Problem Set 4: Tensors

1 Dual Basis (5 points)

Let

$$
\vec{e}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad \vec{e}_2 = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{1}
$$

be a basis for \mathbb{R}^2 , where the column vectors correspond to their components in the standard basis, denoted by \hat{x}_i . Find the basis covectors $\{\vec{e}^{*1}, \vec{e}^{*2}\}$, which are dual to $\{\vec{e}_1, \vec{e}_2\}$, written in terms of the usual dual basis \hat{x}^{*i} , where $\hat{x}^{*i}(\hat{x}_j) = \delta^i_j$.

SOLUTION:

We know that

$$
\vec{e}^{*i}(\vec{e}_j) = \delta^i_j \tag{2}
$$

Write $\vec{e}_i = a^j{}_i \hat{x}_j$, and $\vec{e}^{*i} = f^i{}_j \hat{x}^{*j}$, where $f^i{}_j$ are the components of \vec{e}^{*i} in the standard basis. By definition,

$$
\vec{e}^{*i}(\vec{e}_j) = \delta^i_j. \tag{3}
$$

But we also have

$$
\vec{e}^{*i}(\vec{e}_j) = f^i{}_l \hat{x}^{*l} (a^k{}_j \hat{x}_k) = f^i{}_l a^k{}_j \delta^l_k = f^i{}_k a^k{}_j . \tag{4}
$$

Therefore,

$$
f^i{}_k a^k{}_j = \delta^i_j \implies f^i{}_k = (a^{-1})^i{}_k. \tag{5}
$$

But as a matrix,

$$
a = \begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix} \implies a^{-1} = \frac{1}{6} \begin{pmatrix} 5 & -4 \\ -1 & 2 \end{pmatrix}
$$
 (6)

Thus,

$$
\vec{e}^{*1} = \frac{5}{6}\hat{x}^{*1} - \frac{2}{3}\hat{x}^{*2} \qquad \vec{e}^{*2} = -\frac{1}{6}\hat{x}^{*1} + \frac{1}{3}\hat{x}^{*2} \,. \tag{7}
$$

2 (SG 10.10) Quotient Theorem (5 points)

Suppose that you have come up with some recipe for generating an array of numbers T^{ijk} in any coordinate frame, and want to know whether these numbers are the components of a triply contravariant tensor. Suppose further that you know that, given the components of a_{ij} of an arbitrary doubly covariant tensor, the numbers

$$
T^{ijk}a_{jk} = v^i \tag{8}
$$

transforms as the components of a contravariant vector. Show that T^{ijk} does indeed transform as a triply contravariant tensor. (The natural generalization of this result to arbitrary tensor types is known as the quotient theorem.)

SOLUTION:

Under a change of basis $\vec{e}'_j = \alpha^i{}_j \vec{e}_i$, we have

$$
a_{jk} = \alpha^{j'}_{j} \alpha^{k'}_{k} a_{j'k'}, \qquad v^{i} = (\alpha^{-1})^{i}_{i'} v^{i'}.
$$
 (9)

Therefore, we have

$$
T^{ijk}\alpha^{j'}{}_{j}\alpha^{k'}{}_{k}a_{j'k'} = (\alpha^{-1})^{i}{}_{m'}v^{m'} \implies \alpha^{i'}{}_{i}T^{ijk}\alpha^{j'}{}_{j}\alpha^{k'}{}_{k}a_{j'k'} = \alpha^{i'}{}_{i}(\alpha^{-1})^{i}{}_{m'}v^{m'}
$$

$$
\implies \alpha^{i'}{}_{i}\alpha^{j'}{}_{j}\alpha^{k'}{}_{k}T^{ijk}a_{j'k'} = \delta^{i'}_{m'}v^{m'} = v^{i'}
$$
(10)

Defining $T^{i'j'k'} = \alpha^{i'}_{j} \alpha^{k'}_{k} T^{ijk}$, we see that $T^{i'j'k'} a_{j'k'} = v^{i'}$, and that therefore $T^{i'j'k'}$ transforms as a triply covariant tensor, as required.

3 (SG 10.11) Invariant Content of a (1,1)-Tensor (10 points)

Let $T^i_{\;j}$ be the 3×3 array of components of a tensor. Consider the objects

$$
a = T^i_i , \t b = T^i_j T^j_i , \t c = T^i_j T^j_k T^k_i . \t (11)
$$

Show explicitly that c is an invariant. Describe these objects in terms of properties of the matrix T^i_j .

Assume that T^i_j has 3 distinct eigenvalues. Show that the eigenvalues of the linear map represented by T can be found by solving the equation

$$
\lambda^3 - a\lambda^2 + \frac{1}{2}(a^2 - b)\lambda - \frac{1}{6}(a^3 - 3ab + 2c) = 0.
$$
 (12)

Hint: Choose a good basis!

SOLUTION:

Under a change of basis,

$$
T^i_{\ j} T^j_{\ k} T^k_{\ i} \mapsto a^{i'}_{\ i} (a^{-1})^j_{\ j'} T^i_{\ j} a^{j'}_{\ l} (a^{-1})^m_{\ k'} T^l_{\ m} a^{k'}_{\ n} (a^{-1})^p_{\ i'} T^n_{\ p}
$$

\n
$$
= a^{i'}_{\ i} (a^{-1})^j_{\ j'} a^{j'}_{\ l} (a^{-1})^m_{\ k'} a^{k'}_{\ n} (a^{-1})^p_{\ i'} T^i_{\ j} T^l_{\ m} T^n_{\ p}
$$

\n
$$
= \delta^j_l \delta^m_{\ n} \delta^p_{\ i} T^i_{\ j} T^l_{\ m} T^n_{\ p}
$$

\n
$$
= T^i_{\ j} T^j_{\ k} T^k_{\ i} \ , \tag{13}
$$

as required. In terms of the matrix T^i_j , we have $a = \text{Tr}(T)$, $b = \text{Tr}(T^2)$, and $c = \text{Tr}(T^3)$. The eigenvalues of the linear map represented by T are the roots of the characteristic equation

$$
\det(T - \lambda I) = 0\tag{14}
$$

for T in any basis. Since the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ are distinct, T is diagonalizable, and hence we can choose the eigenbasis where $T^i_{\;j} = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$. Therefore, the eigenvalues satisfy the equation

$$
(\lambda - \tau_1)(\lambda - \tau_2)(\lambda - \tau_3) = 0 \tag{15}
$$

where I have simplified the notation so that $\tau_i = T_i^i$, with no summation being implied here. Also in this basis,

$$
a = \tau_1 + \tau_2 + \tau_3, \quad b = \tau_1^2 + \tau_2^2 + \tau_3^2, \quad c = \tau_1^3 + \tau_2^3 + \tau_3^3. \tag{16}
$$

From these relations, we can see that

$$
\tau_1 \tau_2 + \tau_2 \tau_3 + \tau_3 \tau_1 = \frac{1}{2} \left[(\tau_1 + \tau_2 + \tau_3)^2 - (\tau_1^2 + \tau_2^2 + \tau_3^2) \right] = \frac{1}{2} (a^2 - b), \tag{17}
$$

and

$$
6\tau_1\tau_2\tau_3 = (\tau_1 + \tau_2 + \tau_3)^3 - (\tau_1^3 + \tau_2^3 + \tau_3^3)
$$

- 3(\tau_1 + \tau_2 + \tau_3)(\tau_1^2 + \tau_2^2 + \tau_3^2) + 3(\tau_1^3 + \tau_2^3 + \tau_3^3)
= a^3 + 2c - 3ab (18)

Thus, we finally have

$$
(\lambda - \tau_1)(\lambda - \tau_2)(\lambda - \tau_3) = \lambda^3 - \lambda^2 a + \frac{1}{2}(a^2 - b)\lambda - \frac{1}{6}(a^3 - 3ab + 2c) = 0.
$$
 (19)

as required.

4 (SG 10.15) Symmetric Integration (15 points)

Show that the n-dimensional integral of

$$
I_{\alpha\beta\gamma\delta} = \int \frac{d^n k}{(2\pi)^n} k_\alpha k_\beta k_\gamma k_\delta f(k^2)
$$
 (20)

is given by

$$
I_{\alpha\beta\gamma\delta} = A(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma}),
$$
\n(21)

where

$$
A = \frac{1}{n(n+2)} \int \frac{d^n k}{(2\pi)^n} k^4 f(k^2).
$$
 (22)

Here, \vec{k} is a regular vector in \mathbb{R}^n .

Similarly evaluate

$$
I_{\alpha\beta\gamma\delta\epsilon} = \int \frac{d^n k}{(2\pi)^n} k_\alpha k_\beta k_\gamma k_\delta k_\epsilon f(k^2) \,. \tag{23}
$$

SOLUTION: To solve this, we want to show that $I_{\alpha\beta\gamma\delta}$ is invariant under $O(n)$ transformations. Under an orthogonal transformation O , we see that

$$
I_{\alpha\beta\gamma\delta} \mapsto O^{\alpha}{}_{\alpha'}O^{\beta}{}_{\beta'}O^{\gamma}{}_{\gamma'}O^{\delta}{}_{\delta'}I_{\alpha\beta\gamma\delta} = \int \frac{d^n k}{(2\pi)^n}O^{\alpha}{}_{\alpha'}k_{\alpha}O^{\beta}{}_{\beta'}k_{\beta}O^{\gamma}{}_{\gamma'}k_{\gamma}O^{\delta}{}_{\delta'}k_{\delta}f(k^2). \tag{24}
$$

Let's relabel $\tilde{k}_{\alpha'} = O^{\alpha}{}_{\alpha'} k_{\alpha}$, noting that $\tilde{k}^2 = k^2$, since the transformation is orthogonal. We can also perform a change of variables in the integral, with

$$
d^n k = \left| \frac{\partial \vec{k}}{\partial \tilde{\vec{k}}} \right| d^n \tilde{k},\tag{25}
$$

where $\left|\partial \vec{k}/\partial \tilde{\vec{k}}\right|$ is the absolute value of the Jacobian associated with the transformation. Since $k_{\alpha} =$ $(O^{-1})^{\alpha'}_{\alpha} \tilde{k}_{\alpha'}$, and O^{-1} is orthogonal, we have $d^n k = d^n \tilde{k}$. Putting this altogether, we find

$$
I_{\alpha\beta\gamma\delta} \mapsto \int \frac{d^n \tilde{k}}{(2\pi)^n} \tilde{k}_{\alpha} \tilde{k}_{\beta} \tilde{k}_{\gamma} \tilde{k}_{\delta} f(\tilde{k}^2) = I_{\alpha\beta\gamma\delta} , \qquad (26)
$$

since we can simply relabel again $k \to k$. We therefore conclude that $I_{\alpha\beta\gamma\delta}$ is invariant under $O(n)$, and can be written as

$$
I_{\alpha\beta\gamma\delta} = A\delta_{\alpha\beta}\delta_{\gamma\delta} + B\delta_{\alpha\gamma}\delta_{\beta\delta} + C\delta_{\alpha\delta}\delta_{\beta\gamma}.
$$
 (27)

First, note that under the swap of any index, e.g. $\alpha \leftrightarrow \beta$, $I_{\alpha\beta\gamma\delta} = I_{\beta\alpha\gamma\delta}$, and so symmetry enforces $A = B = C$. Now, let's contract α and β , as well as γ and δ . We get

$$
I^{\alpha}{}_{\alpha}{}^{\gamma}{}_{\gamma} = \delta^{\alpha\beta} \delta^{\gamma\delta} I_{\alpha\beta\gamma\delta} = A\delta^{\alpha\beta} \delta^{\gamma\delta} (\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma})
$$

\n
$$
= A(\delta^{\alpha\beta} \delta_{\alpha\beta} \delta^{\gamma\delta} \delta_{\gamma\delta} + \delta^{\alpha\beta} \delta_{\alpha\gamma} \delta^{\gamma\delta} \delta_{\beta\delta} + \delta^{\alpha\beta} \delta_{\alpha\delta} \delta^{\gamma\delta} \delta_{\beta\gamma})
$$

\n
$$
= A(n^2 + \delta^{\beta}_{\gamma} \delta^{\gamma}_{\beta} + \delta^{\beta}_{\delta} \delta^{\delta}_{\beta})
$$

\n
$$
= A(n^2 + n + n) = An(n + 2).
$$
 (28)

On the other hand,

$$
I^{\alpha}{}_{\alpha}{}^{\gamma}{}_{\gamma} = \int \frac{d^{n}k}{(2\pi)^{n}} k^{4} f(k^{2}), \qquad (29)
$$

and therefore

$$
A = \frac{1}{n(n+2)} \int \frac{d^n k}{(2\pi)^n} k^4 f(k^2) , \qquad (30)
$$

as required.

5 (SG 10.5) Properties of the Levi-Civita Symbol (10 points)

We defined the n-dimensional Levi-Civita symbol by requiring that $\epsilon_{i_1i_2\cdots i_n}$ be antisymmetric under the swapping of any pair of indices, and $\epsilon_{12\cdots n} = 1$.

(a) Show that if any two indices $i_i = i_j$ for $i, j \in 1, \dots, n$, then $\epsilon_{i_1 i_2 \dots i_n} = 0$.

SOLUTION:

Suppose $i_i = i_j$. Then swapping $i_i \leftrightarrow i_j$ picks up a relative minus sign, but the Levi-Civita symbol remains unchanged. Anything which is the negative of itself must be zero.

(b) Show that $\epsilon_{123} = \epsilon_{231} = \epsilon_{312}$, but that $\epsilon_{1234} = -\epsilon_{2341} = \epsilon_{3412} = -\epsilon_{4123}$.

SOLUTION:

 ϵ_{231} can be obtained from ϵ_{123} by swapping $1 \leftrightarrow 2$ followed by $1 \leftrightarrow 3$. Since this is two swaps, there is no relative sign. Similarly, ϵ_{312} can be obtained from ϵ_{123} by swapping $1 \leftrightarrow 3$ followed by $1 \leftrightarrow 2$. Thus, $\epsilon_{231} = \epsilon_{312} = \epsilon_{123}$. Similarly, to get ϵ_{2341} from ϵ_{1234} , we need to swap $1 \leftrightarrow 2$, $2 \leftrightarrow 3$, and $3 \leftrightarrow 4$. This is three swaps, and so we get a relative sign of -1 . The other relations can be shown similarly.

(c) Show that

$$
\epsilon_{ijk}\epsilon_{i'j'k'} = \delta_{i'}^i \delta_{j'}^j \delta_{k'}^k + 5 \text{ other terms},\qquad(31)
$$

where you should write out all six terms explicitly.

SOLUTION:

$$
\epsilon_{ijk}\epsilon_{i'j'k'} = \delta_i^{i'}\delta_j^{j'}\delta_k^{k'} + \delta_i^{j'}\delta_j^{k'}\delta_k^{i'} + \delta_i^{k'}\delta_j^{i'}\delta_k^{j'} - \delta_i^{i'}\delta_j^{k'}\delta_k^{j'} - \delta_i^{j'}\delta_j^{i'}\delta_k^{k'} - \delta_i^{k'}\delta_j^{j'}\delta_k^{i'}.
$$
 (32)

(d) Show that $\epsilon_{ijk}\epsilon_{ij'k'} = \delta^j_{j'}\delta^k_{k'} - \delta^j_{k'}\delta^k_{j'}.$

SOLUTION:

$$
\epsilon_{ijk}\epsilon_{ij'k'} = \delta_i^{i'}\epsilon_{ijk}\epsilon_{i'j'k'}
$$

= $3\delta_j^{j'}\delta_k^{k'} + 2\delta_j^{k'}\delta_k^{j'} - 3\delta_j^{k'}\delta_k^{j'} - 2\delta_j^{j'}\delta_k^{k'}$
= $\delta_j^{j'}\delta_k^{k'} - \delta_j^{k'}\delta_k^{j'}$, (33)

as required.

(e) For dimension $n = 4$, write out $\epsilon_{ijkl} \epsilon_{ij'k'l'}$ as a sum of products of Kronecker deltas similar to the one in part (c).

SOLUTION:

We can easily see that in general,

$$
\epsilon_{ijkl}\epsilon_{i'j'k'l'} = \text{sgn}(i'j'k'l')\delta_i^{i'}\delta_j^{j'}\delta_k^{k'}\delta_l^{l'} + \text{remaining 23 permutations of } i'j'k'l',\tag{34}
$$

where sgn is positive for even permutations of $i'j'k'l'$ and negative for odd permutations. But we can group these permutations as

$$
\epsilon_{ijkl}\epsilon_{i'j'k'l'} = \delta_i^{i'} \left(\text{sgn}(i', j'k'l') \delta_j^{j'} \delta_k^{k'} \delta_l^{l'} + \text{remaining 5 permutations of } j'k'l' \right) + \delta_i^{j'} \left(\text{sgn}(j', i'k'l') \delta_j^{i'} \delta_k^{k'} \delta_l^{l'} + \text{remaining 5 permutations of } i'k'l' \right) + \delta_i^{k'} \left(\text{sgn}(k', j'i'l') \delta_j^{j'} \delta_k^{i'} \delta_l^{l'} + \text{remaining 5 permutations of } j'i'l' \right) + \delta_i^{l'} \left(\text{sgn}(l', j'k'i') \delta_j^{j'} \delta_k^{k'} \delta_l^{i'} + \text{remaining 5 permutations of } j'k'i' \right)
$$
\n(35)

Multiplying both sides by $\delta_{i'}^i$, we get

$$
\epsilon_{ijkl}\epsilon_{ij'k'l'} = (4 - 1 - 1 - 1) \left(\operatorname{sgn}(i', j'k'l') \delta_j^{j'} \delta_k^{k'} \delta_l^{l'} + \text{remaining 5 permutations of } j'k'l' \right)
$$

\n
$$
= \delta_i^{i'} \delta_j^{j'} \delta_k^{k'} + \delta_i^{j'} \delta_j^{k'} \delta_k^{i'} + \delta_i^{k'} \delta_j^{i'} \delta_k^{j'} - \delta_i^{i'} \delta_j^{k'} \delta_k^{j'} - \delta_i^{j'} \delta_j^{i'} \delta_k^{k'} - \delta_i^{k'} \delta_j^{j'} \delta_k^{i'} \right)
$$

\n
$$
= \epsilon_{jkl}\epsilon_{j'k'l'}.
$$
\n(36)