − jx dt ∧ dy ∧ dz + jy dt ∧ dx ∧ dz − jz dt ∧ dx ∧ dy . (8)

On other other hand,

⋆F = Ex dy ∧ dz − Ey dx ∧ dz + Ezdx ∧ dy +Bz dt ∧ dz +By dt ∧ dy +Bx dt ∧ dx . (9)

and therefore

d ⋆ F =(∂tEx − ∂yBz + ∂zBy)dt ∧ dy ∧ dz + (∂xEx + ∂yEy + ∂zEz)dx ∧ dy ∧ dz

+ (−∂tEy − ∂xBz + ∂zBx)dt ∧ dx ∧ dz + (∂tEz − ∂xBy + ∂yBx)dt ∧ dx ∧ dy . (10)

Equating this with ⋆J gives

∂xEx + ∂xEy + ∂zEz = ρ ,

∂tEx − ∂yBz + ∂zBy = −jx ,
−∂tEy − ∂xBz + ∂zBx = jy ,

∂tEz − ∂xBy + ∂yBx = −jz . (11)

The first equation reads ∇ · E⃗ = ρ, while the remaining three equations can be combined into
∇× B⃗ = j⃗ + ∂tE⃗, which are the two inhomogeneous Maxwell equations.

(c) Show that d⋆J = d(d⋆F ) = 0 is equivalent to the continuity equation for charge ∂tρ+∇· j⃗ = 0. Thus,
the conservation of charge follows directly from the inhomogeneous Maxwell equations.

SOLUTION:
From our previous results, we have immediately that

d ⋆J =∂tρdt ∧ dx ∧ dy ∧ dz − ∂xjx dx ∧ dt ∧ dy ∧ dz

+ ∂yjy dy ∧ dt ∧ dx ∧ dz − ∂zjz dz ∧ dt ∧ dx ∧ dy

=(∂tρ+ ∂xjx + ∂yjy + ∂zjz)dt ∧ dx ∧ dy ∧ dz . (12)

d ⋆J = d(d ⋆F ) = 0 therefore implies that

∂tρ+∇ · j⃗ = 0 , (13)

as required.

(d) Defining A = Aµ dx
µ = ϕdt− Ax dx− Ay dy − Az dz, where ϕ and A⃗ are the usual scalar and vector

potential, show that F = −dA leads to E⃗ = −∂tA⃗−∇ϕ and B⃗ = ∇× A⃗.

SOLUTION:
We have, component by component,

dA = (−∂xϕ− ∂tAx) dt ∧ dx+ (−∂yϕ− ∂tAy) dt ∧ dy + (−∂zϕ− ∂tAz) dt ∧ dz

= (∂yAx − ∂xAy) dx ∧ dy + (∂zAx − ∂xAz) dx ∧ dz + (∂zAy − ∂yAz) dy ∧ dz . (14)

Comparing this with −F gives

Ex = −∂xϕ− ∂tAx Ey = −∂yϕ− ∂tAy Ez = −∂zϕ− ∂tAz (15)

−Bz = ∂yAx − ∂xAy By = ∂zAx − ∂xAz −Bx = ∂zAy − ∂yAz . (16)
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which is precisely E⃗ = −∂tA⃗−∇ϕ and B⃗ = ∇× A⃗.

(e) Show that the gauge transformation A → A + dχ for arbitrary smooth χ leaves the field strength F
invariant.

SOLUTION:
Under the gauge transformation A→ A+ dχ, we have

F 7→ −d(A+ dχ) = −dA− d2χ = −dA = F , (17)

and hence the field strength tensor is invariant.

(f) The action for the electromagnetic field on Minkowski spacetime is a local functional of the potential A.
There are two 4-forms that we can construct for the field strength F = −dA, so the simplest possible
action is

S[A] =

∫
R1,3

(αF ∧ ⋆F + θF ∧ F ) , (18)

where α, θ ∈ R are coefficients. Rewrite this action in terms of E⃗ and B⃗.

SOLUTION:
Repeating our earlier results, we find

F = −Ex dt ∧ dx− Ey dt ∧ dy − Ez dt ∧ dz +Bz dx ∧ dy −By dx ∧ dz +Bx dy ∧ dz ,

⋆F = Ex dy ∧ dz − Ey dx ∧ dz + Ezdx ∧ dy +Bz dt ∧ dz +By dt ∧ dy +Bx dt ∧ dx . (19)

Performing the wedge product, we find

F ∧ ⋆F = (−E2
x − E2

y − E2
z +B2

z +B2
y +B2

x) dt ∧ dx ∧ dy ∧ dz

= (B⃗2 − E⃗2)dt ∧ dx ∧ dy ∧ dz . (20)

On the other hand,

F ∧ F = 2(−ExBx − EyBy − EzBz) dt ∧ dx ∧ dy ∧ dz

= −2(E⃗ · B⃗)dt ∧ dx ∧ dy ∧ dz . (21)

Therefore, the action becomes

S[E⃗, B⃗] =

∫
R1,3

dt ∧ dx ∧ dy ∧ dz
(
α(B⃗2 − E⃗2)− 2θE⃗ · B⃗

)
. (22)

(g) Return to the action given in Eq. (18), find the equations of motion for A by varying A 7→ A + δA,
and assuming that A→ 0 at infinity. What role does θ play?

SOLUTION:
Under the variation A 7→ A+ δA, we have

F 7→ −d(A+ δA) = F − d(δA) , (23)
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Figure 1: A parametrization of the torus.

from which we see first that

F ∧ F 7→ (F − d(δA)) ∧ (F − d(δA))

= F ∧ F − d(δA) ∧ F − F ∧ d(δA)

= F ∧ F − 2d(δA) ∧ F , (24)

where in the last line I have used the fact that d(δA) ∧ F = F ∧ d(δA), since d(δA) and F are
both 2-forms. However, we now also have

d(δA) ∧ F = d(δA ∧ F ) , (25)

since dF = d2A = 0. Next, we have

F ∧ ⋆F 7→ (F − d(δA)) ∧ ⋆(F − d(δA))

= F ∧ ⋆F − d(δA) ∧ ⋆F − F ∧ ⋆d(δA)
= F ∧ ⋆F − 2d(δA) ∧ ⋆F
= F ∧ ⋆F − 2d(δA ∧ ⋆F )− 2δA ∧ d ⋆F , (26)

by a very similar set of arguments as above, except that d ⋆ F ̸= 0, and in the last line we used
d(ω ∧ η) = (dω) ∧ η + (−1)pω ∧ (dη), for ω a p-form.
Hence, under the variation,

δS =

∫
R1,3

α [−2d(δA ∧ ⋆F )− 2δA ∧ d ⋆F ] + 2θ [2d(δA ∧ F )] . (27)

However, we can drop the total derivative terms, since by Stokes’ theorem, they simply become
an integral over the boundary at infinity. This leaves

δS = −2α

∫
R1,3

(δA ∧ d ⋆F ) (28)

for an arbitrary variation δA. Therefore, we must have d ⋆F = 0, which is simply the inhomo-
geneous Maxwell equation with no sources, as should have been anticipated. θ did not play any
role here, since it is proportional to a term that is a total derivative.

2 The Torus (20 points)

Fig. 1 shows a cross-section of a solid torus embedded in R3 with major radius R and minor radius a, taking
a cut through the torus at some angle ζ with respect to the x-axis of R3. A convenient parametrization for
the solid torus is also shown.
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(a) Show that in terms of the parametrization shown, the volume element is

dω = ρ(R+ ρ cosψ)dρ ∧ dζ ∧ dψ . (29)

SOLUTION:
The relation between Cartesian coordinates and the parametrization shown is

x = (R+ ρ cosψ) cos ζ ,

y = (R+ ρ cosψ) sin ζ ,

z = ρ sinψ . (30)

The metric induced on the solid torus is then

gij =
∑
a

∂xa

∂ξi
∂xa

∂ξj
, (31)

where ξ ≡ (ρ, ψ, ζ), and a runs over the Cartesian coordinates. Working through everything,
we find

gρρ = (cosψ cos ζ)2 + (cosψ sin ζ)2 + (sinψ)2 = 1 ,

gρζ = (cosψ cos ζ)(−(R+ ρ cosψ) sin ζ) + (cosψ sin ζ)((R+ ρ cosψ) cos ζ) = 0 ,

gρψ = (cosψ cos ζ)(−ρ sinψ cos ζ) + (cosψ sin ζ)(−ρ sinψ sin ζ) + ρ sinψ cosψ = 0 ,

gζζ = (−(R+ ρ cosψ) sin ζ)2 + ((R+ ρ cosψ) cos ζ)2 = (R+ ρ cosψ)2 ,

gζψ = (−ρ sinψ cos ζ)(−(R+ ρ cosψ) sin ζ) + (−ρ sinψ sin ζ)((R+ ρ cosψ) cos ζ) = 0 ,

gψψ = (−ρ sinψ cos ζ)2 + (−ρ sinψ sin ζ)2 + (ρ cosψ)2 = ρ2 . (32)

Therefore,

√
g = ρ(R+ ρ cosψ) , (33)

and the volume element is

dω = ρ(R+ ρ cosψ)dρ ∧ dζ ∧ dψ . (34)

You can check that this choice of the orientation agrees with the choice of conventional choice
of orientation in R3 by setting ζ = 0, and noting that ρ̂ = x̂, ζ̂ = ŷ and ψ̂ = ẑ.

(b) Calculate the total volume V of the solid torus by performing a direct integral over the volume form
of the solid torus.

SOLUTION:
The total volume of the solid torus is therefore

V =

∫ 2π

0

dζ

∫ 2π

0

dψ

∫ a

0

dρ ρ(R+ ρ cosψ) = 4π2R
a2

2
= 2π2Ra2 , (35)

since cosψ integrates to zero over a full period.

(c) Calculate the total volume V of the solid torus by using Stoke’s theorem and converting the integral
to one over the surface of the torus. Check that the result agrees with the previous part.
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SOLUTION:
By Stoke’s theorem, ∫

T

dω =

∫
∂T

ω , (36)

where T and ∂T are the solid torus and the boundary of the torus respectively. Therefore, We
can see that

ω =

(
ρ2

2
R+

ρ2

3
cosψ

)
dζ ∧ dψ . (37)

Integrating this over the boundary of the torus gives

V =

∫ 2π

0

dζ

∫ 2π

0

dψ

(
a2

2
R+

a2

3
cosψ

)
= 2π2a2R , (38)

dropping the cosψ term since it integrates to zero over a full period. This agrees with the
previous result.

(d) Calculate the total surface area A of the torus by deducing the appropriate area form and integrating
appropriately.

SOLUTION:
The area form for the 2D surface of the torus can be obtained directly from the previous
calculation, by noting that the induced metric is just the 2 × 2 submatrix of the full metric
containing the ψ and ζ components, setting ρ = a. The area form is therefore

dη = a(R+ a cosψ)dζ ∧ dψ . (39)

Integrating over the torus gives

A =

∫ 2π

0

dζ

∫ 2π

0

dψ a(R+ a cosψ) = 4π2aR , (40)

where we once again drop the cosψ term since it integrates to zero over a full period.

3 Complex Analysis Warm-Up (10 points)

(a) Prove the triangle inequality for complex numbers,

|z1 + z2| ≤ |z1|+ |z2| (41)

for any z1, z2 ∈ C.

SOLUTION:
First, we see that

|z1 + z2|2 = (z1 + z2)
∗(z1 + z2)

= (z∗1 + z∗2)(z1 + z2)

= |z1|2 + z∗1z2 + z∗2z1 + |z2|2 , (42)
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However, z∗1z2 + z∗2z1 = 2Re(z∗1z2) ≤ 2|z∗1z2|, since

Re(z∗1z2) ≤
√
[Re(z∗1z2)]

2 + [Im(z∗1z2)]
2 = |z∗1z2| . (43)

Thus,

|z1 + z2|2 ≤ |z1|2 + 2|z∗1z2|+ |z2|2 = |z1|2 + 2|z1||z2|+ |z2|2 = (|z1|+ |z2|)2 , (44)

or

|z1 + z2| ≤ |z1|+ |z2| . (45)

(b) Prove the following: for z ∈ C, z ̸= 1,

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
. (46)

Use this to derive Lagrange’s trigonometric identity, which for θ ̸= 2πk, k ∈ Z, reads

1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin[(2n+ 1)θ/2]

2 sin(θ/2)
. (47)

SOLUTION:
Denote S = 1 + z + z2 + · · ·+ zn. Then,

zS = z + z2 + z3 + · · ·+ zn+1 , (48)

and

S − zS = 1− zn+1 =⇒ S =
1− zn+1

1− z
, (49)

as required.
Taking z = eiθ, we have

1 + eiθ + ei2θ + · · ·+ einθ =
1− ei(n+1)θ

1− eiθ

=
ei(n+1)θ/2

eiθ/2
e−i(n+1)θ/2 − ei(n+1)θ/2

e−iθ/2 − eiθ/2

= einθ/2
−2i sin[(n+ 1)θ/2]

−2i sin(θ/2)

=
sin[(n+ 1)θ/2]

sin(θ/2)
einθ/2 (50)

Now, taking the real part on both sides gives

1 + cos θ + cos 2θ + · · ·+ cosnθ =
sin[(n+ 1)θ/2]

sin(θ/2)
cos(nθ/2)

=
1

2 sin(θ/2)
(2 sin[(n+ 1)θ/2] cos(nθ/2))

=
1

2 sin(θ/2)
(sin[(2n+ 1)θ/2] + sin(θ/2))

=
1

2
+

sin[(2n+ 1)θ/2]

2 sin(θ/2)
, (51)

as required.
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(c) Sketch the following sets of points: i) |z − 1 + i| = 1, ii) |z − 1| = |z + i|, and iii) |2z∗ + i| ≤ 4. Please
label your sketches clearly with key features (radii, intercepts, etc.). If these are lines, please specify
their gradients (i.e. the usual ∆y/∆x where the y-axis should be taken to be the imaginary axis, and
the x-axis the real axis).

SOLUTION:
i) This is a circle of radius 1 centered on 1− i.
ii) This is a line passing through the origin, gradient −1.
iii) We have |2z∗+ i| = |2z− i|, and so this is equivalent to |z− i/2| ≤ 2 is a filled circle centered
on i/2, radius 2.
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