
PY501 Fall 2024 Problem Set 3: Calculus of Variations III Due Mon., Sep. 23

Problem Set 3: Calculus of Variations III

1 SG 1.10: Piano String (15 points)

A piano string can vibrate both transversely and longitudinally, but is fixed at its two ends. Transverse
vibrations cause local compressions in the string and thus the two kinds of vibrations can influence each
other. A Lagrangian that takes into account the lowest order effect of stretching on the local string tension
is

L[ξ, η] =

∫
dx

{
1

2
ρ0

[
(∂tξ)

2 + (∂tη)
2
]
− λ

2

[
τ0
λ

+ ∂xξ +
1

2
(∂xη)

2

]2}
, (1)

where ξ(x, t) denotes the longitudinal displacement and η(x, t) denotes the transverse displacement of the
string. That is, the point in the undisturbed string which had coordinates (x, 0) is moved to the point
(x+ ξ(x, t), η(x, t)). The parameter τ0 represents the tension in the undisturbed string, λ is the product of
the Young’s modulus and cross-sectional area, and ρ0 is the mass per unit length.

a) Extremize the action to derive the coupled equations of motion for ξ and η.

SOLUTION: We can directly use the Euler-Lagrange equations since we are only interested
in variations with fixed endpoints. This reads (switching to notation where overdot denotes a
time derivative and ′ denotes a spatial derivative)

∂L
∂ξ

− ∂µ
∂L

∂(∂µξ)
= 0 =⇒ ρ0ξ̈ − λ∂x

[
τ0
λ

+ ξ′ +
1

2
η′2

]
= 0

=⇒ ρ0ξ̈ − λξ′′ − λη′η′′ = 0 , (2)

where L is the Lagrangian density, as well as

∂L
∂η

− ∂µ
∂L

∂(∂µη)
= 0 =⇒ ρ0η̈ − λ∂x

[(
τ0
λ

+ ξ′ +
1

2
η′2

)
η′
]
= 0

=⇒ ρ0η̈ − λ

[
(ξ′′ + η′η′′)η′ +

(
τ0
λ

+ ξ′ +
1

2
η′2

)
η′′

]
= 0

=⇒ ρ0η̈ − τ0η
′′ − λ

(
ξ′′η′ + ξ′η′′ +

3

2
η′2η′′

)
= 0 (3)

b) Is the canonical energy-momentum tensor T ν
µ conserved? Find T ν

µ , keeping terms up to quadratic
order in ξ, η and their derivatives.

SOLUTION:
Yes it is: the Lagrangian density has no explicit dependence on ξ and η, and therefore exhibits
space and time translation symmetry. At leading order in the fields, the Lagrangian density
may be written as

L ≈ 1

2
ρ0

(
ξ̇2 + η̇2

)
− λ

2

(τ0
λ

+ ξ′
)2

− τ0
2
η′2 . (4)

The canonical stress-energy tensor is given by

T ν
µ =

∂L
∂(∂νξ)

∂µξ +
∂L

∂(∂νη)
∂µη − δνµL . (5)
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Term by term, we have

T 0
0 = ρ0ξ̇

2 + ρ0η̇
2 − 1

2
ρ0

(
ξ̇2 + η̇2

)
+
λ

2

(τ0
λ

+ ξ′
)2

+
τ0
2
η′2

=
1

2
ρ0

(
ξ̇2 + η̇2

)
+
λ

2

(τ0
λ

+ ξ′
)2

+
τ0
2
η′2 , (6)

T 0
1 = ρ0(ξ̇ξ

′ + η̇η′) , (7)

T 1
0 = −λ

(τ0
λ

+ ξ′
)
ξ̇ − τ0η

′η̇ , (8)

T 1
1 = −λ

(τ0
λ

+ ξ′
)
ξ′ − 1

2
ρ0

(
ξ̇2 + η̇2

)
+
λ

2

(τ0
λ

+ ξ′
)2

+
τ0
2
η′2

= −1

2
ρ0

(
ξ̇2 + η̇2

)
− λ

2

(τ0
λ

+ ξ′
)(τ0

λ
− ξ′

)
+
τ0
2
η′2 . (9)

c) Work in the limit where ξ, η and their derivatives are all considered small. Show that at leading order,
the longitudinal and transverse motions decouple. Find expressions for the longitudinal and transverse
wave velocities cL and cT in terms of the material parameters. Show that η = η0(x − cT t) and ξ = 0
is a solution to the equations of motion at leading order.

SOLUTION:
The linearized equations are

ρ0ξ̈ − λξ′′ = 0 ,

ρ0η̈ − τ0η
′′ = 0 , (10)

which are wave equations for the longitudinal and transverse modes respectively, with cL =√
λ/ρ0 and cT =

√
τ0/ρ0.

ξ = 0 is trivially a solution to the wave equation for ξ. On the other hand, if we define
y = x− cT t, then

η′′0 =
d2ξ

dy2
, wη̈0 = c2T

d2η

dy2
, (11)

and so we can see that η̈0 − c2T η
′′
0 = 0, i.e. η0 is a solution to the equation of motion for η to

leading order.

d) Write down the equations of motion at next-to-leading order. Given the leading order solution η =
η0(x− cT t) and ξ = 0, show that the next-to-leading order solution for ξ is of the form ξ = ξ0(x− cT t),
i.e. it is only a function of x− cT t.

SOLUTION: This now reads

ρ0ξ̈ − λξ′′ = λη′η′′

ρ0η̈ − τ0η
′′ = λ (ξ′′η′ + ξ′η′′) (12)

Suppose ξ = ξ0(x− cT t), then

ρ0ξ̈ − λξ′′ = ρ0
d2ξ0
dy2

(
c2T − c2L

)
(13)

But λη′η′′ is also just a function of x− cT t, and so both sides of the expression are consistent,
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as long as we choose ξ0 appropriately, i.e.

ρ0(c
2
T − c2L)

d2ξ0
dy2

= λη′η′′ = c2Lρ0
dη0
dy

d2η0
dy2

=⇒ d2ξ0
dy2

=
1

2

c2L
c2T − c2L

d

dy
η′20 . (14)

e) Show that ξ0 must satisfy

ρ0ξ̇0 =
1

2

c2L
c2L − c2T

T 0
1 . (15)

You may assume that we are considering an infinitely long string, and therefore that all solutions and
their derivatives must go to zero at infinity.

SOLUTION: We can now integrate the equation above to get

dξ0
dy

=
1

2

c2L
c2T − c2L

η′20 +A , (16)

Based on the requirement that all derivatives must vanish at infinity, we can safely set A = 0.
Looking at T 0

1 , we have

T 0
1 = ρ0

(
ξ̇0ξ

′
0 + η̇0η

′
0

)
≈ ρ0η̇0η

′
0 = −ρ0cT η′20 , (17)

since ξ is higher order than η (remember that ξ is nonzero only because η is nonzero). Therefore

dξ0
dy

=
1

−cT
ξ̇0 =

1

2

c2L
c2T − c2L

T 0
1

−ρ0cT
=⇒ ρ0ξ̇0 =

1

2

c2L
c2T − c2L

T 0
1 . (18)

2 SG 1.6: The Catenary Revisited (10 points)

Let’s revisit the catenary problem using an intrinsic parametrization in terms of (x(s), y(s)) where s is the

arc-length. For a chain of length L, the potential energy is then U =
∫ L

0
ds ρgy(s), but x(s) and y(s) are

not independent functions of s because they must satisfy the constraint ẋ2 + ẏ2 = 1 at every point on the
curve (i.e. the speed of a particle traveling on the curve in terms of the arc-length is unity). Refer to Fig. 1
for the geometry of the set-up throughout.

a) Introduce infinitely many Lagrange multipliers λ(s) (i.e. use a function as a Lagrange multiplier) to
enforce the arc-length constraint at every point s. From the resulting functional F , derive the coupled
Euler-Lagrange equations for x(s) and y(s). By considering the forces acting on a small section ds of
the hanging cable, show that λ(s) is proportional to the position dependent tension T (s) in the chain.
(Hint : you may wish to introduce the angle ψ(s) of the curve, where ẋ = cosψ and ẏ = sinψ.)

SOLUTION: The functional we want to minimize is

Ũ(x, y, λ) =

∫ L

0

ds
[
ρgy(s)− λ(s)

(
ẋ2 + ẏ2 − 1

)]
. (19)

The equation of motion for λ enforces the length constraint. With no endpoint variation, we
can simply use the Euler-Lagrange equation for x and y to get

d

ds
[λ(s)ẋ] = 0 , ρg + 2

d

ds
[λ(s)ẏ] = 0 . (20)

Instructor: Hongwan Liu Page 3 of 8



PY501 Fall 2024 Problem Set 3: Calculus of Variations III Due Mon., Sep. 23

Figure 1: (Left) The geometry of the tension and weight acting on a piece of string of length ds. (Right)
The subtended circular arc. Figures taken from SG.

Consider a piece of the chain of length ds located between positions s and s + ds, with the
geometry shown in Fig. 1. The horizontal component of the tension force at s is simply Tx =
T (s) cosψ, and the vertical component Ty = T (s) sinψ, using the definition in the hint. As
we go across this piece of the chain, horizontal component becomes Tx + dTx, and the vertical
Ty + dTy. Since the chain is in equilibrium, the horizontal components of the tension must
cancel, i.e.

d(T cosψ) = 0 =⇒ d

ds
(T ẋ) = 0 , (21)

which is identical to the Euler-Lagrange equation for x. On the other hand, the increase in the
vertical component dTy must balance the weight ρg ds, giving

d(T sinψ) = ρg ds =⇒ ρg − d

ds
(T ẏ) = 0 . (22)

Thus, we recover the Euler-Lagrange equations by setting λ(s) = −T (s)/2, i.e. λ(s) is propor-
tional to T (s), as required.

b) You have a lightweight cord of length πa/2 and some lead shot of total mass M . How should you
distribute the mass along the line in order that the cord hangs in a circular arc subtending an angle of
π/2 when its ends are attached to two hooks at the same height? You can use the equations in part
a), adapted to allow a position dependent ρ(s), to find ρ(s) that produces such a shape.

SOLUTION:
Using the results above, we can see that

d

ds
[λ(s) cosψ] = 0 , ρg + 2

d

ds
[λ(s) sinψ] = 0 . (23)

The first equation says that we can define a constant C = λ(s) cosψ, and so the second reads

ρg = −2C
d

ds
tanψ . (24)

However, the geometry of the set-up shown in Fig. 1 also shows that s/a + π/4 + ψ = π/2,
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taking 0 ≤ s ≤ πa/2. Thus,

ρg = −2C
d

ds
tan

(π
4
− s

a

)
=

2

a
C sec2

(π
4
− s

a

)
(25)

To find the constant, we integrate both sides to get

Mg =

∫ πa/2

0

ds
2C

a
sec2

(π
4
− s

a

)
= 2C tan

(π
4
− s

a

)∣∣∣0
πa/2

= 4C =⇒ C =
Mg

4
. (26)

Thus, we have

ρ =
M

2a
sec2

(π
4
− s

a

)
. (27)

3 (SG1.5 and SG10.14): Elastic Waves (20 points)

Throughout this problem, we work with Cartesian coordinates where we need not differentiate between lower
and upper indices. Suppose an elastic body Ω of density ρ is slightly deformed so that the point that was
at Cartesian coordinates xi is moved to xi + ηi(t, x). Here, η is called the displacement field. We define the
Cartesian strain tensor eij by

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)
. (28)

The strain tensor is clearly symmetric, i.e. eij = eji. The Lagrangian for small amplitude deformations is

L[η] =

∫
Ω

d3x

(
1

2
ρη̇2i −

1

2
eijc

ijklekl

)
. (29)

where cijkl is a rank-4 Cartesian tensor of elastic constants.

a) Show that we may assume that c has symmetries cijkl = cjikl and cijkl = cklij following from how it
enters L.

SOLUTION: Since i, j, k, l are dummy variables that are summed over, we can always rename
them, so

eijc
ijklekl = ejic

jiklekl = eijc
jiklekl , (30)

where in the last line I’ve used the fact that eij is symmetric, and so eij = eji. Thus we can
see that cijkl = cjikl as required. Similarly, we can rewrite the dummy indices as

eijc
ijklekl = eklc

klijeij = eijc
klijekl , (31)

where in the last step I simply rearranged the terms. Thus we conclude that cijkl = cklij as
required.
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b) Extremize the action, allowing for variation along the boundary of Ω to obtain the equations of motion,

ρ
∂2ηi
∂t2

− ∂

∂xj
σji = 0 , (32)

where σij = cijklekl is known as the Cartesian stress tensor, and

σij n̂j = 0 , (33)

where n̂j are the components of the outward normal on ∂Ω, the boundary of Ω.

SOLUTION:
Let’s define

L =
1

2
ρη̇2i −

1

2
eijc

ijklekl . (34)

Then extremizing the action means that∫
dt

∫
Ω

d3x

[
∂L
∂ηi

δηi +
∂L

∂(∂tηi)
∂t(δηi) +

∂L
∂(∂jηi)

∂j(δηi)

]
= 0 . (35)

Integrating the second term by parts in time, and the third term by parts in space, we find

∫
dt

∫
Ω

d3x

[
∂L
∂ηi

− ∂t
∂L

∂(∂tηi)
− ∂j

∂L
∂(∂jηi)

]
δηi +

∫
dt

∫
Ω

d3x ∂j

[
∂L

∂(∂jηi)
δηi

]
= 0 . (36)

The first term corresponds to the usual Euler-Lagrange equation, which we tackle first. We
begin by noting that

∂ekl
∂(∂iηj)

=
1

2

∂

∂(∂iηj)
(∂kηl + ∂lηk)

=
1

2

(
δikδ

j
l + δilδ

j
k

)
. (37)

The Euler-Lagrange equation is then

∂L

∂ηj
− ∂i

∂L

∂(∂iηj)
= 0 =⇒ ∂t(ρη̇

j)− 1

2
∂i

[(
δikδ

j
l + δilδ

j
k

)
cklmnemn

]
= 0

=⇒ ρη̈j − 1

2

(
δikδ

j
l + δilδ

j
k

)
∂iσ

kl = 0

=⇒ ρη̈j − 1

2
(∂iσ

ij + ∂iσ
ji) = 0

=⇒ ρη̈j − ∂iσ
ij = 0 , (38)

In the second last line, I exploited the symmetry of σij , which ultimately stems from the
symmetries of cijkl.
Now for the second term. By the divergence theorem, we can write this as∫

dt

∫
Ω

d3x ∂j

[
∂L

∂(∂jηi)
δηi

]
=

∫
dt

∫
∂Ω

dS n̂j
∂L

∂(∂jηi)
δηi , (39)

where ∂Ω denotes the boundary of Ω, and the integral is over the surface of the boundary with
normal vector n̂j to the surface at all points. Therefore, this term requires that

n̂j
∂L

∂(∂jηi)
= 0 =⇒ n̂j

(
δikδ

j
l + δilδ

j
k

)
cklmnemn = 0

=⇒ n̂jσ
ij = 0 . (40)
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c) For an isotropic material, cijkl must be an isotropic Cartesian tensor, i.e. it must take the same values
even if we rotate the coordinates arbitrarily by any 3D rotation. It is a fact that the most general
rank-4 isotropic tensor is a linear combination of terms of the form δijδkl where the 4 indices can be
permuted. Using the symmetries in part a), show that cijkl must take the form

cijkl = λδijδkl + µ(δikδjl + δilδjk) , (41)

where λ, µ are two material constants, known as the Lamé constants.

SOLUTION: We can write cijkl as the most general isotropic tensor, going through all possible
permutations:

cijkl = λδijδkl + µδikδjl + ζδilδjk . (42)

However, we know that

cijkl = cjikl = λδijδkl + ζδikδjl + µδilδjk =⇒ µ = ζ , (43)

where the last line can be deduced readily by choosing i = k and j = l, but i ̸= j. The other
symmetry doesn’t help us here, so we conclude that cijkl must take the form

cijkl = λδijδkl + µ(δikδjl + δilδjk) (44)

as required.

d) Show that in terms of the Lamé constants, the equations of motion for η reduce to

ρ
∂2ηi
∂t2

= (λ+ µ)
∂2ηj

∂xi∂xj
+ µ

∂2ηi
∂xj∂xj

. (45)

SOLUTION: With this new expression, we find

σij = cijkle
kl

= [λδijδkl + µ(δikδjl + δilδjk)]e
kl

= λδije
k
k + 2µeij

= λδij(∂
kηk) + µ(∂iηj + ∂jηi) . (46)

Thus, the equations of motion are now

ρη̈j − ∂iσ
ij = 0 =⇒ ρη̈j − λ∂j∂kηk − µ(∂i∂

iηj + ∂i∂
jηi) = 0

=⇒ ρη̈j = (λ+ µ)∂j∂iηi + µ∂i∂
iηj , (47)

as required.

e) By plugging in the plane wave ansatz,

η⃗ = a⃗ei(kix
i−ωt) , (48)

deduce that there are two kinds of waves, longitudinal and transverse, and determine their respective
phase velocities.
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SOLUTION: Plugging in the plane wave ansatz, we find

−ω2ρηj = −(λ+ µ)kjkiηi − µk2ηj (49)

We can decompose η into longitudinal ηL and transverse ηT components, both of which are
orthogonal to each other. Furthermore, we have kjηTj = 0 and kj η̂Lj = k, where the hat
denotes a unit vector in the appropriate direction. Multiplying the entire equation by η̂Tj gives

(ω2ρ− µk2)ηT = 0 , (50)

which is the transverse component wave equation in Fourier space, with a phase velocity of
cT =

√
µ/ρ. On the other hand, multiplying by η̂Lj gives

−ω2ρηL = −(λ+ µ)k2ηL − µk2ηL =⇒
[
ω2ρ− (λ+ 2µ)k2

]
ηL = 0 , (51)

which is the longitudinal component wave equation in Fourier space, with a phase velocity of
cL =

√
(λ+ 2µ)/ρ.
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