
PY501 Fall 2024 Problem Set 2: Calculus of Variations II Due Mon., Sep. 16

Problem Set 2: Calculus of Variations II

1 SG 1.4: Elastic Rods (20 points)

Figure 1: Set up for the elastic rod problem. R is the radius of curvature due to the bending, and z marks
the z-axis of the problem. Take the origin to be at the symmetric point of this segment. This figure is taken
from the Feynman Lectures on Physics, Chapter 38.

The elastic energy per unit length of a bent steel rod is given by 1
2Y I/R

2. Here, R is the radius of
curvature due to the bending, Y is the Young’s modulus of the steel, and I =

∫∫
dxdy y2 is the moment of

inertia of the rod’s cross section about an axis through its centroid and perpendicular to the plane in which
the rod is bent. You may find Fig. 1 helpful for understanding the set-up.

a) If the rod is only slightly bent into the yz-plane and lies close to the z-axis, show that this elastic
energy can be approximated as

U [y] =

∫ L

0

dz
1

2
Y I(y′′)2 , (1)

where the prime denotes differentiation with respect to z and L is the length of the rod.
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SOLUTION:
I’ll write out this solution very carefully since there were many questions about it on Piazza.
Consider some segment of the rod at some coordinate z. We have some value of y(z), y′(z) and
y′′(z). A little bit further on at z+∆z, these values have shifted to y(z+∆z) = y(z)+∆y(z) =
y(z) + y′(z)∆z, y′(z +∆z) = y′(z) + ∆y′(z) = y′(z) + y′′(z)∆z.
Referring to Fig. 1, we can see that the angle that is normal to the cross sectional area is defined
as tanψ(z) = y′(z). But ψ(z +∆z) = ψ(z) + θ(z). Therefore

∆y′(z) = y′′(z)∆z = tan(ψ + θ)− tan(ψ) = (1 + tan2 ψ)θ = (1 + y′2(z))θ . (2)

Furthermore, we know that Rθ =
√
∆y2 +∆z2 = ∆z

√
1 + y′2. Putting everything together,

we find

y′′(z) =
(1 + y′2)3/2

R
. (3)

How big could y′ be? Well, if y′ ∼ 1 at any point, then you would get large displacements,
unless y′′ is large too, so that y′ can change rapidly. Therefore, as long as we take R to be large
enough, we will have y′ ≪ 1. And so, under that assumption, we have

y′′(z) ≃ 1

R
, (4)

and so

U [y] =

∫ L

0

dz
1

2

Y I

R2
≃

∫ L

0

dz
1

2
Y I(y′′)2 , (5)

as required.
Since y′′ ≃ 1/R, we also know that that y′ ≲ L/R, and therefore

√
1 + y′2 ≃ 1 +O(L2/R2) .

Therefore any distinction between the original start and end points of the rod along the z-axis
and the actual length of the rod is unimportant at O(L2/R2), and so long as we make R big
enough, this is completely irrelevant.

b) Euler’s problem: The buckling of a slender column.— The rod is used as a column which
supports a compressive load Mg directed along the z-axis, (which is vertical; see Fig. 2 left).

• Show that when the rod buckles slightly (i.e. deforms with both ends remaining on the z-axis),
the total energy, including the gravitational potential energy of the loading mass M , can be
approximated by

U [y] =

∫ L

0

dz

[
Y I

2
(y′′)2 − Mg

2
(y′)2

]
. (6)

SOLUTION:
Consider a segment of the rod of length dℓ =

√
dy2 + dz2 =

√
1 + y′2 dz. Suppose the

mass is located at height h. Then ∫ h

0

dz
√
1 + y′2 = L (7)

But if the deformation is small, then y′2 ≪ 1, and

L ≃
∫ h

0

dz

(
1 +

1

2
(y′)2

)
= h+

1

2

∫ h

0

dz (y′)2 =⇒ L− h ≃ 1

2

∫ L

0

dz (y′)2 , (8)
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where the replacement of h → L in the integral is justified because it introduces a higher
order correction to L−h. Since the loading mass has potential energy given byMg(h−L),
the total energy is

U [y] =

∫ L

0

dz

[
Y I

2
(y′′)2 − Mg

2
(y′)2

]
, (9)

as required.

• Obtain a differential equation with suitable boundary conditions that must be obeyed if the
potential energy is minimized. In doing this, take care not to throw away any term arising from
the integration by parts.

SOLUTION:
Let’s make a small deformation y + δy, with δy(0) = δy(L) = 0. Then the total energy is
deformed as

δU =

∫ L

0

dz [Y Iy′′δy′′ −Mgy′δy′]

= Y Iy′′δy′|L0 −
∫ L

0

dz [Y Iy′′′ +Mgy′] δy′

= Y Iy′′δy′|L0 −
∫ L

0

dz [Y Iy′′′′ +Mgy′′] δy , (10)

where we have simply integrated by parts twice, keeping the boundary terms for the term
with δy′, but discarding the one with δy, since δy(0) = δy(L) = 0. The equation of motion
is then obtained by setting δU = 0, giving

Y Iy′′′′ +Mgy′′ = 0 , (11)

with boundary conditions

y′′(0) = y′′(L) = 0 . (12)

• Show that y(z) = 0 is the only allowed solution if Mg < π2Y I/L2. Explain what happens above
this threshold.

SOLUTION:
Let’s redefine η(z) ≡ y′′(z), so that the differential equation and boundary conditions
become

η′′ +
Mg

Y I
η = 0 , η(0) = η(L) = 0 . (13)

The solution is like that of the harmonic oscillator,

η = A sin

√
Mg

Y I
z +B cos

√
Mg

Y I
z , (14)

and imposing the boundary condition finally gives

B = 0 , and A = 0 or

√
Mg

Y I
=
nπ

L
. (15)

for some nonnegative integer n. We can see immediately that if Mg < π2Y I/L2, then
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the only solution is η(z) = 0, giving y(z) = Cz + D. However, imposing the boundary
conditions y(0) = y(L) = 0 gives y(z) = 0 as the only solution.
Above this threshold, while y(z) = 0 is still a possible solution, other solutions exist, and
if the system is perturbed slightly, it may not return to the y(z) = 0 solution. Buckling
can occur.

c) Leonardo da Vinci’s problem: the light cantilever.—Here we take the z-axis as horizontal and
the y-axis as vertical (see Fig. 2 right). The rod is used as a beam or cantilever and is fixed into a
wall so that y(0) = y′(0) = 0. A weight Mg is hung from the end z = L and the beam sags in the
(−y)-direction. We wish to find y(z) for 0 < z < L. We will ignore the weight of the beam itself.

• Show that the total energy, including the gravitational potential energy of the weight, can be
written as

U [y] =

∫ L

0

dz

[
Y I

2
(y′′)2 +Mgy′

]
. (16)

SOLUTION:
The gravitational potential energy of the weight is

Mgy =

∫ L

0

dzMgy′ , (17)

since y(0) = 0. Therefore, the total energy is

U [y] =

∫ L

0

dz

[
Y I

2
(y′′)2 +Mgy′

]
. (18)

as required.

• Find the differential equation and boundary conditions at z = 0, L that arise from minimizing the
total energy. In doing this, take care not to throw away any term arising from the integration by
parts. You may find the following identity useful:

d

dz
(f ′g′′ − fg′′′) = f ′′g′′ − fg′′′′ . (19)
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SOLUTION:
Performing a variation y → y + δy, we find

δU =

∫ L

0

dz [Y Iy′′ δy′′ +Mg δy′] . (20)

= Y Iy′′δy′|L0 −
∫ L

0

dz [Y Iy′′′ −Mg] δy′ . (21)

At this point we can redefine η ≡ y′ to find that

δU = Y Iη′δη|L0 −
∫ L

0

dz [Y Iη′′ −Mg]δη , (22)

which lead to the following differential equation and boundary condition:

Y Iη′′ −Mg = 0 , η′(L) = 0 . (23)

Note that δη(0) = 0 because of the fixed boundary condition y′(0) = 0.

• Solve the equation. You should find that the displacement of the end of the beam is y(L) =
− 1

3MgL3/(Y I).

SOLUTION:
Integrating the differential equation gives

η(z) =
Mg

2Y I
z2 + Cz +D . (24)

Imposing the boundary conditions then leads to

η(z) =
Mg

2Y I
(z2 − 2Lz) (25)

Given that η = y′, we can integrate another time to find

y(z) =
Mg

2Y I

(
z3

3
− Lz2

)
+ C , (26)

and again imposing the boundary condition y(0) = 0 gives finally

y(z) =
Mg

6Y I
(z − 3L)z2 (27)

Finally, we see that

y(L) = −Mg

3Y I
L3 (28)

as expected.

2 Helical Symmetry (5 points)

Consider a particle of mass m moving in a potential

U(ρ, ϕ, z) = V (ρ, aϕ+ z) , (29)
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Figure 2: A rod used as (left) a column, and (right) a cantilever. Figure taken from SG.

where (ρ, ϕ, z) are cylindrical coordinates, and a is a constant with dimensions of length. The potential
therefore only depends on two variables, even though there are three coordinates.

a) Write down the Lagrangian L = T − U of the particle in cylindrical coordinates.

SOLUTION:
In cylindrical coordinates, the velocity in the ρ, ϕ, and z directions (which are all orthogonal
directions) are given respectively by

vρ = ρ̇ , vϕ = ρϕ̇ , vz = ż , (30)

where the dots indicate the time derivative. Since we have v2 = v2ρ + v2ϕ + v2z , the Lagrangian
is given by

L =
1

2
m

(
ρ̇2 + ρ2ϕ̇2 + ż2

)
− V (ρ, aϕ+ z) . (31)

b) Show that the following transformation is a symmetry of the action,

ρ→ ρ , ϕ→ ϕ+ ζ , z → z − aζ . (32)

for some arbitrary ζ that is independent of time. Note that ζ is not necessarily small!

SOLUTION:
Under the transformation, ρ̇, ρϕ̇ and ż remain unchanged. Therefore,

L→ 1

2
m

(
ρ̇2 + ρ2ϕ̇2 + ż2

)
− V (ρ, a(ϕ+ ζ) + (z − aζ))

=
1

2
m

(
ρ̇2 + ρ2ϕ̇2 + ż2

)
− V (ρ, aϕ+ z) (33)

= L . (34)

The Lagrangian is unchanged under the transformation, showing that it is a symmetry of the
action.

c) Use Noether’s theorem to compute the associated conserved quantity.

SOLUTION:
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Noether’s theorem tells us that the conserved charge is given by

Q =
∂L

∂ϕ̇
+
∂L

∂ż
(−a)

= mρ2ϕ̇−maż (35)

d) Use the Euler-Lagrange equations to explicitly check that the quantity that you computed in part c)
is conserved.

SOLUTION:
For the ϕ coordinate, the Euler-Lagrange equation reads

d

dt
(mρ2ϕ̇)− a

∂V

∂ξ
= 0 , (36)

where ξ ≡ aϕ+ z. For the z coordinate, we have

mz̈ − ∂V

∂ξ
= 0 . (37)

Multiplying the last equation by −a and subracting it from the first equation, we find

d

dt
(mρ2ϕ̇)−maz̈ = 0 =⇒ d

dt
(mρ2ϕ̇−maż) =

dQ

dt
= 0 . (38)

as required.

e) Argue that the potential created by a single helical strand of DNA (assuming that it is uniformly
negatively charged and infinite) has the symmetry in b). A charge moving in this potential thus has
the conservation law that you derived.

SOLUTION:
In a helix with axis perpendicular to the horizontal, the coils are tilted an angle α off the
horizontal. Suppose we displace a particle by some angle ζ azimuthally. From the perspective
of the particle, the helix appears displaced upward (or downward, depending on the handedness
of the helix) by an amount (R tanα)ζ. Therefore, if I also displace the particle by (R tanα)ζ
(upward or downward), the helix will appear unchanged to it. This is precisely the symmetry
transformation in part b).

3 The Laplace-Runge-Lenz Vector (25 points)

Consider the central potential problem, specializing to the potential V (r) = −α/r, so that the action is

S =

∫
dt

[
1

2
m ˙⃗r 2 +

α

r

]
. (39)

In class, we found two conserved quantities for all central potentials: the angular momentum L⃗ = r⃗ × p⃗
from the rotational symmetry, and energy E from time-translation invariance. It turns out that for an 1/r

potential, there is a third conserved quantity, the Laplace-Runge-Lenz vector A⃗, which is also conserved.
This is defined as

A⃗ = p⃗× L⃗−mαr̂ , (40)
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where pi = ∂L/∂ri is the momentum of the particle, and r̂ = r⃗/r is the unit vector from the origin to
the particle. The symmetry that gives rise to this conserved quantity is not obvious, but is nevertheless
present; symmetries that are not manifest are often called “hidden symmetries”. The literature on where
this symmetry comes from is fascinating, but we won’t be concerned with that here.

You may find the identities a⃗ · (⃗b× c⃗) = b⃗ · (c⃗× a⃗) = c⃗ · (⃗a× b⃗), and a⃗× (⃗b× c⃗) = (⃗a · c⃗)⃗b− (⃗a · b⃗)c⃗ helpful
throughout this problem.

a) Show that the Laplace-Runge-Lenz vector is conserved by explicitly calculating dA⃗/dt.

SOLUTION:
The time derivative of the Laplace-Runge-Lenz vector is given by

dA⃗

dt
=

d

dt

(
p⃗× L⃗−mαr̂

)
(41)

We’ll split the calculation into two parts. First,

d

dt
(p⃗× L⃗) =

dp⃗

dt
× L⃗+ p⃗× dL⃗

dt
= − α

r2
r̂ × L⃗ , (42)

where we have made use of the fact that L⃗ is conserved, and therefore dL⃗/dt = 0, and that the

Newton’s second law gives dp⃗/dt = −(α/r2)r̂. At this point, we write L⃗ = r⃗ × p⃗ and simplify
the triple vector product, obtaining

d

dt
(p⃗× L⃗) = − α

r2
r̂ × (r⃗ × p⃗) = − α

r2
[(r̂ · p⃗)r⃗ − (r̂ · r⃗)p⃗]

= − α

r2

[
m
dr

dt
r⃗ − rp⃗

]
, (43)

where we have made use of the fact that r̂ · p⃗ just projects out the radial component of the
momentum, which is m(dr/dt). On the other hand, we have

d

dt
(mαr̂) = mα

d

dt

(
r⃗

r

)
= mα

(
1

r

dr⃗

dt
− 1

r2
dr

dt
r⃗

)
=
α

r
p⃗− mα

r2
dr

dt
r⃗

=
d

dt
(p⃗× L⃗) , (44)

from which dA⃗/dt = 0 is obvious.

b) Prove the following identity:

dr̂i

dt
=

1

r2

(
rṙi − rj ṙ

j

r
ri
)
. (45)

SOLUTION:

dr̂i

dt
=

d

dt

(
ri

r

)
=
ṙi

r
− 1

r2
ṙri =

1

r2
(rṙi − ṙri) =

1

r2

(
rṙi − rj ṙ

j

r
ri
)
, (46)
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c) Consider the transformation ri → ri + δri, where

δri = εjm(2ṙirj − riṙj − rkṙkδ
ij) , (47)

where εj is an arbitrary vector (with appropriate dimensions), and δij is the Kronecker delta. Let’s
first examine the potential energy term. Show that it transforms as

α

r
→ α

r
+ δL1 , δL1 = εjαm

dr̂j

dt
. (48)

SOLUTION:
Let’s first examine the variation of r2. This is

r2 → r2 + 2ri · δri = r2 + 2εjm(2riṙ
irj − r2ṙj − rir

kṙkδ
ij)

= r2 + 2εjm(2riṙ
irj − r2ṙj − rjrkṙk)

= r2 + 2εjm(riṙ
irj − r2ṙj) . (49)

This means that

1

r
→ 1√

r2 + 2εjm(riṙirj − r2ṙj)

=
1

r

[
1− εjm

r2
(
riṙ

irj − r2ṙj
)]
. (50)

From the identity derived above, we can see that

δL1 = −αεjm
r3

(
riṙ

irj − r2ṙj
)

= εjαm
dr̂

dt
, (51)

d) Next, let’s examine the transformation of the kinetic term. Consider the function

f j = m2
(
˙⃗r 2rj − (r⃗ · ˙⃗r)ṙj

)
(52)

Show that the kinetic term transforms as

1

2
m ˙⃗r 2 → 1

2
m ˙⃗r 2 + δL2 , δL2 = εj ḟ

j , (53)

and that as a result, the transformation is a symmetry of the action.

SOLUTION:
First, let’s take the derivative of f j . This gives

ḟ j = m2
(
2ṙir̈

irj + ˙⃗r 2ṙj − ˙⃗r 2ṙj − rir̈iṙ
j − (r⃗ · ˙⃗r)r̈j

)
(54)

= m2
(
2ṙir̈

irj − rir̈ir
j − (r⃗ · ˙⃗r)r̈j

)
(55)

Let’s determine the transformation for the velocity, ṙi → ṙi + δṙi. We have

δṙi = εjm(2r̈irj + 2ṙiṙj − ṙiṙj − rir̈j − ṙkṙkδ
ij − rkr̈kδ

ij)

= εjm
[
2r̈irj + ṙiṙj − rir̈j − ( ˙⃗r 2 + r⃗ · ¨⃗r)δij

]
(56)
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Then

δL2 = mṙi · δṙi

= εjm
2
[
2ṙir̈

irj + ˙⃗r 2ṙj − riṙir̈
j − ( ˙⃗r 2 + r⃗ · ¨⃗r)ṙj

]
= εjm

2
[
2ṙir̈

irj − riṙir̈
j − rir̈iṙ

j
]

(57)

= εj ḟ
j , (58)

Thus, under the transformation ri → ri + δri, the Lagrangian transforms as

L→ L+ δL1 + δL2 = L+ ϵj
d

dt

(
αmr̂j + f j

)
, (59)

where the last term is a total time derivative. This means that the transformation is a symmetry
of the action.

e) Finally, show that the associated Noether charge of this symmetry is the Laplace-Runge-Lenz vector.
You may again find the triple vector product identity given at the beginning of the question to be
useful.

SOLUTION:
The Noether charge associated with the symmetry is given by

Qj = αmr̂j + f j − ∂L

∂ṙi
·m(2ṙirj − riṙj − rkṙkδ

ij) . (60)

where all quantities are to be evaluated on-shell. In that case,

f⃗ = m2
(
˙⃗r 2r⃗ − (r⃗ · ˙⃗r) ˙⃗r

)
= m2

[
˙⃗r × (r⃗ × ˙⃗r)

]
= p⃗× L⃗ , (61)

and

∂L

∂ṙi
·m(2ṙirj − riṙj − rkṙkδ

ij) = m2ṙi(2ṙ
irj − riṙj − rkṙkδ

ij)

= m2(2 ˙⃗r 2rj − riṙiṙ
j − rkṙkṙ

j)

= 2(p⃗× L⃗)j (62)

Putting everything together, the Noether charge is

Q⃗ = αmr̂ + p⃗× L⃗− 2(p⃗× L⃗) = αmr̂ − p⃗× L⃗ , (63)

which is precisely the Laplace-Runge-Lenz vector!

4 SG 1.13: Drums (10 points)

The shape of a (nearly flat) drumskin is described by h(x, y), the height to which the point (x, y) of the flat
drumskin is displaced.

a) Show that the area of the drumskin is

A[h] =

∫
Ω

dx dy
√
1 + (∂xh)2 + (∂yh)2 , (64)
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where Ω is the area of the flat (undistorted) drumskin. You may use the fact that parallelogram formed

by two vectors a⃗ and b⃗ has area |⃗a× b⃗|.

SOLUTION:
Consider a small patch on the drumskin with one corner of the patch at point (x, y), with area
dA. Along the x-direction, the vector bordering this patch is

dℓ⃗x = dxx̂+ [h(x+ dx, y)− h(x, y)]ẑ

= dx x̂+ ∂xh dx ẑ . (65)

Similarly, along the y-direction, the vector bordering this patch is

dℓ⃗y = dy ŷ + ∂yh dy ẑ . (66)

The area of the patch is therefore

dA =
∣∣∣dℓ⃗x × dℓ⃗y

∣∣∣ = |−∂xh dx dy x̂− ∂yh dx dy ŷ + dx dy ẑ| = dx dy
√
1 + (∂xh)2 + (∂yh)2 ,

(67)

as required.

b) Show that for small distortions, the area reduces to

A[h] = const. +
1

2

∫
Ω

dx dy |∇h|2 . (68)

SOLUTION: With small distortions, you want very small changes to h as we move around
the drumskin, i.e. |∂xh|, |∂yh| ≪ 1. In this case, we can expand the square root in the area
integral to first order in ∂xh and ∂yh. This gives

A[h] ≃
∫
Ω

dx dy

[
1 +

1

2

(
(∂xh)

2 + (∂yh)
2
)]

(69)

and so we can redefine the area to be

A[h] = const. +
1

2

∫
Ω

dx dy |∇h|2 , (70)

where the constant is just the total flat drumskin area.

c) Show that if h satisfies the two-dimensional Laplace equation ∇2h = 0, then the A is stationary with
respect to variations that vanish at the boundary.

SOLUTION:
Under a variation of h, we have

|∇h|2 → |∇(h+ δh)|2 = (∇h)2 + 2∇h · ∇δh (71)
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the variation of the area is given by

δA =
1

2

∫
Ω

dx dy [2∇h · ∇δh]

= −
∫
Ω

dx dy (∇ · ∇h)δh , (72)

where we have applied the divergence theorem, and dropped the boundary term, since variations
on the boundary are not permitted. The area is therefore extremized when

∇2h = 0 (73)

as required.

d) Suppose that the flat drumskin has mass ρ0 per unit area, and surface tension T (the potential energy
associated with surface area dA under tension T is T dA). Write down the Lagrangian controlling the
motion of the drumskin, and derive the equation of motion that follows from it.

SOLUTION:
The kinetic energy of a patch is given by

dK =
1

2
ρ0 dx dy (∂th)

2
, (74)

while the potential energy is dU = TdA. Thus, the Lagrangian is

L =

∫
Ω

dx dyL =

∫
Ω

dx dy

[
1

2
ρ0 (∂th)

2 − 1

2
T |∇h|2

]
, (75)

based on our arguments from before.
The Euler-Lagrange equation is then

∂

∂xµ
∂L

∂(∂µh)
= ρ0∂

2
t h− T∇2h = 0 , (76)

which is the wave equation!
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