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Abstract

With particle accelerators like the Tevatron and the LHC we can reach such high energies that it is
very likely that we will soon find clear signatures of physics beyond the Standard Model. Some of the
most interesting processes to examine are single-top processes; interactions with in the final state only
one top quark and some other particle. The top quark has a mass almost 5 orders of magnitude larger
than the lightest quarks (∼ 175 GeV), a strange property that some theories explain by predicting
interactions with new particles. In this thesis some extensions of the Standard Model are analyzed.
With the use of a Monte Carlo these theories have been simulated, resulting in several predictions for
experimental results for the single-top process.
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Chapter 1

Introduction

The Standard Model (SM) has been one of the most successful theories in physics. After its develop-
ment in the early 70’s, it predicted several new particles including the existence of the W±, Z bosons
which were discovered at CERN in 1983. The most recent discovery is the detection of the top quark,
done by the CDF and DØ experiments at the Tevatron (Fermilab), in 1995. The only particle predicted
by the SM that has not been found yet is the Higgs boson. If it truly exists, the LHC will certainly
find it.

Now that we have found almost all of the particles predicted by the Standard Model, one could
ask ‘Is there any physics beyond the Standard Model?’. Most physicists believe that the answer to
this is ‘yes’. It is highly unlikely that the Standard Model is the ultimate theory of everything because
gravity is not included in the model, and it possesses some esthetical problems like, most notably, the
hierarchy problem (see Chapter 7).

Because the Standard Model has been so successful, all new fundamental theories should converge
to the SM at energies below the electroweak symmetry breaking scale (v = 254 GeV). The obvious
way to create such a theory, is by starting with the Standard Model and make some simple extension.
In this thesis we describe two of such extensions, the Topflavor model and the Littlest Higgs model.
Both models have been conceived quite recently (1996 and 2002), and are therefore not fully studied
yet.

An interesting method for testing these theories can be done with the aid of precise measurements
of the cross sections of different kinds of top production. The reason why the top quark can be used
as a probe for new interactions, is because it is so heavy. In this thesis we focus on one particular type
of top production, namely the single-top processes. These are processes in which only one single top
quark is created, plus some other particle(s).

Before we analyze extensions of the Standard Model, it is important to have a thorough under-
standing of the Standard Model itself and the theoretical foundation it is built upon. For this reason
we start in Chapter 2 with a brief introduction to gauge theories, symmetries, and quantum field the-
ory, followed by a complete analysis of the Standard Model in Chapter 3. Subsequently we investigate
in Chapter 4 what the Standard Model predictions are for single-top production. We expect that the
more literate reader will enjoy these first chapters as a good review, while the less experienced reader
will appreciate the level of detail with which the Standard Model and single-top are examined.

As part of this thesis project it was necessary to develop a Monte Carlo program for doing single-top
simulations. In Chapter 5 we explain the basics of Monte Carlo integration and demonstrate how the
Monte Carlo program is implemented. This program has been used to produce almost all of the cross
sections and plots presented in this report. Several tests have been done to confirm that the program
is working properly.

Finally, in Chapter 6 and 7 we examine the two Standard Model extensions: Topflavor and the
Littlest Higgs. Both chapters start with a thorough analysis of the model, followed by the determination
of mass eigenstates and the couplings. At the end of each chapter we present the Monte Carlo results,
together with a short discussion. In Chapter 8 we give a short summary about what we can conclude
from the results found in the previous chapters.
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1.1 Conventions

For this report we have adopted the following conventions.

Natural units

In all calculations we will work with units such that

h̄ = c = 1. (1.1)

In this system length, time, energy and mass have the following units:

[length] = GeV−1, (1.2a)

[time] = GeV−1, (1.2b)

[energy] = GeV, (1.2c)

[mass] = GeV. (1.2d)

Metric

All calculations are done in Minkowski space. The metric tensor is therefore defined as

gµν = gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (1.3)

Unless noted otherwise, repeated indices will imply Einstein summation.

Group generators

For the generators of SU(2), SU(3), and SU(5) we refer to Appendix B. To prevent confusion with
σ-fields and cross sections, we write the Pauli matrices as τ a (the τ -lepton is rarely encountered).

Monte Carlo parameters

For all our simulations we have used the RANMAR random generator, the CTEQ5L table for the
PDF’s, and all scales set to µF = µR = mt. For the top mass mt we use 175 GeV, the mass of the W
vector boson is set to mW = 80.4 GeV. The CKM matrix we have used is

V =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 =





0.9751 0.2215 0.0035
0.2210 0.9743 0.0410
0.0 0.0 1.0



 .

The coupling constants are given by

αs = αs (mt) ≈ 0.114089, (1.4a)

αw = g2w/4π ≈ 0.03394, (1.4b)

g2w =
8√
2
GFm

2
W ≈ 0.42651, (1.4c)

with Fermi’s constant given by
GF = 1.16639× 10−5 GeV−2. (1.5)

See Chapter 5 for more information about the Monte Carlo program.
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Cross sections

All cross sections are given in picobarn (pb),

1 pb = 103 fb = 10−40 m2 = 10−36 cm2. (1.6)

Given the luminosity L of an accelerator, one can determine the event rate of a process with

dN

dt
= σL, (1.7)

where σ is the cross section of the process. In Table 1.1 we present the luminosity of the Tevatron (as
of May 2006) and LHC, and also indicate the event rate of a process with σ = 1 pb. Unfortunately it
is impossible to run an accelerator 24 hours a day, 365 days a year. Therefore we have also indicated
the integrated luminosity, which should be used for calculating the number of events per year.

Tevatron LHC
Run II low-L high-L√

s (in TeV) 2 14 14
Luminosity L (in cm−2s−1) 1032 1033 1034

Integrated luminosity (in fb−1/year) 1.5 10 100
Event rate, for σ = 1 pb (in events/day) 9 86 864
Events per year, for σ = 1 pb 1.5× 103 104 105

Table 1.1: Luminosity for the Tevatron and the LHC. The luminosity of the LHC will be increased by
a factor of 10 after several years operating at low-luminosity. For each accelerator the event rate and
the number of events per year for a σ = 1 pb process is given.
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Chapter 2

Gauge Theories

In this chapter we introduce the basic principles of gauge theories. It is meant as an easy appetizer for
the rest of the thesis and summarizes the knowledge that can be found in many textbooks about particle
physics. In the first section we briefly explain the use of Lagrangians and present the expressions for
the Lagrangians of scalar bosons, fermions, and vector bosons. The second section the symmetries
of Lagrangians are discussed, and we introduce local gauge symmetries. Finally, in the third section
we quickly review quantum field theory in order to explain some things about the origin of Feynman
diagrams and the Feynman rules.

2.1 Lagrangian mechanics

One of the most elegant and far-reaching principles in classical dynamics is Hamilton’s principle. It
can be stated as follows [1]:

Of all the possible paths x (t) along which a dynamical system may move from one
point to another within a specified time interval, the actual path followed is that for which
the action has a stationary value (a minimum, maximum or saddle point).

The action is defined as the time integral of the difference between the kinetic and the potential
energies:

S [x] ≡
∫ t2

t1

(T − U) dt =

∫ t2

t1

L dt. (2.1)

The functional L (ẋ,x, t) is the Lagrangian of the system. In mathematical terms, Hamilton’s principle
is written as

δS [x] = δ

∫ t2

t1

L dt = 0. (2.2)

According to the calculus of variations this integral can only have a stationary value if it satisfies the
Euler-Lagrange equations

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0, (2.3)

where x = (x1, x2, x3).
Given a Lagrangian, we can quickly find the equations of motion. For example, a one-dimensional

harmonic oscillator has the Lagrangian

L = T − U =
1

2
mẋ2 − 1

2
kx2, (2.4)

and the Euler-Lagrange equations immediately lead to the correct equation of motion:

kx+mẍ = 0. (2.5)

Evidently, everything that is to say about a physical system can be derived from the Lagrangian.
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Lagrangians in quantum field theories

In quantum field theory things are a bit different. Particles are described by relativistic fields that
allow a particle to choose between several different paths (transitions from one state to another), each
path with its own probability.

Because in a relativistic theory space and time should be on equal footing, we rewrite the action as

S [φ] =

∫ t2

t1

L dt =

∫ t2

t1

∫

V

(L dx) dt =
∫

L d4x. (2.6)

The function L (∂µφ (x) , φ (x) , x) is called the Lagrangian density, but in particle physics it is often
simply referred to as the Lagrangian. For this Lagrangian the Euler-Lagrange equations become

∂L
∂φi
− ∂µ

∂L
∂ (∂µφi)

= 0. (2.7)

As an example, the motion of a spin-0 particle with mass m is described by the Klein-Gordon equation,

(

∂µ∂
µ +m2

)

φ = 0, (2.8)

therefore a valid Lagrangian is

LKG =
1

2
(∂µφ)

2 − 1

2
m2φ2. (2.9)

It is easy to see that this Lagrangian indeed leads to the Klein-Gordon equation, by using the Euler-
Lagrange equations of (2.7). For complex scalar fields, the conventional Lagrangian is

LKG∗ = (∂µφ
∗) (∂µφ)−m2φ∗φ, (2.10)

where the complex field φ can considered to be the sum of two real scalar fields,

φ =
1√
2
(φ1 + iφ2) . (2.11)

The factors 1/2 are chosen such that the equations of motion become

(

∂µ∂
µ +m2

)

φ = 0, (2.12a)
(

∂µ∂
µ +m2

)

φ∗ = 0. (2.12b)

In a similar way we can find the Lagrangians for a spin- 12 field and spin-1 field. The Dirac Lagrangian

LDirac = iψγµ∂µψ −mψψ, (2.13)

leads to the Dirac equation for both the ψ and ψ:

iγµ∂µψ −mψ = 0, (2.14a)

i∂µψγ
µ −mψ = 0. (2.14b)

The Proca Lagrangian

LProca = −1

4
FµνFµν +

1

2
m2AνAν , (2.15)

with
Fµν = ∂µAν − ∂νAµ, (2.16)

leads to the equation of motion for a massive vector field:

∂µF
µν +m2Aν = 0. (2.17)

Note that if we take m = 0 and interpret Aµ = (φ,A) as the electromagnetic four-vector potential,
that the equations (2.17) are exactly the Maxwell equations in a vacuum without sources.
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2.2 Symmetries

Symmetries are in physics a very important tool. An important theorem that deals with symmetries is
Noether’s theorem, which states that for each global symmetry of the Lagrangian there is a conserved
current and a conserved charge involved. An example of such a Noether current is the current of
electric charges in Quantum Electrodynamics (QED) which is a direct consequence of a symmetry in
the QED Lagrangian,

LQED = ψ (iγµ∂µ −m)ψ − 1

4
FµνFµν − qψγµψAµ. (2.18)

Local U(1) symmetries: QED

As one can easily see, the Dirac Lagrangian (2.13) is invariant under the global U(1) transformation

ψ (x)→ ψ′ (x) = eiqλψ (x) , (2.19)

because then ψ → e−iqλψ and thus

LDirac → ie−iqλψγµ∂µe
iqλψ −me−iqλψeiqλψ = iψγµ∂µψ −mψψ = LDirac. (2.20)

An interesting thing happens if we demand that this Lagrangian is not just globally invariant, but also
locally invariant to the U(1) transformation:

ψ (x)→ ψ′ (x) = eiqλ(x)ψ (x) . (2.21)

In order to do this, we must replace the ordinary derivative ∂µ with the covariant derivative Dµ,

Dµ = ∂µ + iqAµ, (2.22)

where Aµ is the gauge field which transforms as

Aµ (x)→ Aµ (x)− ∂µλ (x) . (2.23)

A local transformation of the Lagrangian

L = iψγµDµψ −mψψ = iψγµ∂µψ − qψγµAµψ −mψψ, (2.24)

now results in

L′ = ie−iqλψγµ∂µe
iqλψ − qe−iqλψγµ (Aµ − (∂µλ)) e

iqλψ −me−iqλψeiqλψ
= ie−iqλψγµeiqλ (∂µψ) + ie−iqλψγµ

(

∂µe
iqλ
)

ψ

−qe−iqλψγµeiqλAµψ + qe−iqλψγµeiqλ (∂µλ)ψ −mψψ
= iψγµ (∂µψ)− qe−iqλψγµeiqλ (∂µλ)ψ
−qψγµAµψ + qe−iqλψγµeiqλ (∂µλ)ψ −mψψ

= iψγµ (∂µψ)− qψγµAµψ −mψψ = L. (2.25)

It is impossible to have a local gauge invariance without adding a gauge field to the Lagrangian.
If we add a vector field to the Lagrangian, then we must also add the Proca Lagrangian (2.17) for
Aµ. The kinetic term, − 1

4F
µνFµν , is invariant under the local U(1). This is not so strange, because

iqFµν = [Dµ, Dν ], as one can see with

[Dµ, Dν ]ψ = [∂µ, ∂ν ]ψ + iq ([∂µ, Aν ]− [∂ν , Aµ])ψ − e2 [Aµ, Aν ]ψ
= (∂µAν − ∂νAµ)ψ
= iqFµνψ. (2.26)

The mass term 1
2m

2AνAν however, is not locally invariant. Therefore the gauge boson must be
massless. The total Lagrangian is then

L = ψ (iγµDµ −m)ψ − 1

4
FµνFµν

= ψ (iγµ∂µ −m)ψ − 1

4
FµνFµν − qψγµψAµ. (2.27)
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But this is exactly the Lagrangian of QED! The local gauge invariance dictates that photon must be
massless and that the interaction between two electrons and a photon is given by

Lint = −qψγµψAµ ≡ jµAµ, (2.28)

where jµ ≡ −qψγµψ is the current density. With the Euler-Lagrange equations we find for the photon
field

∂µF
µν = jν , (2.29)

which are the Maxwell equations for an electromagnetic field produced by an electric current jν . From
this equation follows that the current must be conserved:

∂νj
ν = 0. (2.30)

All this comes from the Dirac Lagrangian and the demand that we have a local U(1) symmetry!
But why a local symmetry? What does it mean? A global transformation is performing a trans-

formation at all points in space-time at once. A local transformation on the other hand means that
you do a different transformation at each point. The most basic local transformation is to execute the
transformation only at one point1. This cannot be done without consequences: the transformation of
the electron field ψ leads to the change of the photon field Aµ. A heuristic point of view is to compare
this with a space full of electric charges. Moving them all does not change the fields (if we move along).
However, moving only a single charge creates an electromagnetic field.

In any case, it is a remarkable fact that by demanding the symmetry to be local, that the Dirac
Lagrangian demands the existence of the photon field with the same interactions as found in nature.

Local SU(2) symmetries: isospin

The concept of using a gauge symmetry to implement interactions into a theory can be extended to
other symmetry groups. However, if we want to keep ψψ invariant then the transformation ψ → Uψ
must be unitary,

ψψ → ψU †Uψ = ψψ ⇒ U † = U−1. (2.31)

Therefore the gauge groups are almost always SU(N) or U(1). As a specific example we introduce here
isospin theory, which uses SU(2) as the gauge group.

The idea of isospin was first introduced by Heisenberg2. He noticed that the neutron is almost
identical to the proton, apart from its electric charge. They almost have the same mass and the strong
force couples just as strong to the proton as it does for the neutron. It was believed that the strong
force is mediated by pions, three light mesons that strongly interact with the proton and the neutron.
According to Heisenberg the proton and neutron can be imagined as two different states of the same
particle called the nucleon. The pions in this theory are the gauge bosons, similar to the photon in
QED.

The nucleon is written as an isospin doublet,

ψ =

(

p
n

)

, (2.32)

with isospin I = 1
2 . The state of the nucleon transforms as

ψ → ψ′ = U

(

p
n

)

(2.33)

where U is a unitary 2 × 2 matrix and therefore a U(2) transformation. This however is a reducible
group: it can be reduced to SU(2)×U(1). To see this more clearly, we write the matrix U in terms of
four real parameters:

U = eiH , (2.34)

where H = H† is an Hermitian 2× 2 matrix,

H = Y 12×2 + Ia
τa
2
. (2.35)

1Any other local transformation can be considered as the result of performing several different single-point transfor-
mations at once, one at each point in space-time.

2Even though the idea of a SU(2) isospin was proposed by Heisenberg, the idea of using a local SU(2) was invented
by Yang and Mills. Perhaps a better name for the theory described here is “Yang-Mills theory with isospin”.
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The τa are the three Pauli matrices, the vector Ia = (I1, I2, I3) is the isospin vector, and Y is called
the hypercharge because it is very similar to the electric charge of the U(1) group in QED. The U(2)
group is clearly reducible: the SU(2) part of the transformation mixes the different isospin states, while
the U(1) part only changes the phase of each state but does not mix them.

The proton is the eigenstate with eigenvalue I3 = + 1
2 and the neutron the eigenstate with I3 = − 1

2 .
The relation between Ia, Y and the electric charge Q is given by the Gell-Mann-Nishijima formula:

Q = I3 +
1

2
Y. (2.36)

So, for the nucleon we must have Y = 1. This formula also holds for other particles, like the pions
(I = 1):

πa =





π+

π0

π−



 . (2.37)

The quantum numbers for the π+, π0, π− are I3 = 1, 0,−1 and Y = 0. The more interesting part of
the theory lies in the isospin. Therefore in the rest of the section we ignore the hypercharge and only
work with isospin.

The strong force sees no difference between the isospin states, and hence the Lagrangian describing
the strong force should be isospin invariant. If we imply the symmetry to be a local SU(2) isospin
invariance, the Lagrangian becomes

L = ψ (iγµDµ −m)ψ − 1

4
F aµνF a

µν , (2.38)

where F a
µν can be written as [2]

−igF a
µν

τa

2
= [Dµ, Dν ] , (2.39)

with the covariant derivative

Dµ = ∂µ − igAaµ
τa

2
. (2.40)

Putting (2.39) and (2.40) together we find an explicit expression for F a
µν :

F a
µν = ∂µA

a
ν − ∂µAaν + gεabcAbµA

c
ν . (2.41)

The antisymmetric tensor εabc are the structure constants of the SU(2) group.
The expression for Dµ is not as arbitrary as it seems. Because the group SU(2) has three generators

(meaning that the transformation is parameterized by three real numbers) there are also three real
gauge fields, represented by the pions:

Aaµ =





A1
µ

A2
µ

A3
µ



 =





π+

π0

π−



 . (2.42)

Because also the pions carry isospin, the triplet must be able to rotate under SU(2):

Aaµ → UAaµ = eiHAaµ. (2.43)

However, in this case H is a Hermitian 3× 3 matrix,

H = IaT a, (2.44)

with T a the 3-dimensional SU(2) generators. We are searching for a Dµ that gives us something similar
to (2.28), for example

Lint = jµA
µ = gψγµAaµψ. (2.45)

But we cannot have an interaction term like that, because the vectors are of different sizes and the
Lagrangian has to be a singlet under any transformation.

To solve this, we need to write Aaµ in a different representation of SU(2) that has the same dimension
as the nucleon doublet. That representation is the adjoint representation:

Aµ ≡ Aaµ
τa

2
. (2.46)
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One could call Aµ a 2×2 matrix field, but it is actually just a SU(2) triplet in the adjoint representation.
The Aµ we can use in the same way as we did in (2.28), and so we find

Dµ = ∂µ − igAµ = ∂µ − igAaµ
τa

2
, (2.47)

as stated in (2.40). Evidently, we need the generators of the gauge group to couple the gauge field
with fermions.

There are several problems with this theory as stated here. The pions are massless, but in reality
they have a mass of ∼ 140 GeV. Also the pions have the wrong spin. In this theory they are vector
bosons, while in reality they are (pseudo)scalar bosons with spin 0. As a fundamental theory this
theory failed. Later it became clear that the pions and nucleons were actually composed of quarks,
transforming under a color SU(3). This is the theory of QCD, where the strong force is mediated by
gauge bosons called gluons. Because SU(3) is parametrized with 8 real values, there are 8 real fields
and hence 8 gluons.

Even though the isospin theory never gave a perfect description of the strong force, it is a very
useful tool for calculating e.g. the branch ratios of nucleon-pion scattering [3]. Also the idea of using
a gauged SU(2) symmetry became a foundation stone for further theories, in particular electroweak
theory.

2.3 Feynman diagrams

To actually do calculations with the Lagrangians, we need to find a set of rules to convert the La-
grangian to something useful: the invariant amplitude M. With this it is then possible to calculate
cross sections and decay widths, things that can actually be measured in an experiment.

In this section we give a short introduction to quantum field theory. A more elaborate description
of the theory can be found in several textbooks, e.g. [4] and [5].

Feynman’s extension of Hamilton’s principle

By inventing the path integral formalism, Feynman extended Hamilton’s principle for quantum me-
chanics. Because of the particle-wave duality we can no longer talk about a particle that follows a
certain path, instead, it is more as if the particle follows all possible path at once. The principle is
nicely illustrated by a quote from F.J. Dyson [6]:

Thirty-one years ago, Dick Feynman told me about his ‘sum over histories’ version of
quantum mechanics. ‘The electron does anything it likes’, he said. ‘It goes in any direction
at any speed, forward or backwards in time, however it likes, and then you add up the
amplitudes and it gives you the wave-function.’ I said to him, ‘You’re crazy’. But he
wasn’t.

The generating functional

In quantum mechanics the probability for a particle to go from an initial state |ψi〉 to a final state
∣

∣ψf
〉

is given by the absolute square of the amplitude,

Pi→f =
∣

∣

〈

ψf , tf |ψi, ti
〉∣

∣

2
=
∣

∣

∣

〈

ψf

∣

∣

∣e−iH(tf−tt)
∣

∣

∣ψi

〉∣

∣

∣

2

. (2.48)

where H (t) is the Hamilton operator3. By cutting the time interval [ti, tf ] into infinitesimally small
intervals, the amplitude turns into a functional integral:

〈

ψf , tf |ψi, ti
〉

=

∫

DqDp
2π

exp

(

i

∫ tf

ti

dτ [pq̇ −H (p, q)]

)

=

∫

Dq exp
(

i

∫ tf

ti

dτ L (q, q̇)

)

, (2.49)

where L (t) is the Lagrangian.

3Note that we are working in the Heisenberg picture, the states |ψ〉 are time-independent and the operators are
time-dependent. The notation |ψ, t〉 should be interpreted as “the state |ψ〉 as measured by operators at time t”.

15



In the same way the expectation value of any operator Q (t) can also be turned into a path integral.
If q (t) is the eigenvalue given by Q (t) |ψ, t′〉 = q (t) |ψ, t′〉 then

〈

ψf , tf |Q (t)|ψi, ti
〉

=

∫

Dq q (t) exp
(

i

∫ tf

ti

dτ L (q, q̇)

)

. (2.50)

In general, for any product of operators Q (t1)Q (t2) · · ·Q (tn) we have

〈

ψf , tf |T Q (t1)Q (t2) · · ·Q (tn)|ψi, ti
〉

=

∫

Dq q (t′n) · · · q (t′1) exp
(

i

∫ tf

ti

dτ L (q, q̇)

)

, (2.51)

where T is the time ordering operator, defined as

T Q (t1)Q (t2) · · ·Q (tn) ≡ Q (t′n)Q
(

t′n−1

)

· · ·Q (t′1) (2.52)

for t′1 ≤ t′2 ≤ . . . ≤ t′n. In other words, T orders all the operators chronologically.
Sofar we have only considered the Lagrangian in the ground state, the vacuum. But in a real

experiment there is more than just the vacuum. At time ti particles are created, they have some
interactions with each other, and finally at tf they are absorbed again by a detector for instance. This
situation can be described by adding a source term J (t) to the Lagrangian,

〈

ψf , tf |ψi, ti
〉J

=

∫

Dq exp
(

i

∫ tf

ti

dτ [L (q, q̇) + Jq]

)

, (2.53)

with J (t) = 0 for t < ti and t > tf . In this way we make sure that before and after the experiment
there is nothing but the ground-state |0〉.

The generating functional Z [J ] is defined as the amplitude 〈0f |0i〉J of the transition from ground
state |0i〉 at time −T to ground state |0f 〉 at T , in the limit T →∞ (1− iε),4

Z [J ] ≡
∫

Dq exp
(

i

∫

dτ [L (q, q̇) + Jq]

)

. (2.54)

Note that

δZ [J ]

δJ (t)

∣

∣

∣

∣

J=0

=
δ

δJ (t)

∫

Dq exp
(

i

∫

dτ [L (q, q̇) + Jq]

)∣

∣

∣

∣

J=0

= i

∫

Dq q (t) exp
(

i

∫

dτ [L (q, q̇) + Jq]

)∣

∣

∣

∣

J=0

= i

∫

Dq q (t) exp
(

i

∫

dτ L (q, q̇)

)

= i 〈0 |Q (t)| 0〉 , (2.55)

and in general

δnZ [J ]

δJ (t1) · · · δJ (tn)

∣

∣

∣

∣

J=0

= (i)
n
∫

Dq q (t1) · · · q (tn) exp
(

i

∫

dτ L (q, q̇)

)

= (i)
n 〈0 |T Q (t1) · · ·Q (tn)| 0〉 . (2.56)

This means that with Z [J ] we can find any amplitude for any process described by the L at hand.
This also works with quantum fields. For example, the amplitude for the process with one scalar

particle in the initial state and one scalar particle in the final state is given by

〈0 |φ (y)φ (x)| 0〉 = (−i)2 δ2Z [J ]

δJ (y) δJ (x)

∣

∣

∣

∣

J=0

. (2.57)

Here the quantum fields φ contain creation and annihilation operators. The creation operator in φ (x)
creates at x a particle from the vacuum and the annihilation operator in φ (y) destroys that particle
at y, leaving the vacuum behind. Apparently we can use the functional Z [J ] just like a generating
function, hence the name.

4The small imaginary contribution iε (the Wick rotation) is needed to guarantee convergence of the integral.
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Feynman diagrams

In the case of a relativistic scalar field φ the generating functional is given by

Z [J ] ≡
∫

Dφ exp
(

i

∫

d4x [L (φ, ∂µφ) + Jφ]

)

. (2.58)

The n-point Green’s function is defined by

G(n) (x1, . . . , xn) ≡ 〈0 |T φ (x1) · · ·φ (xn)| 0〉 = (−i)n δnZ [J ]

δJ (x1) · · · δJ (xn)

∣

∣

∣

∣

J=0

. (2.59)

It is also possible to write G(n) as a diagram:

G(n) (x1, . . . , xn) =

x1

x2

x3

x4

xn

. (2.60)

This diagram can be regarded as a process where a number particles are created from the vacuum,
interact (inside the bubble), and then all are annihilated again. Note that the number of ingoing
particles does not have to be equal to the number of outgoing particles.

The simplest example of such a diagram is for the process where one particle is created at x1 and
is then annihilated at x2:

G(2) (x1, x2) = 〈0 |φ (x2)φ (x1)| 0〉 = x1 x2 ≡ i∆F (x2 − x1) . (2.61)

The function ∆F (x) is the propagator of the field. It is easier to work with the Fourier transform
∆̃F (p), than with ∆F (x) itself. The propagator in momentum space is given by

i∆̃F (p) = p =
i

p2 −m2 + iε
. (2.62)

For higher values of n the diagrams become more and more complicated. For example, if there is an
interaction term in the Lagrangian like

Lint = −
λ

4!
φ4, (2.63)

there will be diagrams with points where four lines meet. These points are called vertices. For the
interaction term of (2.63) we have

= −iλ. (2.64)

If we had used a different Lint as an example, we would have had a different vertex with a different
expression.

There are all kinds of diagrams possible. Some diagrams have all lines connected, and some do not.
As it happens, the sum of all diagrams can be written as the sum of all connected diagrams times some
factor that represents vacuum to vacuum transitions. In most cases this factor disappears during the
calculation and is therefore ignored. Also, to calculate the amplitude of a process in which we start
with some set of particles and end with some other set, we are not interested in the part of particle
creation and annihilation. Therefore the only diagrams that are used, are the diagrams without the
legs. These are called amputated diagrams. We are now left with diagrams that are made only out of
propagators, vertices and external lines. An example of such a Feynman diagram is

p
(2.65)

The external lines represent the initial and final particles in the diagram. In the case of real scalar
fields all external lines are mathematically expressed in momentum space with

= 1. (2.66)
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For the fermions however, the particle is not described by a simple scalar, but by a 2-component spinor
u with spin s = ± 1

2 . The expression for the external fermion line with momentum p and spin s is
therefore

p
= u (s, p) . (2.67)

This represents a fermion going into the diagram, an initial fermion. A final state fermion is represented
by the adjoint spinor:

p
= u (s, p) . (2.68)

For the real scalar boson there is no such difference, because φ† = φ. Finally, the external lines for the
antifermions with spin s and momentum p are given by

p
= v (s, p) , (2.69a)

p
= v (s, p) . (2.69b)

The v and v are the same type of spinors as the u and u; we use a different notation only to make
clear that these are antifermions.

In momentum space the vector bosons are described with the polarization vector εµ (λ, p). The
spin λ = −1, 0,+1 is in this context called the helicity. The helicity of a particle is defined as the
projection of a spin vector s in the direction of its momentum vector,

λ ≡ s · p
|s · p| . (2.70)

For a vector boson of mass M and four-momentum p = (E, 0, 0, |p|) the polarization vectors become
[7]

εµ (±1, p) = (0,∓1, i, 0) /
√
2, (2.71a)

εµ (0, p) = (|p| , 0, 0, E) /M. (2.71b)

These equations are clearly not valid for M = 0. For massless vector bosons, like e.g. the photon,
there is no polarization state with λ = 0 and therefore it has only transverse polarization states. The
constraint m = 0 means that the photon has one degree of freedom less.

With the allowed values for λ in mind, both massive and massless vector bosons have the same
expressions for the external lines:

p
= εµ (λ, p) , (2.72a)

p
= ε∗µ (λ, p) . (2.72b)

These rules to convert Feynman diagrams into mathematical expressions are called Feynman rules.
The Feynman rules for the propagators, vertices, and external lines are summarized in Table 2.1.
Apart from the rules stated in this section, there are also rules concerning diagrams containing loops.
Those rules have been omitted here, because in this thesis all calculations are done at leading order
(there are no calculations with loop diagrams).

The invariant amplitude

To describe all possible scattering processes, we define the S-matrix. This matrix transforms any initial
state |ψi〉 into a final state

∣

∣ψf
〉

,
∣

∣ψf
〉

= S |ψi〉 (2.73)

Each element of the S-matrix can be written as

Sfi = δfi + (2π)
4
δ4 (
∑

pi −
∑

pf ) · iMi→f (2.74)

whereMi→f is the invariant amplitude for |ψi〉 →
∣

∣ψf
〉

. The Kronecker delta δfi describes the process

of
∣

∣ψf
〉

= |ψi〉 when no interactions occur. Evidently, we are more interested in the term withM.
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By using the Feynman diagrams it is easy to calculate the invariant amplitude. To findM we first
translate all propagators, vertices, and external points into their mathematical equivalent. Connections
in the diagram translate to multiplication in the equation for M. For example, a Feynman diagram
like

e−

e+

γ

µ−

µ+

q
(2.75)

translates into5

−iM = [v̄e+ (−igeγµ)ue− ]
−igµν
q2

[

ūµ− (−igeγν) vµ+

]

. (2.76)

In the center-of-mass frame, the differential cross section for the process A+B → C +D is given by

dσ

dΩ
=
S |M|2
64π2s

|pA|
|pC |

. (2.77)

In this equation s is the center-of-mass energy s = (EA + EB)
2
, the dΩ is given by dΩ = sin θ dθ dφ,

and S is a product of statistical factors: 1/j! for each group of j identical particles in the final state.
Coincidentally, none of the processes discussed in this thesis have identical particles in the final state,
and therefore we shall simply leave S out of the equation.

For energies that are high enough we can neglect the masses in e−e+ → µ−µ+. Substituting (2.76)
into (2.77) leads in that case to

dσ

dΩ
=
α2

4s

(

1 + cos2 θ
)

, (2.78)

with α = g2e/4π = 1/137. In Chapter 4 we shall show in more detail how such a calculation is done.
The invariant amplitude can also be used to calculate the lifetime of a particle. The lifetime τ

follows from τ = 1/Γ, where Γ is the decay rate or the width. If particle A decays into two particles B
and C, the width is

Γ =
S |pC |
8πm2

A

|M|2 . (2.79)

If the decay products are both massless, |pB | = |pC | = mA/2, and this equation simplifies to

Γ =
S

16πmA
|M|2 . (2.80)

5Most often we write the spinor uA (sA, pA) simply as uA. When there is a summation over the spin, we must
remember that uA always carries spin −1 or +1. Of course we do the same thing for εµ.
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Scalar boson propagator:
p

=
i

p2 −m2 + iε

Fermion propagator:
p =

i
(

/p+m
)

p2 −m2 + iε

Vector boson propagator:
p

=
−i

p2 −m2 + iε

(

gµν −
pµpν

p2 − ξm2
(1− ξ)

)

Photon propagator:
p

=
−igµν
p2 + iε

External scalar line: = 1

External fermion line:
p

= us (p) (initial)

p
= us (p) (final)

External antifermion line:
p

= vs (p) (initial)

p
= vs (p) (final)

External photon line:
p

= εµ (p) (initial)

p
= ε∗µ (p) (final)

QED vertex:

µ

= iQeγµ (Q = −1 for an electron)

Fermion vertex:

a, µ

= igγµT a (T a is the generator of the group)

3-boson vertex:

a, µ

b, ν c, ρ

kp

q

=

gfabc [gµν (k − p)ρ

+gνρ (p− q)µ

+ gρµ (q − k)ν ]

4-boson vertex:

a, µ b, ν

c, ρ d, σ

=

−ig2
[

fabef cde (gµρgνσ − gµσgνρ)

+facef bde (gµνgρσ − gµσgνρ)

+ fadef bce (gµνgρσ − gµρgνσ)
]

Table 2.1: The propagators, vertices and external lines in momentum space for any SU(N) gauge
theory. The rules for QED and the photon have been included also. The ε in the propagators is a
small number which can be ignored in most cases. Near the pole of the propagator however, one must
replace the ε by the mass of the particle times its decay width (see e.g. Chapter 6). The gauge ξ has
no influence on calculations [8]. For the gauge ξ = 0 the Goldstone bosons disappear from the theory.
Taken from [9].
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Chapter 3

The Standard Model

The Standard Model of particle physics was developed between 1970 and 1973 and has been one of
the most successful theories in physics. Similar to the isospin theory discussed in the previous chapter,
the Standard Model is based on the idea of having a Lagrangian that is symmetric under certain local
symmetries. These symmetries then determine all of the interactions in the theory.

The model actually consists of two parts, describing two different forces in nature. Quantum
chromodynamics (QCD) is the theory that describes the strong nuclear force. Electroweak theory
describes the weak interaction unified with the electromagnetic force.

In Section 3.1 we highlight several striking discoveries in high energy experiments that provide
for a basis of the electroweak model. After determining which structure the Standard Model should
have, we start building the Lagrangian for electroweak theory in Section 3.2. The resulting theory
only contains massless particles, and in order to fix this we introduce in Section 3.3 the principle of
symmetry breaking. In the sections after that we examine the results of this principle for the gauge
bosons (Section 3.4) and for the fermions (Section 3.5). Finally in Section 3.6 we introduce QCD. In
Section 3.7 we give a quick summary of the whole Standard Model.

3.1 Experimental basis for electroweak theory

The electroweak theory is based mostly on three crucial clues from experiments (the terms left-handed
and right-handed will be introduced shortly):

1. Only left-handed fermions feel the (charged-current) weak interaction and those that do, only
interact in pairs of two. For leptons these doublets are

(

νeL
eL

)

,

(

νµL
µL

)

,

(

ντL
τL

)

, (3.1)

and for the quarks
(

uL
d′L

)

,

(

cL
s′L

)

,

(

tL
b′L

)

. (3.2)

The quarks d′, s′ and b′ are linear combinations of the mass eigenstates d, s and b:




d′

s′

b′



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d
s
b



 . (3.3)

This matrix Vqq′ is the CKM matrix.

2. All (charged-current) weak interactions are equally strong, the weak force treats e.g. the electron
doublet exactly the same as all the other doublets.

3. Neutrinos are massless1 and therefore travel at the speed of light. This also means that they have
a fixed helicity, and hence there are no interaction in the theory that transform a left-handed
neutrino into a right-handed one, or vice versa.

1Recent experiments have indicated that neutrinos actually do carry a tiny mass, but this was unknown during the
time that the Standard Model was developed. In this thesis we choose to simply ignore the existence of neutrino mass.
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Because the right-handed neutrino does not feel the weak force, is electrically neutral, and has a
fixed helicity, it does not interact with anything and is therefore excluded from the model. In other
words, we assume that the right-handed neutrino simply does not exist. The consequence is that there
are no right-handed doublets in the theory, but only right-handed singlets:

(eR) , (µR) , (τR) . (3.4)

Since the right-handed quarks do not feel the weak force either (a uR-quark never transforms into a
d′R-quark), all of them are also singlets:

(uR) , (d′R) , (cR) , (s′R) , (tR) , (b′R) . (3.5)

Given these experimental observations the task is to construct a Lagrangian that agrees with these
experiments. The doublets are very similar to what we had in isospin theory. Therefore we postulate
that also the electroweak Lagrangian has an local SU(2)×U(1) symmetry.

3.2 Building the Lagrangian

Given the symmetry of the theory, we know how to construct the Lagrangian. There must be a kinetic
term for the fermions, a covariant derivative and a kinetic term for the gauge bosons.

Kinetic term of the fermions

To create a Lagrangian that distinguishes between left-handed and right-handed particles, we need
to use the helicity projection operators PL = 1

2 (1− γ5) and PR = 1
2 (1 + γ5). These operators have

several very interesting properties:

PL + PR = 1, (3.6a)

PLPR = PRPL = 0, (3.6b)

P 2
L = PL, P 2

R = PR, (3.6c)

P †
L = PL, P †

R = PR, (3.6d)

PLγ
µ = γµPR, (3.6e)

γµPL = PRγ
µ. (3.6f)

These identities can be easily found using (γ5)
2
= 1, γ†5 = γ5, and γ5γ

µ = −γµγ5. The left-handed
electron doublet for example, can be written as

Le =

(

νeL
eL

)

=

(

PLνe
PLe

)

= PL

(

νe
e

)

, (3.7)

while the right-handed electron singlet is simply

Re = (eR) = PRe. (3.8)

For the adjoint left-handed spinor we have

ψL ≡ PLψ = (PLψ)
†
γ0 = ψ†P †

Lγ
0 = ψ†PLγ

0 = ψ†γ0PR = ψPR, (3.9)

and similar,
ψR ≡ PRψ = ψPL. (3.10)

The adjoints of the electron doublet and singlet are then

Le =
(

νeL eL
)

=
(

νe e
)

PR, (3.11a)

Re = (eR) = ePL. (3.11b)

Using the properties of PL and PR, the mass term of the electron becomes

−meee = −mee (PL + PR) e

= −mee
(

P 2
L + P 2

R

)

e

= −me (ePLPLe+ ePRPRe)

= −me (eReL + eLeR) . (3.12)
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This is a problem. The Lagrangian is by definition a scalar quantity, but −meeReL and −meeLeR are
clearly not:

−meeReL = −me (eR)

(

0
eL

)

, (3.13a)

−meeLeR = −me

(

0 eL
)

(eR) . (3.13b)

Adding these two is not even possible because they have different sizes2. Conclusively, by dividing
a fermion into a left-handed doublet and right-handed singlet, we have excluded any possibility of
adding a mass term to the Lagrangian. For now we shall ignore this problem; the solution for giving
the fermions a mass is given later in this chapter.

Fortunately, we are allowed to have a kinetic term for the fermions:

ieγµ∂µe = ieγµ∂µ
(

P 2
L + P 2

R

)

e

= ie (γµ∂µPLPL) e+ ie (γµ∂µPRPR) e

= ie (PRγ
µ∂µPL) e+ ie (PLγ

µ∂µPR) e

= ieLγ
µ∂µeL + ieRγ

µ∂µeR

= i
(

0 eL
)

γµ∂µ

(

0
eL

)

+ i (eR) γ
µ∂µ (eR) . (3.14)

In this case the doublet is multiplied with its adjoint, resulting in a singlet which can be included to
the Lagrangian. Of course, everything said here for the electron is also true for the other leptons and
the quarks. The kinetic terms for all fermions are therefore

LkF = iL` /∂L` + iR` /∂R` + iLq /∂Lq + iRq /∂Rq + iRq′ /∂Rq′ , (3.15)

where summation over ` = e, µ, τ and q = u, c, t and q′ = d′, s′, c′ is implied. Using the operators PR
and PL like before, it is easy to shown that this Lagrangian is equal to what we were looking for:

LkF = iν`L /∂ν`L + i`/∂`+ iq /∂q + iq′ /∂q′. (3.16)

Symmetries

The Lagrangian is invariant under a global symmetry SU(2)×U(1). This was to be expected, because
the electroweak theory has the same structure as the isospin theory from Chapter 2. Therefore is should
not come as a surprise that the quantum number T associated with SU(2)w is called weak-isospin and
that the quantum number Y of the U(1)Y is called the (weak) hypercharge.

The doublets and singlets transform under the SU(2)w×U(1)Y as

L (x) → L′ (x) = exp

(

ig T a
τa

2

)

exp (ig′Y )L (x) , (3.17a)

R (x) → R′ (x) = exp (ig′Y )R (x) . (3.17b)

The τa are the Pauli matrices. Because the right-handed particle R is a singlet under the SU(2)w
it transforms according to the 1-dimensional representation of SU(2), which means that for R the
SU(2)w transformation is the same thing as multiplying with a factor of 1. In other words, right-
handed particles do not feel the force of the weak isospin, the weak force. This has already been
mentioned in Section 3.1. Consequently, this means that for right-handed particles the weak-isospin is
equal to zero.

The adjoints L and R transform as

L
′
(x) = [L′ (x)]

†
γ0

= L† (x) γ0 exp (ig′Y )
†
exp

(

ig T a
τa

2

)†

= L (x) exp (−ig′Y ) exp

(

−ig T a τ
a

2

)

(3.18)

2Actually, this is a different way of saying that a mass term would break the SU(2) symmetry of the Lagrangian.
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(using the hermiticity of the Pauli matrices, τ †a = τa) and

R (x)→ R
′
(x) = exp (−ig′Y )R (x) . (3.19)

With these expressions it is easy to see that the Lagrangian of (3.15) is indeed invariant under
SU(2)w×U(1)Y . Note that if we would have had a mass term, the Lagrangian would not be invariant
under the SU(2).

The covariant derivative

We shall now ‘gauge’ the symmetry. If we demand that the Lagrangian stays invariant under the local
gauge symmetry SU(2)w×U(1)Y then we need to replace the ∂µ in (3.15) by3

Dµ = ∂µ − ig′BµY − igW a
µ

τa

2
. (3.20)

Here the Bµ and W a
µ are the gauge bosons of U(1)Y and SU(2)w. Since R is a singlet under the SU(2),

we need to use different expressions for DµL and DµR:

DµL =

(

∂µ − ig′BµY − igW a
µ

τa

2

)

L, (3.21a)

DµR = (∂µ − ig′BµY )R. (3.21b)

When substituting these into the Lagrangian, we find interaction terms:

iLγµDµL = iLγµ
(

∂µ − ig′BµY − igW a
µ

τa

2

)

L

= iLγµ∂µL+ g′BµLγ
µY L+ gW a

µLγ
µ τ

a

2
L

= Lkin,L + Lint,L, (3.22)

and

iRγµDµR = iRγµ (∂µ − ig′BµY )R

= iRγµ∂µR+ g′BµRγ
µY R

= Lkin,R + Lint,R. (3.23)

In this equations we can see clearly that there is no term for interactions of right-handed particles with
the W a

µ bosons.

Kinetic term of the gauge fields

Now that we have introduced the gauge bosons Bµ and W a
µ , we shall add the appropriate kinetic

terms. For the U(1) gauge boson Bµ we have to add

L = −1

4
BµνB

µν , (3.24)

with Bµν the field strength given by

Bµν = ∂µBν − ∂νBµ. (3.25)

We can also write this as
−ig′BµνY = [Dµ, Dν ] , (3.26)

but then we must use T = 0, i.e.
Dµ = ∂µ − ig′BµY (3.27)

3Often Dµ is defined with −ig′Bµ
Y
2
to make it look similar to the SU(2) term. From a group theory point of view

this is an unlogical choice, because Y is the U(1) generator and τa/2 is the SU(2) generator. We shall take here the
same approach as Peskin & Schroeder [4] and use Y instead of Y/2. This has no influence on the physics, only on the
the value of Y assigned to each particle.
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because the Bµ field carries no weak-isospin. That this is so can be seen from the Lagrangian: there
are no interactions between Bµ andW a

µ . Of course, this also means that theW a
µ carry no hypercharge.

Therefore for the W a
µ field we have

Dµ = ∂µ − igW a
µ

τa

2
, (3.28)

and we write

L = −1

4
W a
µνW

aµν , (3.29)

with the field strength

−igW a
µν

τa

2
= [Dµ, Dν ] , (3.30)

which can be written as
W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν . (3.31)

Lagrangian of the massless electroweak theory

We can summarize the total Lagrangian as

L = LkF + LkGB. (3.32)

The LkF are the kinetic terms for the fermions,

LkF = iLfγ
µDµLf + iRfγ

µDµRf

= iLfγ
µ

(

∂µ − ig′BµY − igW a
µ

τa

2

)

Lf + iRfγ
µ (∂µ − ig′BµY )Rf , (3.33)

and LkGB the kinetic terms for the gauge bosons,

LkGB = −1

4
(∂µBν − ∂νBµ)2 −

1

4

(

∂µW
a
ν − ∂νW a

µ + gεabcW b
µW

c
ν

)2
. (3.34)

Summation over the appropriate flavors f = `, q, q′ is implied. The interactions between the gauge
bosons and the fermions are inside LkF.

This Lagrangian gives a nice description of electromagnetic and weak interactions with e.g. the
Bµ field as the photon and the W a

µ as mediators of the weak force. However, there is one big flaw: all
particles are massless. The gauge bosons W a

µ cannot be truly massless because otherwise we would
have seen them already in experiments. How can we give the bosons and fermions a mass without
losing the symmetry SU(2)w×U(1)Y that generated the interaction terms?

3.3 Spontaneous symmetry breaking

The reason why all particles are massless is because the symmetry SU(2)w×U(1)Y forbids mass terms,
as was shown in (3.13). Therefore the way to solve this is to break the symmetry. But we cannot just
leave out the symmetry, because that would ruin our whole theory. We need a more subtle way of
symmetry breaking.

There are actually different ways for doing this. We could argue for instance, that the symmetry
was never truly exact but just an approximate symmetry. That means that small mass terms in
Lagrangian are allowed that do not satisfy the symmetry. This is called explicit symmetry breaking.

The Standard Model uses a different way of breaking. By introducing a scalar boson with a specific
potential it is possible to induce mass terms for both the gauge bosons and the fermions. This is done
in such a way that all interactions still respect the symmetry, allthough the ground state does not.
This mechanism is called spontaneous symmetry breaking. How it works is explained in the next few
subsections.
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Figure 3.1: Plot of the Higgs potential of Eq. (3.36).

Goldstone bosons

To obtain a better understanding of the whole principle, we shall first break a global U(1) symmetry.
Imagine a complex scalar boson φ with the Lagrangian

L = (∂µφ
∗) (∂µφ)− V (φ) , (3.35)

where the potential V is given by

V (φ) = −µ2 |φ|2 + λ |φ|4 . (3.36)

For µ2 > 0 and λ > 0 the potential will have the shape of a Mexican hat (or the bottom of wine
bottle), see Figure 3.1. Note that in this case µ2 has the wrong sign to be a scalar mass term.If the
system is in its lowest energy state (the vacuum) then V will be minimal. That minimum occurs at

|φ|2 =
µ2

2λ
. (3.37)

In other words, the expectation value for φ in the vacuum is 〈φ〉 = µ/
√
2λ. For obvious reasons 〈φ〉

is called the vacuum expectation value (VEV). Note that the vacuum state φ0 is degenerate; it can be
anything as long as |φ0| = 〈φ〉. For our calculations we shall assume that φ0 is real. This assumption
is valid, because we can always transform this state with an U(1) transformation to any other possible
ground state.

When φ is in its ground state, the U(1) symmetry will be broken. This spontaneous breaking
of the symmetry is something that also occurs in many other areas of physics. Imagine for example
a symmetric chamber filled with water vapor. At high temperatures the vapor will be uniformly
distributed throughout the chamber. When the temperature of the chamber is lowered, the vapor will
start to condensate. The first tiny drop of water could form anywhere on the walls of the chamber.
When this happens, the distribution of the water molecules is no longer uniform. We could say that
the symmetry has been broken.

We expand the field φ about the ground state:

φ (x) = φ0 +
1√
2
(φ1 (x) + iφ2 (x)) . (3.38)

The Lagrangian becomes

L = (∂µφ
∗) (∂µφ)− V (φ) =

1

2
(∂µφ1)

2
+

1

2
(∂µφ2)

2 − V (φ) , (3.39)
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with the potential given by

V (φ) = −µ
4

4λ
+ µ2φ21 + µ

√
λφ31 + µ

√
λφ1φ

2
2 +

1

4
λφ41 +

1

2
λφ21φ

2
2 +

1

4
λφ42. (3.40)

Here we have substituted φ0 = µ/
√
2λ. Apparently, the real φ1 field has obtained a mass:

µ2φ21 =
1

2

(

2µ2
)

φ21 =
1

2
m2

1φ
2
1 (3.41)

with m1 =
√
2µ, while the φ2 field remains massless.

We have just witnessed an example of Goldstone’s theorem: for every spontaneously broken con-
tinuous symmetry, the theory must contain a massless particle. These particles are called Goldstone
bosons. In this case we have broken a U(1) symmetry, which means that only one of the φ1 and φ2
fields is allowed to remain massless. If we would have broken SU(2) and had started with a complex
doublet like

φ =

(

φ1 + iφ2
φ3 + iφ4

)

, (3.42)

then this would have become a set of three massless Goldstone bosons and one massive particle. Here
three fields remain massless because SU(2) consists of three continuous symmetries.

The Higgs mechanism

When we break a local symmetry, slightly different things happen. As an example we consider again
the Lagrangian of (3.35) but replace the ordinary derivatives with the covariant derivative of a local
U(1) symmetry:

L = (Dµφ
∗) (Dµφ) + µ2 |φ|2 − λ |φ|4 , (3.43)

with
Dµ = ∂µ − igAµ. (3.44)

The potential has remained the same and therefore φ requires the same VEV 〈φ〉, we can expand φ (x)
in the same way as in (3.38)

φ (x) = φ0 +
1√
2
(φ1 (x) + iφ2 (x)) , (3.45)

and the potential becomes again like in (3.40) with φ2 massless and m1 =
√
2µ.

The kinetic term however, has now become

|Dµφ|2 =
1

2
(∂µφ1)

2
+

1

2
(∂µφ2)

2
+
√
2φ0g (∂µφ2)Aµ + φ20g

2AµA
µ + g (∂µφ2)Aµφ1

+
1

2
g2AµA

µφ21 +
√
2φ0g

2AµA
µφ1 − g (∂µφ1)Aµφ2 +

1

2
g2AµA

µφ22. (3.46)

The terms cubic and quartic in the fields Aµ, φ1, and φ2 represent the interactions between these
fields. The mass term

φ20g
2AµA

µ =
µ2

2λ
g2AµA

µ =
1

2
m2
AAµA

µ (3.47)

indicate that the gauge boson has obtained a mass mA = µg/
√
λ. Evidently, breaking a local gauge

symmetry generates a mass term for the gauge boson!
But there is something strange with the Goldstone boson φ2. The term

√
2φ0g (∂µφ2)Aµ (3.48)

would translate into a vertex like [10]:

µ
k

=
√
2φ0g (∂µφ2)Aµ = mAk

µ. (3.49)

We could interpret this as an indication that φ2 has somehow become a part of Aµ.
Using the local U(1) transformation,

φ→ φ′ = exp (iα (x))φ, (3.50)
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we can choose the gauge α (x) in such a way that φ (x) becomes real-valued at every point x. This
means that φ2 = 0 in (3.45) and that φ2 will vanish from the theory completely. Evidently, φ2 can not
be an independent physical particle, because the physics is always independent of the choice of gauge.

What has happened? One could say that the Goldstone boson was ‘eaten’ by the gauge boson,
thereby giving the gauge boson a mass term. In Section 2.3 we have already seen that a massless
vector boson can only have two physical polarization states; the longitudinal state is forbidden. A
massive vector boson has an extra degree of freedom: it can have all three polarization states. This
extra degree of freedom is provided by the disappearance of the Goldstone boson.

The generation of mass terms for gauge bosons by means of eating Goldstone bosons, is called the
Higgs mechanism. It is one of the key principles of electroweak theory and the Standard Model.

The Higgs in the Standard Model

We shall now use the Higgs mechanism to generate mass terms for the gauge bosons of the electroweak
theory. Instead of the local U(1) we now have SU(2)W×U(1)Y , which means that we need φ to be a
complex doublet of scalar fields:

φ =

(

φ+

φ0

)

=
1√
2

(

φ1 + iφ2
φ3 + iφ4

)

. (3.51)

In the Standard Model φ is called a Higgs doublet. Because φ is a doublet under the SU(2), its
weak-isospin must be equal to T = 1

2 . The electric charge of the particles is again given by the
Gell-Mann-Nishijima formula,

Q = T 3 + Y. (3.52)

We choose for the hypercharge Y = 1/2 such that φ0 is a neutral particle and φ+ is positively charged.
The Higgs doublet has the usual Lagrangian

LH = (Dµφ)
†
(Dµφ)− V (φ†φ), (3.53)

with the covariant derivative given by

Dµφ =

(

∂µ − ig′BµY − igW a
µ

τa

2

)

φ

=

(

∂µ −
i

2
g′Bµ − igW a

µ

τa

2

)

φ. (3.54)

The Higgs potential V (φ†φ) is equal to

V (φ†φ) = −µ2(φ†φ) + λ(φ†φ)2, (3.55)

with µ2 > 0 and λ > 0. The minimal potential is then

φ†φ =
1

2

(

φ21 + φ22 + φ23 + φ24
)

=
µ2

2λ
. (3.56)

A common choice for the ground state is

φ1 = φ2 = φ4 = 0, φ23 = −µ
2

λ
≡ v2, (3.57)

where v is the vacuum expectation value. With this choice, the field φ (x) is neutral which means that
also the vacuum is uncharged. The expansion of φ (x) about the ground state is then

φ (x) = 〈φ〉+ φ′ (x) =
1√
2

(

0
v + h (x)

)

. (3.58)

The neutral scalar field h (x) is called the Higgs boson. The three Goldstone bosons φ1, φ2, and φ4
will be eaten by the gauge bosons.

The Higgs boson h will obtain a mass term via the Higgs potential in (3.55). According to
Goldstone’s theorem, we must have broken only three out of the four continuous symmetries of
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SU(2)w×U(1)Y . Apparently, there is still a symmetry left after the breaking. That symmetry is the
U(1)em of quantum electrodynamics. It is easy to demonstrate that this is the unbroken symmetry.

We have already seen that the VEV leaves the vacuum uncharged, q = 0. In other words, the
charge operator leaves the vacuum invariant:

Q 〈φ〉 = q 〈φ〉 = 0. (3.59)

Or in terms of transformations,

〈φ〉 → exp (iα (x)Q) 〈φ〉 =
(

1 + iα (x)Q− 1

2
α2 (x)Q2 + . . .

)

〈φ〉 = 〈φ〉 . (3.60)

In the next section we shall explore more on the effects of this electroweak symmetry breaking (EWSB).

3.4 Eigenstates of the gauge bosons

After determining the VEV acquired by the Higgs doublet, it is time to determine the mass terms of
the gauge bosons. To do this, we only need to substitute the VEV into the kinetic part of the Higgs
Lagrangian,

LkH = (Dµφ)
†
(Dµφ) . (3.61)

Inserting the VEV into the potential simply returns the minimum value of the potential, which is just
a constant. Adding a constant term to the Lagrangian has no influence on the equations of motion
and can therefore be ignored.

By using the explicit form of the Pauli matrices, the covariant derivative can be written as

Dµ = ∂µ −
i

2

(

gW 3
µ + 2g′BµY g

(

W 1
µ − iW 2

µ

)

g
(

W 1
µ + iW 2

µ

)

−gW 3
µ + 2g′BµY

)

. (3.62)

For φ (x) = 〈φ〉 we then find

Dµφ =
1√
2
Dµ

(

0
v

)

=
iv

2
√
2

(

g
(

W 1
µ − iW 2

µ

)

−gW 3
µ + g′Bµ

)

, (3.63)

and the Hermitian conjugate

(Dµφ)
†
=
−iv
2
√
2

(

g
(

W 1
µ + iW 2

µ

)

−gW 3
µ + g′Bµ

)

. (3.64)

Hence, the Higgs sector of the Lagrangian becomes

LH (φ = 〈φ〉) = (Dµφ)
†
(Dµφ)− V

=
1

2

v2g2

4

∣

∣W 1
µ − iW 2

µ

∣

∣

2
+

1

2

v2

4

(

g′Bµ − gW 3
µ

)2
. (3.65)

The first term is the mass term of a complex (and therefore a charged) vector field:

1

2

v2g2

4

(

W 1
µ − iW 2

µ

)∗ (
W 1µ − iW 2µ

)

=
1

2
m2
WW

+
µ W

−µ, (3.66)

with mass
mW = vg/2. (3.67)

The two mass eigenstates are then

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

. (3.68)

The second term in (3.65) is the mass term of an electrically neutral particle,

1

2

v2

4

(

gW 3
µ − g′Bµ

)2
=

1

2
m2
Z (Zµ)

2
. (3.69)
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To find the proper mass eigenstate we write the mass term as

1

2

v2

4

(

g2W 3
µW

3µ − 2gg′W 3
µB

µ + g′2BµB
µ
)

=
1

2

(

W 3
µ Bµ

)

M2

(

W 3
µ

Bµ

)

, (3.70)

with M2 the mass matrix,

M2 =
v2

4

(

g2 −gg′
−gg′ g′2

)

. (3.71)

The mass eigenstates are then found by diagonalizing this matrix, with the eigenvalues the m2 of the
particles. The normalized eigenstates are found to be:

Zµ =
gW 3

µ − g′Bµ
√

g2 + g′2
, Aµ =

g′W 3
µ + gBµ

√

g2 + g′2
, (3.72)

with the masses given by

mZ =
v

2

√

g2 + g′2, mA = 0. (3.73)

These results can also be written in terms of the weak mixing angle θw. Define

cos θw =
g

√

g2 + g′2
, sin θw =

g′
√

g2 + g′2
, (3.74)

then

Zµ = cos θw W 3
µ − sin θw Bµ, (3.75a)

Aµ = sin θw W 3
µ + cos θw Bµ. (3.75b)

The inverse equations are

Bµ = cos θw Aµ − sin θw Zµ, (3.76a)

W 3
µ = sin θw Aµ + cos θw Zµ. (3.76b)

Using the notation of θw, we find the important relation

mW

mZ
=

1
2vg

1
2v
√

g2 + g′2
= cos θw. (3.77)

The covariant derivative after EWSB

Now that we have found the masses and mass eigenstates of the gauge bosons, we can focus on the
remaining U(1)em symmetry. The best way to do that, is to examine the covariant derivative. When
we substitute the eigenstates of W±

µ , Zµ, and Aµ into the explicit form of the Dµ in (3.62), we find

Dµ = ∂µ −
i

2

(

gW 3
µ + 2g′BµY g

(

W 1
µ − iW 2

µ

)

g
(

W 1
µ + iW 2

µ

)

−gW 3
µ + 2g′BµY

)

= ∂µ −
i

2





(2Y + 1) geAµ + −2Y g′2+g2√
g2+g′2

Zµ g
√
2W+

µ

g
√
2W−

µ (2Y − 1) geAµ + −2Y g′2−g2√
g2+g′2

Zµ



 , (3.78)

where we have used

±gW 3
µ + 2g′BµY = ±g [sin θw Aµ + cos θw Zµ] + 2g′ [cos θw Aµ − sin θw Zµ]Y

= (2g′Y cos θw ± g sin θw)Aµ + (−2g′Y sin θw ± g cos θw)Zµ

= (2Y ± 1) geAµ +
−2Y g′2 ± g2
√

g2 + g′2
Zµ, (3.79)

and defined

ge ≡
gg′

√

g2 + g′2
= g′ cos θw = g sin θw. (3.80)
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Using the operators T± and T 3 defined by

T± =
1

2
τ± =

1

2
√
2

(

τ1 ± iτ2
)

, (3.81a)

T 3 =
1

2
τ3 (3.81b)

we can write Dµ more elegantly as

Dµ = ∂µ −
i

2
g
√
2
(

W+
µ

√
2T+ +W−

µ

√
2T−

)

− i

2

[

(

2Y + 2T 3
)

geAµ +
−2Y g′2 + 2T 3g2
√

g2 + g′2
Zµ

]

= ∂µ − ig
(

W+
µ T

+ +W−
µ T

−)− ige
(

T 3 + Y
)

Aµ − i
(

g2T 3 − g′2Y
)

√

g2 + g′2
Zµ. (3.82)

If we compare the term with Aµ to what we have in QED, we find that

Q = T 3 + Y, (3.83)

and that ge is the QED coupling constant, equal to the (absolute) charge of the electron e. Note
that (3.83) was not put in by hand, but is a direct consequence of the breaking of SU(2)w×U(1)Y →
U(1)em.

With (3.83) we can also proof that the definition of the W±
µ in (3.68) gives the correct charges.

Because theW particles have no interaction with the Bµ field, their hypercharge is zero: Y = 0. Using
the operator Q on the W+

µ we find

Q
(

W+
µ T

+
)

=
(

T 3 + Y
) (

W+
µ T

+
)

=W+
µ T

3T+ = +
1

2
W+
µ T

+, (3.84a)

Q
(

W−
µ T

−) =
(

T 3 + Y
) (

W−
µ T

−) =W−
µ T

3T− = −1

2
W−
µ T

−. (3.84b)

Indeed, we see that the charges are correct.

Interactions between fermions and gauge bosons

Before we can do any calculations with the Standard Model, we need to know the exact form of the
interaction terms between the fermions and the gauge bosons. To find these we simply substitute the
covariant derivative with W±

µ , Zµ, and Aµ into the kinetic Lagrangian of the fermions. For simplicity
we shall only consider the charged-current weak interaction of quarks. This is the dominant interaction
in single-top processes and actually the only interaction at leading order.

If we ignore the neutral currents the covariant derivative reduces to

Dµ = ∂µ − ig
(

W+
µ T

+ +W−
µ T

−) . (3.85)

All right-handed quarks are singlets under the weak SU(2), so for them T+ = T− = 0. For the first
family of quarks the kinetic Lagrangian (3.33) becomes

LkF,u = iLuγ
µDµLu + iRuγ

µDµRu + iRdγ
µDµRd,

= i
(

uL d
′
L

)

γµ
(

∂µ −
ig√
2

[

0 W+
µ

W−
µ 0

])(

uL
d′L

)

+ iuR /∂uR + id
′
R /∂d

′
R

= iu/∂u+ id
′
/∂d′ − ig√

2
uLγ

µW+
µ d

′
L −

ig√
2
d
′
Lγ

µW−
µ uL. (3.86)

In the last step we have used (3.14):

iqRγ
µ∂µqR + iqLγ

µ∂µqL = iqγµ∂µq. (3.87)

With further use of the operators PL and PR we see that the interaction terms can be written as

Lint = − ig√
2
uLγ

µW+
µ d

′
L = − ig√

2
uPRγ

µPLd
′W+

µ

= − ig√
2
uγµPLPLd

′W+
µ = − ig√

2
uγµPLd

′W+
µ

= − ig

2
√
2
uγµ (1− γ5) d′W+

µ . (3.88)
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The d′-quark here is not in its mass eigenstate, but is actually a linear combination of quarks as
described by the CKM matrix of (3.3):

d′ = Vudd+ Vuss+ Vubb. (3.89)

Apparently, the Lint actually consists of three independent interactions. For each of them we can
construct the charged-current weak interaction vertex:

qj

q̄i

W−
=

igw

2
√
2
γµ (1− γ5)Vij . (3.90)

This vertex is valid for the quarks qi = u, c, t and qj = d, s, b.

3.5 Fermion masses

The Higgs field can also be used to give the fermions a mass term. This is done by means of a Yukawa
interactions between the Higgs doublet, the left-handed doublet and the right-handed singlet:

LY = −λ
(

LφR+Rφ†L
)

= −λLφR+ h.c., (3.91)

where the h.c. stands for Hermitian conjugate. The constant λ is a free parameter of the theory; its
value cannot be predicted by the Standard Model itself. Because we need a different constant for each
fermion in the model, this means we have to add 9 extra free parameters to the theory.

The generation of the mass is a bit different for the quarks than for leptons. This is because of the
fact that there are no right-handed neutrinos in the model.

Mass terms for leptons

For the leptons the Yukawa coupling is simply

LY,` = −λ`
(

R`φ
†L` + L`φR`

)

, (3.92)

with summation over ` = e, µ, τ implied. Using the expansion of φ about its VEV,

φ (x) =
1√
2

(

0
v + h (x)

)

, (3.93)

the Yukawa couplings turns into

LY,` = − λ`√
2

(

`R
) (

0 v + h
)

(

ν`L
`L

)

− λ`√
2

(

ν`L `L
)

(

0
v + h

)

(`R)

= − λ`√
2
`R (v + h) `L −

λ`√
2
`L (v + h) `R

= −λ`v√
2

(

`R`L + `L`R
)

− λ`√
2

(

`R`L + `L`R
)

h

= −λ`v√
2
``− λ`√

2
``h. (3.94)

In the last step we have used (3.12):

−m``` = −m`

(

`R`L + `L`R
)

. (3.95)

It is clear that the first term in LY,` is a lepton mass term with the mass equal to

m` =
λ`v√
2
. (3.96)
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The reason why we can add a fermion mass term in this way, is because the Higgs doublet has exactly
the right size to combine the right-handed singlet and the left-handed doublet together in a proper
way. Without the Higgs doublet this would have been impossible, as we have seen in (3.13).

The second term in (3.94) is an interaction term with the three-points vertex

`

¯̀

h = −i λ`√
2
= −i m`/v. (3.97)

Interestingly enough, the coupling with the Higgs boson is proportional to the mass of the lepton. This
is true for all masses in the Standard Model. Evidently, the top quark must have quite a strong coupling
to the Higgs, because the top mass is so large. Therefore, by accurately measuring the properties of
the top we are able to learn more about the properties of the Higgs boson.

Mass terms for quarks

In a similar way as with the leptons, we can use Yukawa terms to generate masses for the quarks.
However, if we would use the same procedure as for the leptons, only the lower half of each left-handed
doublet will acquire a mass. For leptons this is excellent since the neutrinos are considered massless,
but for the quarks this would be totally wrong.

The solution is to use not only the regular Higgs doublet with fields φ0 and φ+, but also a doublet

of its antiparticles, φ
0
and φ−. We can place these fields into a doublet any way we like. However,

we don’t want to spoil the SU(2) symmetry and therefore we demand that the anti-Higgs doublet
transforms in exactly the same way under SU(2) as the original doublet. The correct doublet to use
then is

φc = −iτ2φ∗ = −i
(

0 −i
i 0

)(

φ+

φ0

)∗
=

(

−φ0

φ−

)

. (3.98)

Near the VEV of the φ we can expand the doublet φc as

φc (x) =
1√
2

(

v + h (x)
0

)

. (3.99)

The Yukawa terms that we add to the Lagrangian are (taking u and d as an example):

LY,u = −λdLuφRd − λuLuφcRu + h.c. (3.100)

Using the antisymmetric tensor εij =
(

−iτ2
)

ij
. this can also be written quite elegantly as

LY,u = −λdLuφRd − λuLuaεabφ†bRu + h.c. (3.101)

Substitution of the expanded φ (x) and φc (x) into these terms leads to

LY,u = −λd
(

LuφRd +Ruφ
†Ld
)

− λu
(

Luφ
cRu +Ruφ

c†Lu
)

= − λd√
2
(v + h)

(

d
′
Rd

′
L + d

′
Ld

′
R

)

− λu√
2
(v + h) (uRuL + uLuR) (3.102)

This calculation goes analogously to the one in (3.94). Even though we can write

− λu√
2
(v + h) (uRuL + uLuR) = −

λuv√
2
uu− λu√

2
uuh, (3.103)

we cannot do exactly the same for the d′, since d′ is not a mass eigenstate. We need again the CKM
matrix Vij of (3.3). Using the notation

d′i = (d′1, d
′
2, d

′
3) = (d′, s′, b′) , (3.104a)

ui = (u1, u2, u3) = (u, c, t) , (3.104b)
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then the expression of (3.89) becomes
d′i = Vijdj . (3.105)

Therefore
d
′
iRd

′
iL + d

′
iLd

′
iR = Vij

(

djRdjL + djLdjR
)

= Vijdjdj , (3.106)

and so the Yukawa Lagrangian for all quarks is then

LY,q = −
λdi

vVij√
2

djdj −
λdi

Vij√
2
djdjh−

λui
v√
2
uiui −

λui√
2
uiuih. (3.107)

As expected we find similar expressions as with the leptons.

3.6 Quantum chromodynamics

Sofar we have only discussed the electroweak part of the Standard Model. The strong force is only felt
by the quarks and is described by quantum chromodynamics (QCD). QCD is a gauge theory with an
exact SU(3) color symmetry. Each quark is considered to be a color triplet, for example an up quark
is written as

u =





uR
uG
uB



 . (3.108)

These triplets transform under the local SU(3)c as

u (x)→ u′ (x) = exp

(

igs α
b (x)

λb

2

)

u (x) . (3.109)

The λb with b = 1, 2, . . . , 8 are the eight Gell-Mann matrices and are the generators of SU(3), similar
to the Pauli matrices of SU(2).

To extend electroweak theory with QCD, we only need to make some small additions. It already
contains the correct kinetic Lagrangian for the quarks,

LkF,q = iqγµ∂µq = iqRγ
µ∂µqR + iqGγ

µ∂µqG + iqBγ
µ∂µqB , (3.110)

but the covariant derivative needs an extra set of gauge bosons, the gluons:

Dµ = ∂µ − ig′BµY − igW a
µ

τa

2
− igsGb

µ

λb

2
. (3.111)

Adding the gauge bosons Gb
µ to Dµ means that we also must add an kinetic term for them:

LkGB,G = −1

4
GbµνGb

µν , (3.112)

with the field strength similar to (2.41):

Gb
µν = ∂µG

b
ν − ∂µGb

ν + gsf
bcdGc

µG
d
ν . (3.113)

The antisymmetric tensor f bcd are the structure constants of the SU(3) group, which means that

[

λb

2
,
λc

2

]

= if bcd
λd

2
. (3.114)

Most of them are zero, but using the antisymmetry one can obtain all of them with

f123 = 1, f458 = f678 =
√
3/2,

f147 = f246 = f257 = f345 = f516 = f637 =
1

2
. (3.115)

Note that the electroweak symmetry breaking has no influence on QCD; after the breaking the quarks
will obtain a mass, but they remain the same color triplet.
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3.7 Summary

The complete Lagrangian of the Standard Model can be summarized as

LSM = LkF + LkGB + LkH + LpH + LY. (3.116)

Here the kinetic terms of the fermions are

LkF = iL` /DL` + iR` /DR` + iLui /DLui + iRui /DRui + iRdi /DRdi . (3.117)

The kinetic terms of the Goldstone bosons are

LkGB = −1

4
BµνBµν −

1

4
W aµνW a

µν −
1

4
GbµνGb

µν , (3.118)

with the field strengths given by

Bµν = ∂µBν − ∂νBµ, (3.119a)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (3.119b)

Gb
µν = ∂µG

b
ν − ∂νGb

µ + gsf
bcdGc

µG
d
ν , (3.119c)

and f bcd the structure constants of SU(3). The Higgs sector of the Lagrangian consists of the kinetic
term for the Higgs boson

LkH = (Dµφ)
†
(Dµφ) , (3.120)

and the Higgs potential
LpH = −V (φ†φ) = µ2(φ†φ)− λ(φ†φ)2. (3.121)

Finally, the Yukawa terms are given by

LY = −λ`L`φR` − λdiLuiφRdi − λuiLuiaεabφ
†
bRui + h.c. (3.122)

In all cases the covariant derivative is given by

Dµ = ∂µ − ig′BµY − igW a
µ

τa

2
− igsGb

µ

λb

2
, (3.123)

and is summation over leptons ` = e, µ, τ and quarks ui = u, c, t and di = d, s, b implied.
Table 3.1 lists the representations and quantum numbers of all the particles in the Standard Model.

The value for the weak-isospin T depends on if the particle belongs to a doublet or triplet. The
hypercharge Y is chosen in such a way that the correct charge Q is obtained. Table 3.2 gives a
summary on how to extract masses and interactions from a Lagrangian.

representations quantum numbers
particle SU(3)c×SU(2)w×U(1)Y T 3 Y Q = T 3 + Y

νeL, νµL, ντL (1,2)−1/2 +1/2 −1/2 0

eL, µL, τL (1,2)−1/2 −1/2 −1/2 −1
eR, µR, τR (1,2)−1 0 −1 −1
uL, cL, tL (3,2)+1/6 +1/2 +1/6 +2/3

dL, sL, bL (3,2)+1/6 −1/2 +1/6 −1/3
uR, cR, tR (3,2)+2/3 0 +2/3 +2/3

dR, sR, bR (3,2)−1/3 0 −1/3 −1/3
g (8,2)0 0 0 0
W±,W 0 (1,3)0 ±1, 0 0 ±1, 0
B0 (1,1)0 0 0 0

φ+, φ0 (1,2)+1/2 +1/2,−1/2 +1/2 +1, 0

Table 3.1: List of all particles in the Standard Model, how they transform under the groups
SU(3)c×SU(2)w×U(1)Y , and their quantum numbers.
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Kinetic terms
Substitute Dµ = ∂µ into the appropriate Lagrangian: LkF, LkGB, or LkH.

Mass terms
Fermion mass: substitute φ = 〈φ〉 into LY.
Gauge boson mass: substitute φ = 〈φ〉 into LkH.
Higgs mass: substitute VEV of φ into LpH.

Interactions
Fermions-gauge bosons: expand Dµ in LkF.
Fermions-Higgs: substitute φ (x) = 〈φ〉+ φ′ (x) into LY.
Gauge bosons-Higgs: expand Dµ in LkH.

Self-interactions
There are no fermion self-interactions.
Gauge boson self-interactions: expand Dµ in LkF.
Higgs self-interactions: substitute φ (x) = 〈φ〉+ φ′ (x) into LpH.

Table 3.2: The procedures to find a specific term in the Lagrangian.
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Chapter 4

Top physics in the Standard Model

Top physics is an excellent probe for new physics. The top has a mass almost 5 orders of magnitude
larger than the lightest quark (∼175 GeV). Because of its large mass the top is expected to have a
strong coupling to Higgs bosons. Furthermore, the top can also be used to find new heavy particles
of beyond the Standard Model. When such a heavy particle decays, it is very likely that it will decay
into a top quark, causing the cross section of top production to rise. Besides its heavy mass, the top
also has several other interesting properties. The lifetime of the top is about 10−25 seconds, which
is about 20 times faster than the time scale for strong interactions. Therefore the top decays into a
b-quark and a W+ before it can hadronize. This feature gives physicists a unique opportunity to learn
more about unbound quarks.

Before we look at the predictions made by new theoretical models, we should first review the ins and
outs of top production in the Standard Model. Basically there are two distinct ways called single-top
production, and tt̄ (pronounced as t-t-bar). With single-top processes it is possible to directly measure
the value of the CKM element Vtb. If that value deviates a lot from unity then that is a sign that there
could be a fourth generation of quarks. Even though single-top production is the main subject of this
thesis, tt̄ has been included here in order to provide a more complete picture of top physics. Also, the
tt̄ processes are expected to be the main source of background signals for the single-top processes.

This chapter starts with an analysis of tt̄ in Section 4.1, followed by the analysis of the single-
top process in Section 4.2. In Section 4.3 we present the numerical evaluations of the cross sections
calculated in the first two sections. Section 4.4 deals with the decay of the top. Finally, in Section 4.5
we share some thoughts about what influences we can expect from a theory that extends the Standard
Model.

4.1 Top quark production via tt̄

The top quark was first discovered in 1995 by the CDF and DØ experiments at the Tevatron (Fermilab).
The process with which this was done, was p+ p̄→ t+ t̄, i.e. a proton-antiproton collision producing
a tt̄ pair.

At leading order tt̄ production there are two dominant subprocesses. These are called quark
annihilation (qq̄ → g → tt̄) and gluon-gluon fusion (gg → g, t → tt̄). For the first subprocess we
have only one Feynman diagram and for the latter there are three (see Figure 4.1).

Quark-antiquark annihilation

The invariant amplitude for the Feynman diagram of Figure 4.1a is given by

−iM =
[

v̄q̄(igsγ
µ (λa)ij)uq

]

[−igµν
k2

]

[ūt(igsγ
ν (λa)kl)vt̄]

= −i−g
2
s

k2
(λa)ij (λ

a)kl [v̄q̄γ
µuq]

[

ūtγµvt̄
]

. (4.1)

with k = pq + pq̄ and λa the eight Gell-Mann matrices (see Appendix B). The index a = 1, . . . , 8
corresponds to the type of gluon and the indices i, j, k, l = 1, 2, 3 are the colors of the quarks. Just
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q̄

t

t̄

g

g

t

t̄
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g

t

t̄

g

g

t

t̄

Figure 4.1: The production of tt̄ via quark-annihilation (a) and gluon-gluon fusion (b).

as we always do with spin, we shall sum over final colors and average over initial colors. Note that
because the Gell-Mann matrices are Hermitian,

(λa)
∗
ij = (λa)

†T
ij = (λa)

T
ij = (λa)ji . (4.2)

Because there are three colors, averaging over the initial colors leads to a factor of 1/3× 1/3 = 1/9:

|M|2 =
1

4

∑

all spin

1

9

∑

all color

g4s
k4

(λa)ij (λ
a)kl

(

λb
)∗

ij

(

λb
)∗

kl

× [v̄q̄γ
µuq]

[

ūtγµvt̄
]

[v̄q̄γ
νuq]

∗
[ūtγνvt̄]

∗

=
g4s

36k4

∑

all color

(λa)ij (λ
a)kl

(

λb
)

ji

(

λb
)

lk

∑

all spin

[v̄q̄γ
µuq]

[

ūtγµvt̄
]

[ūqγ
νvq̄] [v̄t̄γνut]

=
g4s

36k4
Tr
(

λaλb
)

Tr
(

λaλb
)

∑

all spin

[v̄q̄γ
µuq] [ūqγ

νvq̄]
[

ūtγµvt̄
]

[v̄t̄γνut] . (4.3)

Here we have used

[v̄q̄γ
νuq]

∗
=
[

v†q̄γ
0γνuq

]†
= u†qγ

ν†γ0vq̄ = u†qγ
0γνvq̄ = ūqγ

νvq̄, (4.4)

and
[ūtγνvt̄]

∗
= v̄t̄γνut. (4.5)

The Gell-Mann matrices are normalized according to

Tr
(

λaλb
)

= 2δab, (4.6)

and so the product of the traces turns into

Tr
(

λaλb
)

Tr
(

λaλb
)

= 4. (4.7)

Using the completeness relations, we find

∑

spin q̄,q

[v̄q̄γ
µuq] [ūqγ

νvq̄] =
∑

spin q̄,q

(v̄q̄)α (γ
µ)αβ (uq)β (ūq)γ (γ

ν)γδ (vq̄)δ

=





∑

spin q̄

(vq̄)δ (v̄q̄)α



 (γµ)αβ





∑

spin q

(uq)β (ūq)γ



 (γν)γδ

= Tr
[(

/pq̄ −mq

)

γµ
(

/pq +mq

)

γν
]

= Tr
[

/pq̄γ
µ
/pqγ

ν
]

. (4.8)
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and
∑

spin t̄,t

[

v̄t̄γµut
]

[ūtγνvt̄] = Tr
[(

/pt̄ −mt

)

γµ

(

/pt +mt

)

γν

]

. (4.9)

Evaluating |M|2 using the program FORM [11], we quickly find

|M|2 =
4g4s
9ŝ2

(

û21 + t̂21 + 2m2
t ŝ
)

=
4

9

16π2α2s
ŝ2

(

û21 + t̂21 + 2m2
t ŝ
)

, (4.10)

and thus the cross section becomes (see Appendix A)

d2σ̂

dt̂1dû1
(qq̄ → tt̄) =

1

16πŝ2
|M|2 =

4πα2s
9ŝ4

(

û21 + t̂21 + 2m2
t ŝ
)

. (4.11)

The Mandelstam variables used here are defined by

ŝ = k2 = (pq + pq̄)
2
= 2pqpq̄, (4.12a)

t̂1 = (pq − pt)2 −m2
t = −2pqpt, (4.12b)

û1 = (pq − pt̄)2 −m2
t = −2pqpt̄. (4.12c)

The value of αs depends heavily on the energy scale of the process. It is conventional to use the αs at
the mass scale of the top quark mt, so here one should read αs = αs

(

m2
t

)

.

Gluon-gluon fusion

Calculating the cross section for the gluon-gluon fusion subprocess is much more difficult. As one
can see in Figure 4.1b there are three diagrams involved. One of the diagrams contains a triple-gluon
vertex which makes calculations even harder. Because the actual calculation is tedious and not so
enlightening, we present here only the result [12],

d2σ̂

dt̂1dû1
(gg → tt̄) =

πα2s
8ŝ2

[

6t̂1û1
ŝ2
− m2

t

(

ŝ− 4m2
t

)

3t̂1û1

+
4

3

t̂1û1 − 2m2
t

(

t̂1 + 2m2
t

)

t̂21

4

3

t̂1û1 − 2m2
t

(

û1 + 2m2
t

)

û21

+ 3
t̂1û1 +m2

t

(

û1 − t̂1
)

ŝt̂1
+ 3

t̂1û1 +m2
t

(

t̂1 − û1
)

ŝû1

]

. (4.13)

The parton model and pp, pp̄ → tt̄ cross sections

Because of hadronization it is impossible to do experiments with free quarks. Therefore protons are
collided with (anti)protons, in an attempt to make one of the partons in the first hadron hit a parton
of the second hadron. To do calculations for hadron collisions, we need to know which fraction x of
the proton’s momentum is given to the parton. We also need to know the probability that we can hit
a certain parton in the proton. However, the probability to find a specific parton depends heavily on
the momentum of that parton.

The protons collide with a large momentum, P . If the momentum is large enough, we can neglect
both the mass of the parton and that of the proton, |P| À m,M . We are then allowed to write the
parton momentum p as

p = xP, (4.14)

where x is the momentum fraction, a number between 0 and 1 [13].
The probability to find parton i with a momentum xiP inside the proton is given by the parton

distribution function f (xi, µ), PDF for short. The PDF is a function of the momentum fraction xi and
the scale µ. To be precise, f (xi) dxi represents the number of partons of type i that have a momentum
fraction between xi and xi + dxi. The scale µ specifies which renormalization scale is used. When the
PDF is used to make QCD predictions for a certain process, µ should be approximately of the same
size as the momenta that is involved in the process. Since all of the top production processes involve
momenta in the order of the mass of the top quark, we shall take µ = mt. A plot of f (xi, µ = mt) is
shown in Figure 4.2.
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The total differential cross section for pp→ tt̄ can be found by summing over the different partons
for both the cross sections for qq̄ → tt̄ and gg → tt̄,

d2σ̂

dt̂1dû1
(pp→ tt̄) =

∑

q,q̄

∫

σ̂ (qq̄ → tt̄) f (xq) f (xq̄) dxqdxq̄

+
∑

g1,g2

∫

σ̂ (gg → tt̄) f (xg1) f (xg2) dxg1dxg2 . (4.15)

To find the total differential cross section for pp̄→ tt̄, we need to use the pDF for antiprotons. There
is no need for a separate function however; the only difference between the proton and antiproton is
that the u- and d-quarks are ū and d̄ in the antiproton. Hence, we can use the same f (xi) but with
the interchanges u↔ ū and d↔ d̄.

Figure 4.2: Parton distribution functions at the scale µ = mt, relevant for top quark production (taken
from [14]).

4.2 Single-top production

There are a number of different ways to produce a single top quark. At tree-level there exist three
subprocesses. These processes are the s-channel process,

q + q̄′ →W+ → t+ b̄, (4.16)

the t-channel process,
q + b→W+ → q′ + t, (4.17)

and the Wt-associated process,
g + b→ t→ t+W−. (4.18)

The accents on the q′ and q̄′ are there to indicate that those quarks have a different flavor than the q.
The diagrams for each process are shown in Figures 4.3, 4.4, and 4.5.

The s-channel single-top

As a particular example of an s-channel single-top process we calculate here solely the amplitude for
u+ d̄ → W+ → t+ b̄. For any other s-channel single-top process one can simply replace the d̄-quark
by an s̄- or b̄-quark, and the u-quark can be replaced by a c-quark. The presence of the top quark in
the proton is small enough to be neglected. Changing the quark flavors has no effect on the invariant
amplitude (4.27), with the exception that the Vud must also be replaced by the appropriate element
of the CKM matrix. The Feynman diagram for the s-channel process is shown in Figure 4.3.
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u, c

d̄, s̄, b̄

W

t

b̄

Figure 4.3: The Feynman diagram of the single-top s-channel subprocess.

Using the Feynman rules of Table 2.1 we translate this diagram into

−iM =

[

v̄d̄
igw

2
√
2
γµ (1− γ5)Vuduu

] [ −igµν
k2 −m2

W

] [

ūt
igw

2
√
2
γν (1− γ5)Vtbvb̄

]

, (4.19)

with k = pu + pd̄ the momentum of the W . The matrix element squared becomes (averaging over
initial spins and summing over final spins):

|M|2 =
1

4

∑

all spin

g4w |Vud|
2 |Vtb|2

64

∣

∣

∣

∣

[v̄d̄γ
µ (1− γ5)uu]

[

gµν
k2 −m2

W

]

[ūtγ
ν (1− γ5) vb̄]

∣

∣

∣

∣

2

≡ 1

256
g4w |Vud|2 |Vtb|2XµκYµκνλZ

νλ. (4.20)

Writing the amplitude in this way will proof to be very useful later on when we examine the Topflavor
and the Littlest Higgs model. Here we have defined the tensors Xµκ, Yµκνλ and Zνλ as

Xµκ =
∑

spin u,d̄

[v̄d̄γ
µ (1− γ5)uu] [v̄d̄γκ (1− γ5)uu]∗ , (4.21a)

Yµκνλ =

[

gµν
k2 −m2

W

] [

gκλ
k2 −m2

W

]∗
, (4.21b)

Zνλ =
∑

spin t,b̄

[ūtγ
ν (1− γ5) vb̄]

[

ūtγ
λ (1− γ5) vb̄

]∗
. (4.21c)

First we calculate the tensor Xµκ. Because v̄d̄γ
α (1− γ5)uu is a complex 1× 1 matrix it is the same

as its Hermitian conjugate:

[v̄d̄γ
κ (1− γ5)uu]∗ =

[

vd̄γ
0γκ (1− γ5)uu

]†
= u†u (1− γ5) γκ†γ0vd̄

= u†u (1− γ5) γ0γκvd̄ = u†uγ
0 (1 + γ5) γ

κvd̄

= ūu (1 + γ5) γ
κvd̄ = ūuγ

κ (1− γ5) vd̄. (4.22)

Then, using the completeness relations,

Xµκ =
∑

spin u,d̄

[v̄d̄γ
µ (1− γ5)uu] [ūuγκ (1− γ5) vd̄]∗

=
∑

spin u,d̄

(v̄d̄)α (γ
µ (1− γ5))αβ (uu)β (ūu)γ (γκ (1− γ5))γδ (vd̄)δ

=
∑

spin d̄

(vd̄)δ (v̄d̄)α (γ
µ (1− γ5))αβ

∑

spin u

(uu)β (ūu)γ (γ
κ (1− γ5))γδ

=
(

/pd̄ −md̄

)

δα
(γµ (1− γ5))αβ

(

/pu +mu

)

βγ
(γκ (1− γ5))γδ

= Tr
[(

/pd̄ −md̄

)

γµ (1− γ5)
(

/pu +mu

)

γκ (1− γ5)
]

. (4.23)

The third tensor Zνλ is very similar to Xµκ, so we can immediately write that down:

Zνλ =
∑

spin t,b̄

[ūtγ
ν (1− γ5) vb̄]

[

ūtγ
λ (1− γ5) vb̄

]∗

= Tr
[(

/pt +mt

)

γν (1− γ5)
(

/pb̄ −mb̄

)

γλ (1− γ5)
]

. (4.24)
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Figure 4.4: The two Feynman diagrams of the single-top t-channel subprocess.

The final thing we have to do is calculate the tensor Yµκνλ,

Yµκνλ =
gµνgκλ

(k2 −m2
W )

2 . (4.25)

This expression has to be multiplied with XµκZνλ. Setting mu = md̄ = mb̄ = 0 and using FORM to
calculate the traces, we find a most elegant result:

XµκYµκνλZ
νλ =

64
(

û−m2
t

)

û

(ŝ−m2
W )

2 . (4.26)

The |M|2 is then

|M|2 =
1

4
g4w |Vud|2 |Vtb|2

(

û−m2
t

)

û

(ŝ−m2
W )

2 , (4.27)

with ŝ = k2 = (pu + pd̄)
2
and û = (pd̄ − pt)2.

The total cross section for the process pp→ tb̄ via the s-channel subprocess is

∑

all partons

|M|2 =
1

4
g4w |Vtb|2

[

Fu/s

(

û−m2
t

)

û

(ŝ−m2
W )

2 + Ft/s

(

t̂−m2
t

)

t̂

(ŝ−m2
W )

2

]

, (4.28)

where Fu/s and Ft/s are flux factors given by

Fu/s = u1d̄2 |Vud|2 + u1s̄2 |Vus|2 + u1b̄2 |Vub|2

+c1d̄2 |Vcd|2 + c1s̄2 |Vcs|2 + c1b̄2 |Vcb|2 . (4.29a)

Ft/s = u2d̄1 |Vud|2 + u2s̄1 |Vus|2 + u2b̄1 |Vub|2

+c2d̄1 |Vcd|2 + c2s̄1 |Vcs|2 + c2b̄1 |Vcb|2 . (4.29b)

Here we have used the notation qj for the parton distribution function of parton q in proton j.

The t-channel single-top

Let us now examine a close cousin of the s-channel. The Feynman diagrams for the t-channel process
are shown in Figure 4.4. It is clear that both processes are almost the same: Interchanging pu and −pb̄
in the s-channel process u+ d̄→ t+ b̄ gives you the t-channel process b+ d̄→ t+ ū, which is exactly
the same as interchanging ŝ ↔ t̂. This means that we can find the amplitude simply by crossing the
results of u+ d̄→ t+ b̄:

|M|2 =
1

4
g4w |Vud|

2 |Vtb|2
(

ŝ−m2
t

)

ŝ
(

t̂−m2
W

)2 . (4.30)

Subsequently, by using the interchange ŝ↔ û we find the amplitude for the second diagram:

|M|2 =
1

4
g4w |Vud|2 |Vtb|2

(

û−m2
t

)

û
(

t̂−m2
W

)2 . (4.31)

The total cross section for the t-channel subprocess is then

∑

all partons

|M|2 =
1

4
g4w

[

Fs/t

(

ŝ−m2
t

)

ŝ
(

t̂−m2
W

)2 + Fu/t

(

û−m2
t

)

û
(

t̂−m2
W

)2

+ Fs/u

(

ŝ−m2
t

)

ŝ

(û−m2
W )

2 + Ft/u

(

t̂−m2
t

)

t̂

(û−m2
W )

2

]

, (4.32)
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where Fu/s and Ft/s are flux factors given by

Fs/t = d̄1 |Vtd|2
[

ū2

(

|Vud|2 + |Vus|2 + |Vub|2
)

+ c̄2

(

|Vcd|2 + |Vcs|2 + |Vcb|2
)]

+s̄1 |Vts|2
[

ū2

(

|Vud|2 + |Vus|2 + |Vub|2
)

+ c̄2

(

|Vcd|2 + |Vcs|2 + |Vcb|2
)]

+b̄1 |Vtb|2
[

ū2

(

|Vud|2 + |Vus|2 + |Vub|2
)

+ c̄2

(

|Vcd|2 + |Vcs|2 + |Vcb|2
)]

(4.33)

and

Fu/t = d̄1 |Vtd|2
[

d2

(

|Vud|2 + |Vcd|2
)

+ s2

(

|Vus|2 + |Vcs|2
)

+ b2

(

|Vub|2 + |Vcb|2
)]

+s̄1 |Vts|2
[

d2

(

|Vud|2 + |Vcd|2
)

+ s2

(

|Vus|2 + |Vcs|2
)

+ b2

(

|Vub|2 + |Vcb|2
)]

+b̄1 |Vtb|2
[

d2

(

|Vud|2 + |Vcd|2
)

+ s2

(

|Vus|2 + |Vcs|2
)

+ b2

(

|Vub|2 + |Vcb|2
)]

, (4.34)

and similar for Ft/u and Fs/u.
If we define

t̂1 ≡ t̂−m2
t = (pū − pd̄)2 −m2

t , (4.35a)

û1 = û = (pū − pd̄)2 , (4.35b)

such that ŝ+ t̂1 + û1 = 0, then the differential cross section for the first diagram becomes

d2σ̂

dŝdû1
=

1

64π
g4w |Vud|2 |Vtb|2

(

ŝ−m2
t

)

ŝ
(

t̂1 +m2
t −m2

W

)2 δ
(

ŝ+ t̂1 + û1
)

. (4.36)

We rather have dt̂1 in the denominator than dŝ. Writing ŝ as ŝ = −t̂1 − û1, then

dŝdû1 =

(

∂ŝ

∂t̂1
dt̂1 +

∂ŝ

∂û1
dû1

)

dû1 = −dt̂1dû1 − (dû1)
2
= −dt̂1dû1. (4.37)

Therefore,
d2σ

dt1du1
= − 1

64π
g4w |Vud|2 |Vtb|2

s
(

s−m2
t

)

(t1 +m2
t −m2

W )
2 δ (s+ t1 + u1) , (4.38)

with s = (pd̄ + pb)
2
, t1 = (pū − pd̄)2 −m2

t and u1 = (pb − pū)2.
The invariant amplitudes for both the s-channel and the t-channel have been compared to those in

the article [15] and were found to be equal (see Tables 4.3 and 4.4).

Wt-associated production

The Feynman diagrams for Wt-associated production are shown in Figure 4.5. As one can see, this
subprocess is a mixture of strong interactions and weak interactions. At the Tevatron this process can
be ignored, but at the LHC the Wt-associated process will be responsible for 25% of all the single-top
events [16].

In this thesis project we have chosen to put our emphasis on single-top processes that only involve
weak interactions. Therefore we present here only the Feynman diagrams, we will not perform any
calculations for this process.

a) g

d, s, b

t

W

b) g

d, s, b

t

W

Figure 4.5: The two Feynman diagrams of the single-top Wt-associated subprocess.

43



4.3 Numerical results for top production

In order to verify a theoretical model we need to be able to turn our calculation into predictions
that can be checked in an experiment. In this section we introduce some important variables often
used in experiments, followed by the predictions that the Standard Model makes for tt̄ and single-top
production.

Rapidity, pseudorapidity, and transverse momentum

The most important observable of a process is the cross section, which tells you how often an event of
that process may occur. Even if it is not possible to measure the cross section directly, one can often
still measure a branching ratio, the ratio between two cross sections.

But in a typical accelerator experiment we can do more than just count the number of events we are
interested in. By combining different types of detectors, it is possible to identify the particle, measure
its energy E, and determine its momentum:

p = (E,p) = (E, px, py, pz) = (E, |p| sin θ cosφ, |p| sin θ sinφ, |p| cos θ) .

The z-axis is chosen to point along the proton beam1, so θ is the angle between the beam and the
particle. The initial momentum of the protons (and of course the partons) is unknown. Therefore
we cannot use conservation of momentum in this way. However, we do can use conservation of the
transverse momentum,

pT ≡ |p| sin θ =
√

p2x + p2y,

because pT = 0 before the collisions and should therefore also be zero after the collisions.
Because the whole system is symmetric under φ, the angle does not give us any information about

the process. The angle θ on the other hand does, and is therefore a very useful quantity to measure.
However, instead of working with θ particle physicists prefer to use the pseudorapidity,

η = − ln

(

tan

(

1

2
θ

))

.

The reason for this is that it is approximately equal to the rapidity of the particle,

y =
1

2
ln

(

E + pz
E − pz

)

.

The rapidity can be regarded as the relativistic analog of velocity. In special relativity one does not
add the velocity of two particles, but adds their rapidities: y1+2 = y1 + y2.

For massless particles the rapidity is equal to the pseudorapidity and for massive particles η > y.
In single-top processes we have only two particles in the final state: the top quark and a much lighter
b-quark (or W boson for the Wt associated process), which means that θb = θt + 180◦ and hence
ηb = ηt. Compared to the large top mass, we can ignore the mass of the b-quark, so yb ≈ ηb.

Results for tt̄

Using the Monte Carlo program described in Chapter 5, we find similar results as stated in several
articles. Not only is this an good verification of the amplitudes, it is also an excellent test for the
Monte Carlo program itself. The cross sections for pp̄ → qq̄, gg → tt̄ and pp → qq̄, gg → tt̄ are shown
in Table 4.1. The results are in rather good agreement with the cross sections of Table 4.2 which is
taken from [17].

In the tables it is clear to see that at the Tevatron the qq̄ → tt̄ subprocess is much more dominant
than the gg → tt̄ process. The reason for this becomes clear from Figure 4.2. Between x = 0.2 and
x = 1 the valance quarks u and d carry most of the momentum of the proton. Because the Tevatron
is a pp̄-collider, this means that the biggest source for tt̄ comes from uū and dd̄, i.e. the qq̄-channel.
The LHC is a proton-proton collider and has therefore much less qq̄ combinations available. Hence,
the gluon-fusion process is more dominant at the LHC.

1In the case of proton-proton collisions the exact direction of the z-axis is not important. I.e. all LHC plots should
show a clear symmetry.
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In Figures 4.6-4.11 the transverse momentum, pseudorapidity, and the rapidity of the top quark
for both the Tevatron and the LHC are displayed. The transverse momenta all have a very typical
shape. The pT with the highest occurrence lies around 75 GeV, but one can see that it shifts slightly
to the right at higher CM-energies.

The pseudorapidity and rapidity plots all show a clear symmetry around η = y = 0. This is easy
to understand for the Tevatron, because the whole process is symmetric (pp̄ → tt̄). However, this
is somewhat strange for the LHC, because there we have two protons in the initial state. For the
gluon-fusion subprocess this does not make a difference, because there are just as many gluons in a
proton as in an antiproton. However, for quark-antiquark annihilation we need an antiquark which
can only be a sea quark in this case. If it this is a u-antiquark or a d-antiquark, it can annihilate with
one of the valence quarks of the other proton, otherwise it will annihilate with one of the sea quarks.
In any case, the quark-antiquark annihilation does not see a difference between one proton and the
other.

One interesting feature about the pseudorapidity at the LHC, is that it has a small dip near η = 0.
This means that the top quark tends to propagate more in the same direction as the initial hadrons.
If we compare the rapidity plots of the LHC with the Tevatron, then we see that this effect is absent.
Evidently, the origin of this effect is due to the highly relativistic momentum of the top quark (rapidity
is invariant under Lorentz boosts, but pseudorapidity is not).

In general we can conclude that the shape of the plots for the Tevatron do not change much if we
use a higher CM-energy. The area under the graphs increases slightly, but because the that area must
be equal to the cross section, that only tells you that the cross section goes up. The area under a
graph can be used as a simple check to tell if the plot can be trusted or not.

σLO (qq̄ → tt̄) (pb) σLO (gg → tt̄) (pb) σLO (pb)
Tevatron (

√
s = 1.8 TeV, pp̄) 4.45 (96%) 0.20 (4%) 4.65 (100%)

Tevatron (
√
s = 2.0 TeV, pp̄) 5.87 (94%) 0.38 (6%) 6.25 (100%)

LHC (
√
s = 14 TeV, pp) 73.1 (14%) 467 (86%) 540 (100%)

Table 4.1: Cross sections for tt̄ at leading-order in QCD. Behind each value are given in parentheses
the percentage of the total cross section. For the Monte Carlo simulation the PDF table CTEQ5L was
used, with all scales set to µ = mt = 175 GeV.

σNLO (pb) qq̄ → tt̄ gg → tt̄
Tevatron (

√
s = 1.8 TeV, pp̄) 4.87± 10% 90% 10%

Tevatron (
√
s = 2.0 TeV, pp̄) 6.70± 10% 85% 15%

LHC (
√
s = 14 TeV, pp) 803± 15% 10% 90%

Table 4.2: Cross sections for tt̄ at next-to-leading-order in QCD. Also shown is the percentage of the
total cross section from the quark-antiquark-annihilation and gluon-fusion subprocesses [18].
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Figure 4.6: Transverse momentum for pp̄ → tt̄ at the Tevatron for
√
s = 1.8 TeV, 1.96 TeV and 2.0

TeV.
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Figure 4.7: Transverse momentum for pp→ tt̄ at the LHC for
√
s = 14 TeV.
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Figure 4.8: Pseudorapidity for pp̄→ tt̄ at the Tevatron for
√
s = 1.8 TeV, 1.96 TeV and 2.0 TeV.
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Figure 4.9: Pseudorapidity momentum for pp→ tt̄ at the LHC for
√
s = 14 TeV.
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Figure 4.10: Rapidity for pp̄→ tt̄ at the Tevatron for
√
s = 1.8 TeV, 1.96 TeV and 2.0 TeV.
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Figure 4.11: Rapidity momentum for pp→ tt̄ at the LHC for
√
s = 14 TeV.
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Results for single-top

The results for the single-top simulations are stated in Table 4.3. As a comparison we have added here
Table 4.4 that displays the cross sections according to [15]. Our values are a bit higher than those
in the article. This could be because of the use of different parameters, e.g. different CKM values,
different W mass, etc.

A noticeable thing is that the cross sections for single-top are all a lot smaller than for tt̄. This is
because tt̄ is a strong process which has an amplitude of ∝ α2

s, while the s-channel and t-channel are

weak processes with an amplitude of ∝ α2w = g4w/ (4π)
2 ¿ α2s.

σLO (pb)√
s s-channel t-channel

Tevatron (
√
s = 1.8 TeV), pp̄→ tX 0.261 ±0.001 0.654 ±0.001

Tevatron (
√
s = 1.96 TeV), pp̄→ tX 0.306 ±0.001 0.890 ±0.001

Tevatron (
√
s = 2 TeV), pp̄→ tX 0.317 ±0.001 0.956 ±0.001

LHC (
√
s = 14 TeV), pp→ tX 4.57 ±0.01 146.4 ±0.4

LHC (
√
s = 14 TeV), pp→ t̄X 2.77 ±0.01 84.5 ±0.2

Table 4.3: Leading-order cross sections for single-top production. For the evaluation the CTEQ5L
table was used, all scales were set at µ = mt, and we have used 5 iterations with 1,000,000 events per
iteration.

Process
√
s σLO (pb) σNLO (pb)

s-channel Tevatron (
√
s = 1.8 TeV), pp̄→ tX 0.259 0.380 ±0.002

Tevatron (
√
s = 1.96 TeV), pp̄→ tX 0.304 0.447 ±0.002

Tevatron (
√
s = 2 TeV), pp̄→ tX 0.315 0.463 ±0.002

LHC (
√
s = 14 TeV), pp→ tX 4.53 6.55 ±0.03

LHC (
√
s = 14 TeV), pp→ t̄X 2.74 4.07 ±0.02

t-channel Tevatron (
√
s = 1.8 TeV), pp̄→ tX 0.648 0.702 ±0.003

Tevatron (
√
s = 1.96 TeV), pp̄→ tX 0.883 0.959 ±0.002

Tevatron (
√
s = 2 TeV), pp̄→ tX 0.948 1.029 ±0.004

LHC (
√
s = 14 TeV), pp→ tX 144.8 152.6 ±0.6

LHC (
√
s = 14 TeV), pp→ t̄X 83.4 90.0 ±0.5

Table 4.4: LO and NLO cross sections for single-top production at the Tevatron and LHC for mt = 175
GeV. Cross sections are evaluated with CTEQ5L and CTEQ5M1 PDFs, and all scales set tomt. Errors
include only Monte Carlo statistics [15].
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In Figures 4.12-4.17 we present the results for the pT , and the (pseudo)rapidity for the s-channel
and t-channel processes, as produced by our Monte Carlo program. Note that in some graphs the
differential cross section has been scaled to produce a more meaningful plot. One can see that for low
pT at the Tevatron the subprocess is very likely to be a t-channel process, while for pT > 150 GeV it
is more likely that the quark was produced via the s-channel. However, the cross section is very low
for pT > 150 GeV and therefore we may conclude that at the Tevatron the t-channel will always be
more dominant. We can make the same conclusion for the LHC; there the lines cross at an even higher
energy (not shown in the plots).

Why the t-channel is more dominant than the s-channel is because of kinetic reasons. As can be
seen in the Feynman diagrams in Figures 4.3 and 4.4, the s-channel process is a back-to-back process,
while the t-channel is more like a scattering process and therefore kinematically favored. Putting it
differently, in the s-channel the W boson needs to have enough energy to be able to decay into a top
and a bottom quark. For the t-channel the W boson is allowed to be less energetic.

The (pseudo)rapidity of the top quark shows again a clear symmetry around η = y = 0. Just
as with tt̄ production, the single-top processes do not see the difference between one proton and the
other, which results therefore in symmetric (pseudo)rapidity plots. However, in contrast to tt̄ there is
a clear asymmetry in the Tevatron plots. The asymmetry is most clearly visible in the pseudorapidity
plot: the top quark seems to prefer a positive value for η, which means that the top will more likely
have its momentum in the same direction as the proton. The top antiquark shows exactly the same
asymmetry, but with its maximum at negative values for η. We can explain this by looking at the
quark content of the proton and antiproton. If we look at the s-channel Feynman diagram in Figure
4.3, we see that the most dominant s-channel process is u + d̄ → t + b̄ because in the hadrons the u
and d̄ are the most available. There are valence u-quarks in the proton and valence d̄-quarks in the
antiproton, so some asymmetry was to be expected. Because the s-channel is a back-to-back process,
this asymmetry is not that large.

Why the asymmetry in the t-channel pseudorapidity is so large at the Tevatron, can be explained
with the Feynman diagrams in Figure 4.4. From Figure 4.4a it is clear that we can expect that the
top favors the same direction as the proton, because the proton contains a lot of d-quarks while the
antiproton contains the same amount of d̄-quarks. However, the diagram in 4.4b has the opposite
effect. There are approximately twice as many u-quarks in a proton as there are d-quarks. For the
antiproton the amounts are about the same (they are sea-quarks). Apparently, in this case the top
quark is more likely to move in the same direction as the antiproton. The most dominant process
however, is the one in Figure 4.4a with d+ d̄→ t+ ū, because that is the only t-channel process that
does not need sea-quarks. We conclude that for the t-channel the top momentum is more likely to be
in the same direction as the proton (and the momentum of the top antiquark in the same direction as
the antiproton of course).
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Figure 4.12: Transverse momentum for the single-top process pp̄→ tX at the Tevatron (
√
s = 2 TeV).
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Figure 4.13: Transverse momentum for the single-top processes pp → tX and pp → t̄X at the LHC
(
√
s = 14 TeV). Note that the cross sections for the s-channels are multiplied with a factor of 10.
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Figure 4.14: Pseudorapidity for the s-channel single-top process at the Tevatron (
√
s = 2 TeV) and

LHC (
√
s = 14 TeV). Note that the cross section for the Tevatron is multiplied with a factor of 10.
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Figure 4.15: Pseudorapidity for the t-channel single-top process at the Tevatron (
√
s = 2 TeV) and

LHC (
√
s = 14 TeV). Note that the cross section for the Tevatron is multiplied with a factor of 100.
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Figure 4.16: Rapidity for the s-channel single-top process at the Tevatron (
√
s = 2 TeV) and LHC

(
√
s = 14 TeV). Note that the cross section for the Tevatron is multiplied with a factor of 10.
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Figure 4.17: Rapidity for the s-channel single-top process at the Tevatron (
√
s = 2 TeV) and LHC

(
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s = 14 TeV). Note that the cross section for the Tevatron is multiplied with a factor of 100.
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4.4 Top decay

The top quark is really a unique quark. Because of its large mass it has an extremely short lifetime
(∼ 10−25 seconds). This lifetime is so short that the top decays before it can hadronize. The top quark
is the only known quark that has this property. In general, quarks live long enough to form a bound
state with quarks and antiquarks spontaneously that are created from the vacuum. For example, when
a b-quark is created it almost immediately forms a B meson by hadronizing with an ū- or d̄-quark.
After some time the B meson decays resulting in a jet of hadrons. As it happens, the B meson has a
relative long lifetime and can travel a measurable distance before decaying. By measuring this distance
one can determine if a jet originated from a b-quark. This method is called b-tagging.

According to the Standard Model, the dominant top decay mode is t → W+b. The partial width
into the final state W+q is proportion to |Vtq|2. Measurements by CDF Collaboration indicate that
[17]

BR (t→Wb)

BR (t→Wq)
=

|Vtb|2

|Vtd|2 + |Vts|2 + |Vtb|2
= 0.94+0.31

−0.24. (4.39)

This implies that |Vtb| À |Vtd| , |Vts| but does not tell us the absolute magnitude of Vtb.
The W boson can decay in two different ways. There is leptonic decay,

W → `+ ν`, (4.40)

with ` = e, µ, τ , and there is jet decay

W → q + q̄′ → 2 jets, (4.41)

where (q, q̄′) =
(

u, d̄
)

, (c, s̄). Other jet decays like W → q + b̄ are CKM suppressed. Because the
quarks carry color, we find that the decay ratio is approximately

Γ (W → `+ ν`)

Γ (W → q + q̄′)
=

3

2× 3
=

1

2
. (4.42)

This branching ratio agrees with the data in the Particle Physics Booklet [19]. The b-quark always
decays into a jet. And because the top decays dominantly into a b-quark and a W , we see that the
top quark only has two decay channels depending on how the W decays. There is a leptonic decay of
the top,

t→W + b→ `+ ν` + jet, (4.43)

and there is the 3-jets decay of the top

t→W + b→ q̄ + q′ + b→ 3 jets. (4.44)

Using b-tagging it should be easy to detect a top via the leptonic decay. Unfortunately there are
several other processes that have the same signature. For this thesis project we have not done any
research about background signals of single-top, for more information we refer the interested reader to
the literature.

Decay channels of tt̄

There are three different decay channels for the tt̄ process. Dileptonic decay,

t+ t̄→W+ + b+W− + b̄→ ¯̀+ ν` + b+ `+ ν̄` + b̄→ ¯̀+ ν` + `+ ν̄` + 2 jets, (4.45)

semileptonic decay,

t+ t̄→W+ + b+W− + b̄ → ¯̀+ ν` + b+ q + q̄ + b̄→ ¯̀+ ν` + 4 jets (4.46a)

→ q + q̄ + b+ `+ ν̄` + b̄→ `+ ν̄` + 4 jets, (4.46b)

and all-jets decay,

t+ t̄→W+ + b+W− + b̄→ q + q̄ + b+ q + q̄ + b̄→ 6 jets. (4.47)

The branching ratios are (ignoring all CKM suppressed decays):

dileptonic : semileptonic : all-jets = 1 : 4 : 4. (4.48)
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Decay channels of single-top

The decay channels are different for each subprocess. For the s-channel we have

t+ b̄→W+ + b+ b̄ → ¯̀+ ν` + b+ b̄→ ¯̀+ ν` + 2 jets (4.49a)

→ q + q̄ + b+ b̄→ 4 jets. (4.49b)

The t-channel has exactly the same signature, with the difference that it has only one b-jet in the final
state:

t+ q →W+ + b+ q → ¯̀+ ν` + b+ q → ¯̀+ ν` + 2 jets (4.50a)

→ q + q̄ + b+ q → 4 jets. (4.50b)

This difference might be detected with the aid of b-tagging. Finally, the Wt-associated single-top
production has the decay channels

t+W− →W+ + b+W− → q + q̄ + b+ q + q̄ → 5 jets (4.51a)

→ ¯̀+ ν` + b+ q + q̄ → ¯̀+ ν` + 3 jets (4.51b)

→ ¯̀+ ν` + b+ `+ ν̄` → ¯̀+ ν` + `+ ν̄` + 1 jet. (4.51c)

Top decay width

As an exercise we demonstrate in this subsection how one can calculate the lifetime τ = 1/Γ of the
top quark. To find the decay width Γ of the top quark, we first draw the Feynman diagram:

t

b

W

(4.52)

The invariant amplitude is given by

−iM = ε∗µub

[−igw
2
√
2
γµ (1− γ5)

]

ut. (4.53)

We need to sum over both spin states of the b, all three helicity states of the W , and take the average
of both spin states of t. The invariant amplitude squared is then

|M|2 =
1

2

∑

all spin

∑

all helicity

MM∗

=
g2w
16

∑

all helicity

εµε
∗
ν

∑

all spin

[ubγ
µ (1− γ5)ut] [ubγν (1− γ5)ut]∗ . (4.54)

With the use of the completeness relations

∑

helicity

εµε
∗
ν = −gµν +

pWνpWµ

m2
W

, (4.55a)

∑

spin

uu = /p+m, (4.55b)

we can write
∑

all spin

[ubγ
µ (1− γ5)ut] [ubγν (1− γ5)ut]∗

=
∑

all spin

[ub (γ
µ − γµγ5)ut] [ut (γν − γνγ5)ub]
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=
∑

all spin

(ub)α (γ
µ − γµγ5)αβ (ut)β (ut)γ (γν − γνγ5)γδ (ub)δ

=
∑

spin b

(ub)δ (ub)α (γ
µ − γµγ5)αβ

∑

spin t

(ut)β (ut)γ (γ
ν − γνγ5)γδ

=
(

/p+mb

)

δα
(γµ − γµγ5)αβ

(

/pt +mt

)

βγ
(γν − γνγ5)γδ

= Tr
[

(

/p+mb

)

γµ (1− γ5)
(

/pt +mt

)

γν (1− γ5)
]

, (4.56)

and

|M|2 =
g2w
16

(

−gµν +
pWνpWµ

m2
W

)

×Tr
[

(

/p+mb

)

γµ (1− γ5)
(

/pt +mt

)

γν (1− γ5)
]

. (4.57)

This equation can be easily simplified with FORM, resulting in

|M|2 =
g2w
16

[

4

m2
W

(

m2
t −m2

b

)2
+ 4

(

m2
t +m2

b

)

− 8m2
W

]

≈ g2w
4

[

m4
t

m2
W

+m2
t − 2m2

W

]

. (4.58)

In the last step we have neglected the mass of the b-quark. To find the decay width using (2.79),

Γ =
|pb|
8πm2

t

|M|2 =
g2w

32πm2
t

|pb|
[

m4
t

m2
W

+m2
t − 2m2

W

]

, (4.59)

we first need to determine the momentum pb.
In the rest frame of the top quark, the four-momenta of the particle are given by

pµt = (mt, 0, 0, 0) , (4.60a)

pµb = (Eb, 0, 0, |pb|) =
(

Eb, 0, 0,
√

E2
b −m2

b

)

, (4.60b)

pµW = (Eb, 0, 0,− |pb|) =
(

EW , 0, 0,−
√

E2
W −m2

W

)

. (4.60c)

Momentum conservation tells us that pµt = pµb + pµW , and therefore

mt = Eb + EW , (4.61a)

E2
b −m2

b = E2
W −m2

W . (4.61b)

Solving this set of equations results in

Eb =
m2
t +m2

b −m2
W

2mt
≈ m2

t −m2
W

2mt
= |pb| . (4.62)

Substituting the values mW ' 80 GeV, mt ' 175 GeV and g2w ' 0.43, we finally find

Γ =
g2w

32πm2
t

|pb|
[

m4
t

m2
W

+m2
t − 2m2

W

]

=
g2w

32πm2
t

[

m2
t −m2

W

2mt

] [

m4
t

m2
W

+m2
t − 2m2

W

]

≈ g2w
64π

m3
t

m2
W

= 1.79 GeV. (4.63)

The lifetime of the top must then be

τ =
1

Γ
= 0.56 GeV−1 = 4× 10−25 sec. (4.64)

which agrees with the 10−25 seconds as stated earlier in this chapter.
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Chapter 5

The Monte Carlo program

In the previous chapter we have shown how to calculate the invariant amplitude for a process, and we
have shown several plots of the (pseudo)rapidity and transverse momentum of the top. In this chapter
we explain more about the step between the amplitude and the plots: the Monte Carlo.

If the differential cross section is known, we need to calculate an integral of the form

σ (pp→ tX) =
∑

q,q′

∫

∂2σ̂ (qq′ → tX)

∂t̂1∂û1
δ
(

ŝ+ t̂1 + û1
)

f (xq) f (xq′) dt̂1dû1dxqdxq′ . (5.1)

If there are more than two particles in the final state, we are not able to explicitly determine the
differential cross section. In that case we first have to calculate

dσ̂

dt̂1dû1
= |M|2dQ, (5.2)

where dQ is the Lorentz invariant phase space.
In any case, we need to numerically evaluate a multi-dimensional integral. There are several ways

to do this, but the Monte Carlo technique as described in this chapter is considered to be the most
efficient for high dimensions. Why this is so, is explained in Section 5.1. How the Monte Carlo
technique exactly works, is shown in the Section 5.2, including some extensions of the basic idea. In
Section 5.3 we talk about the structure of the Monte Carlo program which was used to obtain most of
the cross sections and plots in this thesis. In that section we also show some simple ways of testing of
the Monte Carlo and state their results.

The first two sections of this chapter are largely based on an excellent introduction to this technique:
Introduction to Monte Carlo methods, by Stefan Weinzierl [20].

5.1 Classical numerical integration

Algorithms for numerical integration have been around for centuries. The classical approach for eval-
uating 1-dimensional integrals is always the same. Given the integral

∫ xn

x0

dx f (x) , (5.3)

first divide the interval [x0, xn] into n sub-intervals, and evaluate f for n + 1 points x0, x1, . . . , xn.
Then estimate the area under the curve between each two points xj and xj+1, and sum over all areas.
This gives you an estimate of the value of the integral.

Basically there are two ways of doing this: with or without a uniform grid of points. The Newton-
Cotes formulas work with a uniform grid where each grid point xj is given by xj = x0 + j∆x, with
∆x = (xn − x0) /n. The Gaussian quadrature rules on the other hand, use orthogonal polynomials to
determine the optimal set for xj . These are often more efficient than the Newton-Cotes formulas, but
are much harder to implement.
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Newton-Cotes formulas

The easiest way to evaluate an integral numerically, is by using the trapezoidal rule

∫ x0+∆x

x0

dx f (x) =
∆x

2
[f (x0) + f (x0 +∆x)]− 1

12
(∆x)

3
f ′′ (ξ0) , (5.4)

where x0 ≤ ξ0 ≤ x0 + ∆x. The area of the function f (x) between the points x0 and x0 + ∆x is
estimated by the first term, while the second term tells you the size of the error in that estimation.
Dividing the integral into n sub-intervals and summing over the area of each sub-interval, we find

∫ xn

x0

dx f (x) =
n−1
∑

j=0

[

(xn − x0)
2n

[f (xj) + f (xj +∆x)]− 1

12

(xn − x0)3
n3

f ′′
(

ξj
)

]

=
xn − x0

n

n
∑

j=0

wjf (xj)−
1

12

(xn − x0)3
n2

f̃ ′′, (5.5)

with weights w0 = wn = 1/2, and wj = 1 for 1 ≤ j ≤ n− 1. The term

f̃ ′′ =
1

n

n−1
∑

j=0

f ′′
(

ξj
)

(5.6)

can be considered as the average error. Since the exact values of ξj are unknown, we cannot calculate
this term and we estimate the value of the integral with

∫ xn

x0

dx f (x) =
(xn − x0)

n

n
∑

j=0

wjf (xj) , (5.7)

while the error is of order O
(

1/n2
)

. To do this integration, we need n + 1 evaluations of f (x). The
number of function-evaluations is important, because this is usually the most time-consuming.

An big improvement to the trapezoidal rule is the so-called Simpson’s rule. It uses the evaluation
of f (x) at three points:

∫ x0+∆x

x0−∆x

dx f (x) =
∆x

3
[f (x0 −∆x) + 4f (x0) + f (x0 +∆x)]− 1

90
(∆x)

5
f (4) (ξ0) , (5.8)

with x0 −∆x ≤ ξ0 ≤ x0 +∆x. The total integral then becomes

∫ xn

x0

dx f (x) =
xn − x0

n

n
∑

j=0

wjf (xj)−
1

180

(xn − x0)5
n4

f̃ (4), (5.9)

with w0 = wn = 1/3, and wj = 4/3 for even j, and wj = 2/3 if j is odd. We see that Simpson’s rule
leads to numerical integration with an error of order O

(

1/n4
)

.
Simpson’s rule can be improved even further. Boole’s rule uses the evaluation of f (x) at five points,

x0+2∆x
∫

x0−2∆x

dx f (x) =
2∆x

45
[7f (x0 − 2∆x) + 32f (x0 −∆x) + 12f (x0)

+ 32f (x0 +∆x) + 7f (x0 + 2∆x)]− 8 (∆x)
7

945
f (6) (ξ0) , (5.10)

which leads to an error of order O
(

1/n6
)

.
The trapezoidal rule, Simpson’s rule, and Boole’s rule are all examples of the more general class of

Newton-Cotes formulas. If you start with a rule that uses 2k−1 evaluations of f (x), one ends up with
a numerical integration of order O(1/n2k). However, these formulas have two mayor problems. If the
function is not smooth, the values for the derivatives f (2k) (x) can become quite large, causing a large
error term. Secondly, when k becomes large some of the coefficients in the Newton-Cotes formulas
become large and of mixed sign. It is well known that when you add or subtract small numbers from
big numbers, the result will be substantially large numerical errors. Therefore the trapezoidal rule and
Simpson’s rule are most often used instead of the rules of higher order.
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Gaussian quadrature rules

The Gaussian quadrature rules are a generalization of the Newton-Cotes formulas. Instead of using
a uniform grid of points, we now choose the points in such a way to get the best estimation for the
integral. But how do we determine the optimal grid? And how do find the proper weight for each
point?

The trick with Gaussian quadrature rules is that we approximate f (x) with a polynomial. We can
do this only for the interval x ∈ [−1, 1], because for |x| ≥ 1 the values of the polynomials tend to
become very large. We can extend our interval to [0,∞] or [−∞,∞] by using a weight function W (x).
The integral we wish to evaluate is then

I =

∫ b

a

dx W (x) f (x) . (5.11)

The weight function makes sure that the integral nicely converges on the given interval. More explicitly,

W (x) is defined such that W (x) ≥ 0 for all x ∈ [a, b],
∫ b

a
dx W (x) > 0 and

∫ b

a
dx xnW (x) < ∞ for

all n = 0, 1, 2, . . ..
Given the integral of (5.11) the Fundamental Theorem of Gaussian Quadrature [21] states that the

optimal choice for a grid of n points is given by the xj for which

Pn (xj) = 0, (5.12)

where Pn is the n-th orthogonal polynomial with respect to the weight function W :

∫ b

a

dx W (x)Pk (x)Pm (x) = δkm. (5.13)

The roots xj of the orthogonal polynomials associated with the W on the interval are real and distinct
and are located in the interior of the interval [a, b]. For example, if n = 4 and W (x) = exp

(

−x2
)

for
the interval (−∞,∞),

I =

∫ ∞

−∞
dx exp

(

−x2
)

f (x) , (5.14)

then the grid points xj are given by the roots of the 4-th Hermite polynomial

H4 (x) = 16x4 − 48x2 + 12, (5.15)

which are

xj = ±
1

2

√

6± 2
√
6. (5.16)

To find a polynomial that closely approximates the function f (x), we use Lagrange interpolation
through the n points f (xj):

φn (x) =
n
∑

j=1

πn (x)

(x− xj)π′n (xj)
f (xj) , (5.17)

where
πn (x) = (x− x0) (x− x1) · · · (x− xn) . (5.18)

The integral (5.11) is then

∫ b

a

φn (x)W (x) dx =

∫ b

a

n
∑

j=1

πn (x)

(x− xj)π′n (x)
f (xj)W (x) dx+ En =

n
∑

j=1

wjf (xj) + En (5.19)

where En is the error

En =
f (2n) (ξ)

(2n)!

∫ b

a

dx W (x) [π (x)]
2
, (5.20)

and where wj are weight factors given by

wj =

∫ b

a

πn (x)W (x)

(x− xj)π′n (x)
dx. (5.21)

This integral is independent of the function f (x). In Gaussian quadrature rules the weights are all
positive and therefore we do not have here the same problems as with the Newton-Cotes formulas.
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Multi-dimensional integration

It is not hard to extend the Newton-Cotes formulas to multi-dimensional integrals. For example, an
integral over the d-dimensional hypercube [0, 1]

d
can be evaluated with the trapezoidal rule as

∫

ddx f (x1, . . . , xd) =
1

nd

n
∑

j1=0

· · ·
n
∑

jd=0

wj1 · · ·wj1f
(

j1
n
, . . .

jd
n

)

+O
(

1

n2

)

. (5.22)

For this calculation we need to evaluate the function N = (n+ 1)
d ≈ nd times. For high dimensions

this number will get really big which means that the algorithm will be really slow. The error is still of
order O

(

1/n2
)

, but in terms of the total number of function evaluations N it is O(1/N 2/d).
Using Simpson’s rule instead of the trapezoidal rule improves the situation a bit, but not by much.

The error is of order O
(

1/n4
)

= O(1/N4/d). The real solution to this problem is to use Monte Carlo

integration. In the next section we will show that for a Monte Carlo the error goes like O(1/
√
N). In

other words, we can halve the error if we take four times as many sample points. This technique is
not so fast, but at least it is independent of the dimension. It will therefore be a better option than
Simpson’s rule when d > 8.

5.2 Monte Carlo techniques

In a way, Monte Carlo integration can be seen as an extension to the classical numerical integration
methods. The Gaussian quadrature rules are more efficient than the Newton-Cotes formulas, because a
more efficient grid is used, meaning that we need less function evaluations to get to the same accuracy.
With Monte Carlo we get a much better efficiency by not using grid points at all. Instead we choose
our points randomly in the integration space. That this actually works might seem to be a miracle at
first, but will soon be made clear.

There are many advantages in using a Monte Carlo. The implementation is relatively simple, it can
easily handle complicated integration boundaries, and as said before, the efficiency is independent of
the dimension of the integral. However, the basic Monte Carlo method is far from perfect: it converges
quite slowly with a rate of O(1/

√
N) to the correct value. There are several techniques to improve

this, and these will be discussed in this section after we explain the basic principle of the Monte Carlo
method.

Basic principle

Evaluating an integral is equivalent to calculating the mean value of a function within a certain interval
[a, b]. Therefore we can also estimate the value of an integral by taking a large number of samples
from [a, b] and then determine the average. This is the principle behind Monte Carlo integration.

If xj = (u1, . . . , ud) is a random sample from the hypercube [0, 1]
d
then the average value of N

samples is

µ =
1

N

N
∑

n=1

f (xn) . (5.23)

Given the integral

I =

∫

dx f (x) =

∫

ddu f (u1, . . . , ud) , (5.24)

then according to the law of large numbers our estimate µ converges to the true value of the integral,

lim
N→∞

1

N

N
∑

n=1

f (xn) = I. (5.25)

Hence, I is the mean value of our distribution, with µ its estimate. Choosing a finite N causes an
error, which can be estimated by using the variance. It can be shown that if f is square integrable1,

µ2 =

∫

dx1 · · ·
∫

dxN

(

1

N

N
∑

n=1

f (xn)− I
)2

=
σ2 (f)

N
, (5.26)

1If f is not square integrable the estimate E will still converge to the value I, but the error estimate will not be
reliable anymore.
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where σ2 (f) is the variance of the function f (x),

σ2 (f) =

∫

dx (f (x)− I)2 . (5.27)

From Equation (5.26) we see the statistical error E of the estimate µ is on average σ (f) /
√
N , i.e. of

order O(1/
√
N). Note also that there is no reference to the dimension d in the error.

That the error is independent of the dimension can also be seen with the following. According to
the center limit theorem the probability that the error lies between I ± aσ (f) /

√
N is given by

lim
N→∞

P

(

−aσ (f)√
N
≤ 1

N

N
∑

n=1

f (xn)− I ≤ a
σ (f)√
N

)

=
1√
2π

∫ a

−a
dt exp

(

− t
2

2

)

. (5.28)

Because the integral I is unknown, we cannot use (5.27) to calculate σ (f) /
√
N . Instead we must

estimate the variance with

S2 =
1

N

N
∑

n=1

(f (xn)− µ)2 ≈
∫

dx (f (x)− I)2 = µ2. (5.29)

Using (5.23) this can also be written as

S2 =
1

N

N
∑

n=1

(

[f (xn)]
2 − 2µf (xn) + µ2

)

=
1

N

N
∑

n=1

[f (xn)]
2 − µ2. (5.30)

Improvements

Improving the rate of the convergence can be done by lowering the variance in Equation (5.26). This
can be done in a number of different ways. In a technique known as stratified sampling one divides
the full integration space in several subspaces. For example, if we divide the hypercube [0, 1]

d
in two

equally large parts a and b, the total statistical error becomes

µ =
1

2

√

σ2a (f)

Na
+
σ2b (f)

Nb
, (5.31)

where σ2j (f) is the variance of f (x) in the subspace j, and Nj is the number of samples drawn from

subspace j. Clearly, if σ2a (f) À σ2b (f) it would be wise to take Na À Nb, because that would lower
the total variance. In general, by choosing the correct subspaces one can lower the statistical error
significantly. The best results are obtained when Nj is chosen proportional to σ2j (f).

Importance sampling is a different technique which uses random numbers drawn from a pre-defined
probability distribution P (x). The probability density function for this distribution is then

p (x) =
dP (x)

dx
=
∂dP (u1, . . . , ud)

∂u1 · · · ∂ud
, (5.32)

with p (x) ≥ 0 and
∫

dx p (x) = 1. (5.33)

With the help of this function we can write our integral I as

I =

∫

dx f (x) =

∫

f (x)

p (x)
p (x) dx =

∫

f (x)

p (x)
dP (x) . (5.34)

Our estimate of I is then

µ =
1

N

N
∑

n=1

f (xn)

p (xn)
, (5.35)

and for the (estimated) variance we have

S2 =
1

N

N
∑

n=1

(

f (xn)

p (xn)

)2

− µ2. (5.36)
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From this it is clear that if we choose a p (x) with a similar shape as |f (x)|, that the variance can
become very small. The perfect choice is

p (x) =
f (x)

∫

f (x) dx
=
f (x)

I
, (5.37)

for which the error goes to zero for large N . However, because the integral I is unknown it is impossible
to calculate p (x) in this way.

We have to be careful with importance sampling techniques: if somewhere p (x) approaches zero,
the variance S2 might become intolerably large.

The adaptive VEGAS-algorithm

Stratified sampling and importance sampling can only be used efficiently if one has knowledge about
the integral prior to the integration. Unfortunately this information is often not available. The solution
to this is to use an adaptive algorithm. Starting from some default setting, the algorithm does a quick
numerical integration and uses that result to learn more about the integral itself. With that knowledge
the algorithm does another integration, just as quickly, but more efficient. This is then done again
and again. After each step, the integration becomes more and more efficient.

An example of such an algorithm is the VEGAS algorithm [22]. It is based upon both importance
sampling and stratified sampling. It starts by dividing the integration space in a rectangular grid of
subspaces2. Using the results of the integration of each subspace the grid is adjusted accordingly, in a
similar manner as was done with the stratified sampling technique.

To become even more efficient, the VEGAS algorithm tries to approximate (5.37) with a step
function

p (x) = wj (x) ≈
|f (x)|

∫

|f (x)| dx , (5.38)

i.e. by giving each subspace j a value wj . In two dimensions p would look like a 2-dimensional
histogram with m2 bins, where m is the number of subspaces per dimension. For d dimensions that
would mean that we need to storemd bins in our computer memory, a number that grows exponentially
with d. To prevent that, we assume that p (x) can be factorized:

p (u1, . . . , ud) = p1 (u1) · p2 (u2) · . . . · pd (ud) . (5.39)

Storing this in our memory would only acquire m× d bins. The probability density function p should
approximate f , so (5.39) is only effective when also f is approximately factorizable. In other words,
using p only increases the efficiency of the Monte Carlo substantially when the peaks of f are well-
localized.

Each iteration i results in an estimate for I,

I ≈ µi =
1

Ni

Ni
∑

n=1

f (xn)

p (xn)
, (5.40)

and an estimate for the statistic error E,

E2 ≈ S2
i =

1

Ni

Ni
∑

n=1

(

f (xn)

p (xn)

)2

− µ2i . (5.41)

The results of r iterations can be combined into one cumulative estimate of I, weighted by the number
of function evaluations Ni and their variances Si:

µ =

(

r
∑

i=1

Ni

S2
i

)−1( r
∑

i=1

NiEi
S2
i

)

. (5.42)

With the VEGAS algorithm it also possible to calculate a χ2 per degree of freedom:

χ2/dof =
1

r − 1

r
∑

i=1

(µi − µ)2
S2
i

. (5.43)

The value of this should be close to one, and can be used to check if the error estimates Sj are reliable.

2Note that in this case we do not choose samples that are points on the grid (as with the classical integration methods).
In Monte Carlo’s the grid is only there to devide the total integration space in the smaller subspaces.
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5.3 The program

There are many excellent Monte Carlo programs available for calculating cross sections for many
different processes known in high energy physics. For pedagogical reasons however, we have create our
own Monte Carlo. In this section we discuss the structure of the final program, in order to give the
reader a nice example of the implementation of a Monte Carlo which uses the VEGAS algorithm. An
example of the generated output in the terminal is seen in Figure 5.2. The classes and their relations
are summarized in the diagram of Figure 5.1.

----------------------------------------------------------------------
Version: April 19th, 2006
Random number generator: RANMAR
PDF tabel: CTEQ5L
Mass of top quark: m[t] = 175 GeV
Scales: mu[R] = mu[F] = 175 GeV
Number of dimensions: 4
Number of iterations: 5
Number of events/iter: 200000
Accelerator/energy: LHC (pp at 14 TeV)
Process: Standard Model s-channel single-top

(anti-top in final state)
Cross sections in pb.
----------------------------------------------------------------------
iteration 1: 2.85539 +/- 0.12043 Total: 2.85539 +/- 0.12043
iteration 2: 2.78367 +/- 0.0183155 Total: 2.78529 +/- 0.0181073
iteration 3: 2.7687 +/- 0.0121595 Total: 2.77386 +/- 0.0100946
iteration 4: 2.77193 +/- 0.0114858 Total: 2.77302 +/- 0.00758238
iteration 5: 2.77369 +/- 0.0119767 Total: 2.77321 +/- 0.00640644
----------------------------------------------------------------------

Result = 2.77321 +/- 0.00640644, Chi2 = 0.943374
----------------------------------------------------------------------
Area of pT histogram: 2.78784 pb
Area of rapidity histogram: 2.79068 pb
Area of pseudorapidity histogram: 2.7778 pb
----------------------------------------------------------------------

Finished! Simulation took 23 seconds (0.383333 minutes)

Figure 5.1: Output of the Monte Carlo program for the Standard Model single-top s-channel process
at the LHC, with t̄ in the final state.

MonteCarlo

–sampler : Sampler

–psGen : PhaseSpaceGenerator

–pdfTable : PdfTable

–hisPT : Histogram

–hisRapidity : Histogram

–hisPseudorap : Histogram

+start()

–calcCrossSection()

–calcMatrixElement()

Sampler

–grid : double[ ][ ]

–random : RandomGenerator

+get()

+put()

–adjustGrid()

PhaseSpaceGenerator

–sqrtS : double

+getPhaseSpace()

PdfTable

–pdfValues : double[ ][ ]

–file : string

+readTableFile()

+getPdf()

RandomGenerator

–dim : int

+ranmar()

+sobol()

LorentzVector

–t : double

–x : double

–y : double

–z : double

+rapidity()

+pseudorapidity()

Histogram

–values : double[ ]

+fill()

+save()

Figure 5.2: Class diagram of the Monte Carlo program. Only the most relevant functions and their
relations are shown here.
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The MonteCarlo class

The central nervous system of the program is the MonteCarlo class. It contains all the simulation
settings including the number of iterations, the number of events (samples) in each iteration, which
type of random generator is used, the hadronic center-of-mass energy

√
s, and the process that is to

be analyzed. The class contains several public functions to make it possible to change these settings.
The main task of this class is quite simple. When the function start() is called, the program starts

to run a simulation using the given settings. After initializing all the needed objects and printing the
settings to the terminal, the program enters a simple loop:

while (sampler.get(r, wgt)) {
dsig = calcDiffCrossSection(r, wgt);

sampler.put(r, wgt, dsig);

}

These lines form the core of the program. In the first line we ask the sampler for an event, using
the function get(double r[], double& wgt). This function fills the array r with random values and
assigns to wgt the weight of this sample. This weight is proportional to the size of the subspace and is
there to correct for the fact that more samples will be drawn from the larger subspaces. The Sampler
class keeps track of the number of iterations done and makes sure that get() will return false if it
has reached the maximal number of iterations, as specified by the Monte Carlo settings.

In the second line the cross section is calculated for the given event. Finally in the third line the
sample r, the weight wgt and evaluated value dsig are given back to the Sampler. These values will
be used by the Sampler to estimate the best adjustment to be made to the grid when the iteration is
finished. How this is done exactly is explained in the next section.

Calculating the cross section

In calcDiffCrossSection() the first step in calculating the cross section is to obtain the momentum
fractions x1 and x2 of the initial two partons. These are two variables over which we need to integrate
and therefore we obtain these values by x1 = r[0] and x2 = r[1], where r is our array with random
values.

In order to create a top quark, the initial partons should have an energy large enough to produce
the top mass,

x1x2s > m2
t . (5.44)

If this inequality is satisfied, the next step is calculating the phase space. This is done with the
function getPhaseSpace() of the PhaseSpaceGenerator class which calculates the momenta of the
initial and final particles, and returns the phase space dQ. More about this in the section about the
PhaseSpaceGenerator.

Knowing the momenta of all the particles, we are now able to calculate the total invariant amplitude
for this event. This is done by the function calcMatrixElement() which uses the PDF values of the

PdfTable class. For example, we saw in Chapter 4 that the |M|2 for the tt̄ process via quark-antiquark
annihilation was given by

|M|2 =
4

9

16π2α2s
ŝ2

(

û21 + t̂21 + 2m2
t ŝ
)

. (5.45)

The invariant amplitude summed over all available quarks and anti-quarks is then
∑

q,q̄

|M|2 = |M|2Φqq̄, (5.46)

where the qq̄-flux Φqq̄ is given by

Φqq̄ = f1 (xu) f2 (xū) + f1 (xū) f2 (xu) + f1 (xd) f2 (xd̄) + f1 (xd̄) f2 (xd)

+f1 (xc) f2 (xc̄) + f1 (xc̄) f2 (xc) + f1 (xs) f2 (xs̄) + f1 (xs̄) f2 (xs)

+f1 (xb) f2 (xb̄) + f1 (xb̄) f2 (xb) . (5.47)

Here fi (xp) is the parton distribution function of parton p for proton i. After the amplitude and the
phase space are determined, the cross section for this particular event is then calculated by

dσ =
(

|M|2Φqq̄
)

dQ. (5.48)
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Also the (pseudo)rapidity and the transverse momentum of the top quark are calculated. These are
then added to their corresponding histogram together with a weight factor w to indicate how much the
value should contribute to the histogram. For example, for the histogram of dσ/dpT we add w × pT
instead of pT . The weight factor is equal to dσ multiplied by the wgt from the event. In this way
dσ/dpT will be proportionally low when dσ is low, and because of the wgt we may be sure that the
size of the subspace has no influence the histogram3.

The Sampler class

The VEGAS algorithm is hidden inside the Sampler class. The Sampler fabricates event samples
xj for the MonteCarlo and receives in return the function evaluations f (xj). These evaluations are
stored in histograms, one for each dimension. After an iteration is finished, these histograms are used
to adjust the grid such that the subspace is small for the places where the slope of f is large.

There are three important functions in this class: get() returns a sample xj , put() stores the
given f (xj) into the histograms and the private function adjustGrid() changes the grid after each
iteration. When get(double r[], double& wgt) is called, the RandomGenerator class is used to
obtain a pseudorandom number for each dimension. Each random number is then split into two
smaller numbers, an integer and a double. The integer is used to randomly pick a subspace, and after
that the double is used to randomly pick a position x within that subspace. This is done for each
dimension and the vector of x-values is then returned as the array r. The weight wgt is determined by

wj =
1

NevNit

1

Vj
, (5.49)

where Vj is the volume of the subspace, and Nev, Nit are the total number of events and iterations.
The function put(r, wgt, dsig) is not much more complicated. The goal is to approximate the

optimal probability density function p in (5.38) for which

p (u1, . . . , ud) = p1 (u1) · p2 (u2) · . . . · pd (ud) , (5.50)

where the pi (ui) are treated as histograms. Given a f (xj) = f (uj1, uj2, . . . , ujd), this value is then
added to the corresponding bins of each histogram.

The most complicated part of the Sampler is in the adjustGrid() function. We shall not examine
the exact implementation of the function in much detail, because that is beyond the scope of this
thesis. We can however show the algorithm in action by evaluating for example the integral

∫

f (x, y) dx dy =

∫ 1

0

exp
(

−10
(

x− 1
2

)2 − 10
(

y − 1
2

)2
)

dx dy. (5.51)

This is also a perfect way for testing the Sampler. Notice that the function f (x, y) can be factorized,
we therefore expect a maximal adjustment of the grid.

Each dimension is divided into 50 subspaces. Since f (x, y) is a function of two dimensions, we
have here a 2-dimensional plane divided into 50 × 50 small squares. The program always starts with
a uniform grid. After the first iteration the grid points are distributed as can be seen in the left plot
of Figure 5.4. After five iteractions the grid becomes more and more dense near the center. This can
be seen in the right plot of Figure 5.4.

After five iterations, the grid look like Figure 5.4b. It hardly changes anymore after an iteration
and one can see clearly that the subspaces are more dense at the places where the integrand f (x, y)
is behaving more wildly: the slope of the function is larger near the origin. The Sampler finds the
correct value of 0.298. This simple test has convinced us that Sampler is doing its work properly.

The RandomGenerator class

Creating random numbers is not as simple as one might expect. This is because the efficiency and
accuracy of the Monte Carlo are directly related to the efficiency and accuracy of the random number
generator. We highlight here three points of criteria that indicate how well the generator behaves.

3Even though the exact size of the subspaces should have no influence, don’t forget that deviding the integration
space in different subspaces does provoke that most samples are drawn from the largest subspace. Where the integrand
behaves more ‘wildly’, we need a bigger to obtain a better accuracy.
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Figure 5.3: Plot of the integrand of Equation (5.51).
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Figure 5.4: The distribution of grid points for (5.51) after the first iteration (left plot) and after 5
iterations (right plot).

First of all, the distribution. To prevent parts of the integration space to be biased, the generated
numbers need to have a very uniform distribution. This is not an easy task, since a computer is a
deterministic machine and hence can never produce truly random numbers. We need an algorithm
that produces numbers that look random (pseudo-random numbers) or numbers that are not random
at all, but do have a very uniform distribution (quasi-random numbers).

In many random generators the next random number is determined by using the previous number.
Unfortunately, these have the nasty feature of repeating itself after a while. For the Monte Carlo
this means that increasing the number of events per iteration no longer increases the accuracy of the
calculation. A good random generator should therefore have a very long period.

Finally, the algorithm for generating the random numbers must be very efficient. This is because for
Nit iterations, Nev events per iteration, and an integral of d dimensions, we need to run the algorithm
Nit × Nev × d times. The speed of the random generator can therefore have a large impact on the
overall speed of the Monte Carlo program.

The RandomGenerator class has two algorithms build in. The ranmar() function produces pseudo-
random numbers by using the RANMAR algorithm, and sobol() uses Sobol sequences to return a
quasi-random number.
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RANMAR

An easy way to produce random numbers is the multiplicative linear congruential generator:

si = (asi−1 + c)modm. (5.52)

The numbers generated are integers between 0 and m. The integers a and c are two predefined
constants. If these are chosen wisely, one can get the maximal period of m. For example, the set with
a = 69069, c = 0 and m = 232 has the maximal period.

An improvement of this algorithm is the Lagged Fibonacci generator:

si = (si−p + si−q)modm. (5.53)

RANMAR [23] is an extension of this generator. It uses

si = (si−97 + si−33)mod 224, (5.54)

combined with a simple sequence

ti =

{

ti−1 − 7654321 if ti−1 − 7654321 ≥ 0,
ti−1 − 7654321 + 224 − 3 otherwise.

(5.55)

The number produced by the algorithm is then

si = (ri − ti)mod 224. (5.56)

Dividing the integer si by 224 results in a random number between 0 and 1.

Sobol sequences

The Sobol generator produces quasi-random numbers that have a very uniform distribution. Instead
of arithmetic operations, it uses only bitwise exclusive-OR operations. This makes the algorithm run
quite fast on a computer, but unfortunately it also makes the implementation rather complicated.
Therefore we shall not go into details here and refer the interested reader to the article of I.M. Sobol,
[24].

Testing

Testing the generator can be easily done by looking at its distribution (this is called the frequency test).
For both generators we have produced 100,000 random numbers and placed them into a histogram.
The result were two histograms with in each bin approximately the same number of values. Our
conclusion is that both generators passed the frequency test.

In all simulations done for this thesis, the RANMAR algorithm was used. The main reason for this
is that the RANMAR algorithm is better understood and works just as good for our purposes.

The PhaseSpaceGenerator class

The PhaseSpaceGenerator class has two important tasks: determining the momenta of all the initial
and final particles, and calculating the phase space factor dQ. Both are done by the same function,
getPhaseSpace(). In this thesis project we have worked solely with processes where there are only
two particles in the final state. The PhaseSpaceGenerator class can also be used to calculate the
more general process A + B → C +D +X, but in this section we only discuss the most simple case
where there is no X.

In the lab frame, the hadrons are assumed to collide with equal, but opposite, momenta In this
frame the momenta of the (massless) partons are

pA = (EA,pA) = xA ·
(

1
2

√
s, 0, 0, 12

√
s
)

,

pB = (EB ,pB) = xB ·
(

1
2

√
s, 0, 0,− 1

2

√
s
)

. (5.57)

The momentum fractions are determined with the random numbers according to xA = r[0] and xB

= r[1]. As usual,
√
s is the center-of-mass energy of the hadrons.
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We need to do the calculations in the center-of-mass (CM) frame of the partons. The boost we
need to transform to that frame is

βz =
EA − EB
EA + EB

=
xA − xB
xA + xB

, (5.58)

and the rapidity is then

y =
1

2
ln

(

1 + βz
1− βz

)

(5.59)

Using the rapidity makes it is easier to boost from one frame to another. The parton momenta in the
CM frame of the partons is

p̂A = (cosh (y)EA − sinh (y) pAz, 0, 0,− sinh (y)EA + cosh (y) pAz)

=
(

1
2

√
ŝ, 0, 0, 12

√
ŝ
)

(5.60)

p̂B = (cosh (y)EB − sinh (y) pBz, 0, 0,− sinh (y)EB + cosh (y) pBz) (5.61)

=
(

1
2

√
ŝ, 0, 0,− 1

2

√
ŝ
)

(5.62)

where
√
ŝ is the CM-energy of the partons,

√
ŝ =
√
x0x1

√
s. (5.63)

The next step is to determine in which direction dΩ the particles C and D will go. This cannot
be calculated, we need to use the random numbers r[2] and r[3] for that. The angle φ should be
somewhere between 0 and 2π, so

φ = 2πr2, (5.64)

because for the random numbers ri ∈ [0, 1]. The angle θ ∈ [0, π] is determined with

cos θ = 1− 2r3. (5.65)

The reason why we are not using θ = πr3 is because

dΩ = sin θdθdφ = −d (cos θ) dφ, (5.66)

and therefore the distribution of θ must be uniform in cos θ.
We have now reached the point that we can almost calculate the phase space [25],

dQ =
1

64π2ŝ

|p̂C |
|p̂A|

dΩ =
|p̂C |

32π2ŝ
√
ŝ
dΩ. (5.67)

To find an expression for the momenta of the final particles, we note that |p̂C | = |p̂D| and

ÊC + ÊD =

√

m2
C + |p̂C |2 +

√

m2
D + |p̂C |2 =

√
ŝ. (5.68)

Solving this equation for |p̂C |, we find that

|p̂C | =
1

2
√
ŝ

√

ŝ2 +m4
C +m4

D − 2ŝm2
C − 2ŝm2

D − 2m2
Cm

2
D. (5.69)

The phase space weight wps that is returned by the function getPhaseSpace() is

wps = cu
|p̂C |

32π2ŝ
√
ŝ
4π =

|p̂C |
8πŝ
√
ŝ
. (5.70)

Instead of dΩ we use 4π, because summing over all weight factors wps, the dΩ will give a contribution
of exactly

∫

dΩ = 4π. (5.71)

The constant cu is there to give the cross section the correct units.
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In the CM frame of the partons, the momenta of particles C and D are

p̂C = (|p̂C | , 0, 0, |p̂C |)
p̂D = (|p̂C | , 0, 0,− |p̂C |) (5.72)

Before these momenta are returned by the function, we first have to boost them back to the original
CM frame of the hadrons:

pC =
(

cosh (−y) ÊC − sinh (−y) p̂Cz, 0, 0,− sinh (−y) ÊC + cosh (−y) p̂Cz
)

,

pD =
(

cosh (−y) ÊD − sinh (−y) p̂Dz, 0, 0,− sinh (−y) ÊD + cosh (−y) p̂Dz
)

. (5.73)

Here we have used the rapidity y of Equation (5.59).

The PdfTable class

The PdfTable class provides the parton distribution function (PDF) that is used by the MonteCarlo

class to calculate the total invariant amplitude. This class basically contains only two functions:
readTableFile(string file) for reading the CTEQ files, and the function getPdf(double x,

double mu) which returns an array with the PDF value for each parton. The argument x is the
momentum fraction and µ is the renormalization scale, usually set to mt = 175 GeV. Because the
table only contains a limited amount of data points, getPdf() is essentially an interpolation algorithm
that evaluates the correct PDF values.

To check if the class is working properly, we have tried to reproduce the graphs in Figure 4.2. The
result is shown in Figure 5.5. Comparing both figures one sees an excellent agreement. We conclude
that the PdfTable class is working as expected.
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Figure 5.5: The parton distribution functions at scale µ = 175 GeV.

The classes LorentzVector and Histogram

Finally, there are two more classes in the program that are quite small but nonetheless important. The
LorentzVector class is makes calculations for the phase space much easier by offering a large number
of operator functions to do simple arithmetics as well as dot products and boosting. Quite useful are
also the functions for calculating the rapidity and the pseudo-rapidity of the Lorentz-vector.

The Histogram class is vital for collecting the data needed to draw the histograms of the transverse
momentum and the (pseudo)rapidity. When the simulation is finished, the Histograms save their data
to a text file with the extension *.his. The actual drawing is done by a separate program like GnuPlot
[26] or ROOT [27], that reads the his-files and plots the histograms. A simple check that the Histogram
class is working properly is done by determining the area of the histogram. This should be equal to
the total cross section of the process, which is the case for all histograms shown in this thesis.
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Chapter 6

Topflavor models

After the development of the Standard Model (SM), theoretical physicists have developed a large
number of new theories extending the SM. An obvious way to create such an extension is by starting
with a Lagrangian with a certain symmetry and then break it to SU(3)c×SU(2)w×U(1)Y , the symmetry
structure of the SM. Of course there are many different ways to do this. A lot of these new models
were falsified by accurate electroweak measurements, but a number of them survived and a few theories
became very popular.

One interesting theory, is the theory of Topflavor1. It was introduced in 1996 by David J. Muller
and Satyanarayan Nandi [29] as an explanation for the exceptionally heavy mass of the top quark.
Topflavor is the Standard Model extended with an extra SU(2) gauge group, similar to the SU(2) flavor
symmetry of the up and down quark. Only the top-bottom doublet transforms under this new SU(2),
hence the name Topflavor. The way to implement this, is by simply assigning the proper quantum
numbers to the fermions.

In the first section, after determining the symmetric structure of this theory, we determine the
Topflavor Lagrangian. This section is followed by two sections that describe what happens during
the two steps of symmetry breaking. In these sections the mass eigenstates of the gauge bosons are
determined. Subsequently, in Section 6.4 we present the couplings between the fermions and the gauge
bosons. These are then used in Section 6.5 for calculating the cross sections of single-top processes. In
the final section we present and discuss the results that were found with the Monte Carlo simulations.

6.1 The Topflavor Lagrangian

Topflavor is the Standard Model extended with an extra SU(2) group, i.e. the Topflavor Lagrangian
has the gauge symmetry SU(3)c×SU(2)l×SU(2)h×U(1)Y . The label l stands for light and the label
h for heavy. The first and second generation of the (left-handed) fermions transforms as doublets
under SU(2)l and as singlets under SU(2)h. For the heavy fermions in the third generation the story
is exactly the opposite: they transform as doublets under SU(2)h and as singlets under SU(2)l.

For energies lower than the electroweak breaking scale, O(v ≈ 175 GeV), the model must reduce
to the Standard Model. In the Topflavor model discussed in this chapter we shall use a complex Higgs
scalar Σ that spontaneously breaks the original Topflavor symmetry by acquiring a vacuum expectation
value (VEV) of u:

SU(2)l × SU(2)h ×U(1)Y → SU(2)w ×U(1)Y . (6.1)

For simplicity we ignore the color group, because it plays no active role in the symmetry breaking
process. At even lower energies the theory breaks down as usual,

SU(2)w ×U(1)Y → U(1)em, (6.2)

which happens when a second complex Higgs scalar doublet H acquires its VEV at scale v, with v ¿ u.
The second breaking is called electroweak symmetry breaking (EWSB).

1This model can be considered as being part of a much larger class of models called Technicolor. An excellent review
about this topic is given in [28]. A similar theory to Topflavor is Topcolor which uses a SU(3) gauge group, similar to
the color group of QCD.
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Now that we have determined the symmetric structure of our theory, it is not hard to write down
the Lagrangian. The Topflavor Lagrangian consists of the same parts as in the Standard Model:

LTF = LkF + LkGB + LkH + LpH + LY. (6.3)

However, the covariant derivative here is extended with an extra set of gauge bosons2,

Dµ = ∂µ − ig′BµY − iglW a
lµ

τa

2
− ighW a

hµ

τa

2
. (6.4)

Apart from the Dµ, the kinetic fermion term remains the same:

LkF = iL` /DL` + iR` /DR` + iLui /DLui + iRui /DRui + iRdi /DRdi , (6.5)

with summation over leptons ` = e, µ, τ and quarks ui = u, c, t and di = d, s, b implied. The kinetic
term for the gauge bosons obtains one extra term for the extra three gauge bosons,

LkGB = −1

4
BµνBµν −

1

4
W aµν
l W a

lµν −
1

4
W aµν
h W a

hµν , (6.6)

with the field strengths given by

Bµν = ∂µBν − ∂νBµ, (6.7a)

W a
lµν = ∂µW

a
lν − ∂νW a

lµ + glε
abcW b

lµW
c
lν , (6.7b)

W a
hµν = ∂µW

a
hν − ∂νW a

hµ + ghε
abcW b

hµW
c
hν . (6.7c)

All fermions in Topflavor theory transform as

ψ (x)→ ψ′ (x) = exp (ig′Y ) exp

(

iglT
a
l

τa

2

)

exp

(

ighT
a
h

τa

2

)

ψ (x) , (6.8)

Here the Y is the hypercharge of fermion, and Tl, Th are new quantum numbers similar to the weak-
isospin T of the SM. The quantum numbers for each field in the theory are listed in Table 6.1.

The Higgs sector

The Higgs sector of the Topflavor Lagrangian is much different then in the Standard Model. This time
we have two Higgs fields that we need construct in such a way that they produce the correct symmetry
breaking. The simplest of the two is the H doublet. This doublet must play the same role as the
Higgs in the SM and must therefore have the same quantum numbers and representations. Under
SU(2)l×SU(2)h×U(1)Y it transforms as3

H : (2,1)1/2 . (6.9)

With this choice for the H we can use it to generate masses for the light fermions. In order to obtain
mass terms for the heavy fermions we can add another H to the theory that transform as (1,2)1/2.
However, in the next subsection we introduce an alternative method.

It is clear that we can give H the same shape as in the Standard Model,

H (x) =

(

φ1 (x) + φ2 (x)
v + h (x) + iφ4 (x)

)

. (6.10)

The φ1, φ2, and φ4 are the Goldstone bosons that will be eaten by the three gauge bosons W±
µ and Zµ

after the electroweak symmetry breaking (EWSB). The h (x) then becomes a massive Higgs particle.
The Higgs field Σ (x) cannot be written as a complex doublet, because if we want to use Σ to

break SU(2)l×SU(2)h → SU(2)w, it has to transform under both SU(2) groups. In other words, Σ
transforms as

Σ : (2,2)0 . (6.11)

2As stated before, we leave out the QCD part of this theory.
3Often the H field is given Y = 1 with Dµ = ∂µ − ig′Bµ

Y
2
. However, we shall follow here the same approach as in

Chapter 3 and take Y = 1/2 with Dµ = ∂µ − ig′BµY .
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Explicitly, the Σ must transform as

Σcd → Σ′cd = Rca
l R

db
h Σab, (6.12)

where Rl and Rh are transformation matrices belonging to the groups SU(2)l and SU(2)h. Note that
these must have different indices, otherwise they are not independent. We see from the indices that
Σ (x) can be written as a 2× 2 matrix,

Σ (x) = u+ σ (x) + iτaχa (x) =

(

u+ σ + iχ3 iχ1 + χ2
iχ1 − χ2 u+ σ − iχ3

)

. (6.13)

As usual the τa here are the Pauli matrices. We shall later see that the χ1, χ2, and χ3 are Goldstone
bosons that will be eaten by the three heavy gauge bosons W ′±

µ and Z ′
µ after the first symmetry

breaking. The u is the VEV of the field and σ (x) becomes a massive Higgs particle just like h (x).
Without using the tensor notation, we see that Σ transform as

Σ′ = (Σ′)
cd

= (Rl)
ca

(Σ)
ab

(Rh)
db

= (Rl)
ca

(Σ)
ab
(

R†
h

)bd

= RlΣR
†
h. (6.14)

To reverse the indices in Rh we could also use the transpose. However, RT
h does not belong to SU(2)h,

which is easy to see by looking at the second Pauli matrix:

τT2 = −τ2. (6.15)

Taking the Hermitian conjugate leaves all Pauli matrices invariant and hence R†
h does belong to SU(2)h.

By using the quantum numbers in (6.9) we see that the covariant derivative for H is

DµH = ∂µH −
ig′

2
BµH −

igl
2
W a
lµτ

aH. (6.16)

For Σ we need to keep in mind how the field transforms. We find

DµΣ = ∂µΣ+

(

−iglW a
lµ

τa

2

)

Σ+ Σ

(

−ighW a
hµ

τa

2

)†

= ∂µΣ− iglW a
lµ

τa

2
Σ + ighΣW

a
hµ

τa

2
. (6.17)

Finally, in order to have spontaneous symmetry breaking via the Higgs mechanism, we must of course
include a Higgs potential. For the H we choose the usual potential,

VH = −µ2H
(

H†H
)

+ λH
(

H†H
)2
, (6.18)

with
H†H = (v + h)

2
+ φ21 + φ22 + φ24. (6.19)

We need a similar potential for Σ (x). However, Σ†Σ is a 2× 2 matrix, not a scalar:

Σ†Σ =
(

u+ σ − iχTa τa
)

(u+ σ + iτ bχb)

= (u+ σ)
2
+ χTa τaτ bχb

= (u+ σ)
2
+ χTa (δab + iεabcτ c)χb

= (u+ σ)
2
+ χTaχa + iχTa εabcτ cχb (6.20)

To obtain a real scalar value similar to the term H†H, we must remove the last term by taking the
trace:

1

2
Tr
(

Σ†Σ
)

=
1

2
Tr
(

(u+ σ)
2
+ χTaχa + iχTa εabcτ cχb

)

= (u+ σ)
2
+ χ21 + χ22 + χ23. (6.21)

The Higgs sector of the Topflavor Lagrangian can be written as

LH = LkH + LpH, (6.22)
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with the kinetic terms

LkH = (DµH)
†
(DµH) +

1

2
Tr
(

(DµΣ)
†
(DµΣ)

)

, (6.23)

and potentials

LpH = −VH
(

H†H
)

− VΣ
(

Tr
(

Σ†Σ
))

= −µ2HH†H + λH
(

H†H
)2 − µ2Σ

2
Tr
(

Σ†Σ
)

+
λΣ
4

(

Tr
(

Σ†Σ
))2

. (6.24)

Topflavor with seesaw mechanism

We also need Yukawa terms to generate masses for the fermions using the Higgs bosons. Instead of
using the original model of [29], we shall use an extension called Topflavor with Seesaw Mechanism
[30]. The main difference is that in the original theory the whole third generation transforms under
SU(2)h, while in this new model only the top-bottom family transform under SU(2)h, with the tau
lepton transforming in the same way as the lighter families. This can explain why the top is so much
heavier than the tau lepton.

We can explain the principle of the seesaw mechanism [31] with a 2× 2 matrix like

M2 =

(

0 m
m b

)

. (6.25)

The value of b has to be large, and m is of an intermediate size. In order to find the mass eigenstates
of the particles, we need to diagonalize this matrix. Their masses follow from the eigenvalues:

λ± =
b±
√
b2 + 4m2

2
. (6.26)

Since bÀ m, one particle receives a really large mass,

λ+ ≈ b. (6.27)

The determinant of the matrix is equal to

∣

∣M2
∣

∣ = λ−λ+ = −m2. (6.28)

This means that if one mass goes up, the other goes down – just like a seesaw. Indeed, the other
particle has a really small mass,

λ− =
b−
√
b2 + 4m2

2
= −m

2

b
+O

(

m4
)

. (6.29)

The seesaw mechanism can be used to explain e.g. the small neutrino masses. In our Topflavor model
the mechanism is used to generate a top mass, which is small compared to the masses of two new
quarks, T and B. These left-handed quarks are doublet under SU(2)l,

SL =

(

TL
BL

)

, (6.30)

while the right-handed quarks form a doublet under SU(2)h,

SR =

(

TR
BR

)

. (6.31)

The Yukawa terms for the third quark family are

LY,3rd = − ys√
2
SLΣSR − ystSLHctR − ysbSLHbR − κLtSR + h.c., (6.32)

where Hc is the anti-Higgs doublet,
Hc = −iτ2H∗. (6.33)
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particle SU(3)c SU(2)l SU(2)h U(1)Y
(tL, bL)

T
3 1 2 +1/6

tR 3 1 1 +2/3
bR 3 1 1 −1/3
(TL,BL)T 3 2 1 +1/6

(TR,BR)T 3 1 2 +1/6

(ντL, τL)
T

1 2 1 −1/2
τR 1 1 1 −1
Σ 1 2 2 0
H 1 2 1 +1/2

Table 6.1: Representations of all fields in the Topflavor model (taken from [30]). The representations
for the first and second family of leptons and quarks do not change in Topflavor, they are all singlets
under the SU(2)h.

When H and Σ obtain there VEV’s,

〈H〉 = 1√
2

(

0
v

)

, 〈Σ〉 = 1√
2

(

u 0
0 u

)

, (6.34)

the Yukawa terms turn into

LY,3rd = −
(

tL T L
)

(

0 κ
mst MS

)(

tR
TR

)

−
(

bL BL
)

(

0 κ
msb MS

)(

bR
BR

)

+ h.c. (6.35)

where MS ≡ ysu/
√
2, mst ≡ ystv/

√
2, and msb ≡ ysbv/

√
2. The values of ys, yst and ysb are all of

order 1. Because u À v, we see that these matrices cause a seesaw mechanism. The masses of the
quarks are

mt =
mstκ

MS

√
1 + r

[

1− (mst/MS)
2

2 (1 + r)
2 +O

(

m4
t

M4
S

)

]

,

mb =
msbκ

MS

√
1 + r

[

1− (msb/MS)
2

2 (1 + r)
2 +O

(

m4
b

M4
S

)

]

,

MT = MS

√
1 + r

[

1 +
z2t

2 (1 + r)
+

4r + 3

8 (1 + r)
2 z

4
t +O

(

z6t
)

]

,

MB = MS

√
1 + r

[

1 +
z2b

2 (1 + r)
+

4r + 3

8 (1 + r)
2 z

4
b +O

(

z6b
)

]

, (6.36)

where r ≡ (κ/MS)
2 ∼ O (1) and zt,b ≡ mt,b/κ with zb ¿ zt ¿ 1.

In the remainder of this chapter we shall not go further into the properties of the T and B quarks,
we shall focus on the gauge bosons. For us, the only difference between the original Topflavor model
and the one with the seesaw mechanism, is the fact that tau lepton will not couple strongly to the
heavy gauge bosons.

Finally, we must mention that the Yukawa terms for the light families are simply the same as in
the Standard Model:

LY = −λ`L`HR` − λdiLuiHRdi − λuiLuiHcRui + h.c., (6.37)

summation over leptons ` = e, µ, τ and the light quarks ui = u, c and di = d, s implied. There are
no Yukawa terms with light fermions and the Σ field. This is because there are no light right-handed
doublets.
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6.2 Breaking of SU(2)l×SU(2)h → SU(2)w

In this section we determine which gauge bosons obtain a mass when Σ acquires its VEV,

〈Σ〉 = 1√
2

(

u 0
0 u

)

. (6.38)

As stated in Table 3.2 in Chapter 3, we can find the masses and mass eigenstates of the gauge bosons
by substituting Σ = 〈Σ〉 into the kinetic Higgs term LkH of (6.23). Because the H field has no influence
on the breaking of SU(2)l×SU(2)h → SU(2)w, we only need to examine the kinetic term of Σ:

LkH,Σ =
1

2
Tr
(

(DµΣ)
†
(DµΣ)

)

. (6.39)

We find

Dµ 〈Σ〉 = ∂µ 〈Σ〉 − iglW a
lµ

τa

2
〈Σ〉+ igh 〈Σ〉W a

hµ

τa

2

= − iu

2
√
2

(

glW
a
lµ − ghW a

hµ

)

τa, (6.40)

and

Dµ 〈Σ〉† =
iu

2
√
2

(

glW
a
lµ − ghW a

hµ

)

τa. (6.41)

Their product is

(Dµ 〈Σ〉)† (Dµ 〈Σ〉) = u2

8

(

glW
a
lµ − ghW a

hµ

)

(

glW
bµ
l − ghW

bµ
h

)

τaτ b, (6.42)

and the kinetic Higgs term is therefore

LkH,〈Σ〉 =
u2

16

(

glW
a
lµ − ghW a

hµ

)

(

glW
bµ
l − ghW

bµ
h

)

Tr
(

τaτ b
)

=
u2

16

(

glW
a
lµ − ghW a

hµ

)

(

glW
bµ
l − ghW

bµ
h

)(

2δab
)

=
u2

8

[

g2l
(

W a
lµ

)2 − 2glghW
a
lµW

aµ
h + g2h

(

W a
hµ

)2
]

=
1

2

(

W a
lµ W a

hµ

)

M2

(

W aµ
l

W aµ
h

)

. (6.43)

The mass matrix M2 is given by

M2 =
u2

4

(

g2l −glgh
−glgh g2h

)

. (6.44)

This is exactly the same matrix as in (3.71) The eigenvalues of this matrix are

M2
1 = 0, (6.45a)

M2
2 =

u2

4

(

g2l + g2h
)

, (6.45b)

with the normalized eigenstates

W aµ
1 = (ghW

aµ
l + glW

aµ
h ) /

√

g2l + g2h, (6.46a)

W aµ
2 = (−glW aµ

l + ghW
aµ
h ) /

√

g2l + g2h. (6.46b)

In the Standard Model we simplified these expressions by introducing the mixing angle θw. We can
do this again with a different mixing angle φ defined by

cosφ =
gh

√

g2l + g2h
, sinφ =

gl
√

g2l + g2h
, (6.47)
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such that

W aµ
1 = cosφ W aµ

l + sinφ W aµ
h , (6.48a)

W aµ
2 = − sinφ W aµ

l + cosφ W aµ
h . (6.48b)

We have found that the breaking SU(2)l×SU(2)h×U(1)Y → SU(2)w×U(1)Y using 〈Σ〉 causes three
gauge bosons to obtain a mass: W aµ

2 . The remaining gauge bosons W aµ
1 and Bµ (the gauge boson of

U(1)Y ) are left massless. It is clear that the massless W aµ
1 and Bµ can be identified with the Standard

Model gauge bosons before electroweak symmetry breaking.

6.3 Electroweak symmetry breaking

In order to compare the Topflavor model with the Standard Model, we must determine the masses and
mass eigenstates of the gauge bosons after EWSB. The VEV of the H field is

〈H〉 = 1√
2

(

0
v

)

. (6.49)

This has no influence on the Σ part of LkH,

LkH,〈Σ〉 =
1

2
M2

1 (W aµ
1 )

2
+

1

2
M2

2 (W aµ
2 )

2
(6.50)

=
1

2

u2

4

(

g2l + g2h
)

(W aµ
2 )

2
, (6.51)

but only changes
LkH,H = (DµH)

†
(DµH) . (6.52)

First we calculate

Dµ 〈H〉 = ∂µ 〈H〉 −
ig′

2
Bµ 〈H〉 −

igl
2
W a
lµτ

a 〈H〉

= − ig′

2
√
2
Bµ

(

0
v

)

− igl

2
√
2

(

W 3
lµ W 1

lµ − iW 2
lµ

W 1
lµ + iW 2

lµ −W 3
lµ

)(

0
v

)

= − ig
′v

2
√
2

(

0
Bµ

)

− iglv

2
√
2

(

W 1
lµ − iW 2

lµ

−W 3
lµ

)

= − iv

2
√
2

(

gl

(

W 1
lµ − iW 2

lµ

)

g′Bµ − glW 3
lµ

)

, (6.53)

and

Dµ 〈H〉† =
iv

2
√
2

(

gl

(

W 1
lµ + iW 2

lµ

)

g′Bµ − glW 3
lµ

)

. (6.54)

The result is

LkH,〈H〉 =
1

2

v2g2l
4

∣

∣W 1
lµ − iW 2

lµ

∣

∣

2
+

1

2

v2

4

(

g′Bµ − glW 3
lµ

)2
(6.55)

=
1

2

v2g2l
4

[

(

W 1
lµ

)2
+
(

W 2
lµ

)2
]

+
1

2

v2

4

(

g′Bµ − glW 3
lµ

)2
. (6.56)

The most straightforward way of determining the mass eigenstates of all 7 gauge bosons, is by deter-
mining the 7× 7 mass matrix:

LkH = LkH,〈H〉 + LkH,〈Σ〉 =
1

2
G†M2G, (6.57)

with the vector G defined by

G† =
(

W 1
lµ W 1

hµ W 2
lµ W 2

hµ W 3
lµ W 3

hµ Bµ
)

. (6.58)

With this choice for G the mass matrix obtains a nice diagonal form:

M2 =





A2 0 0
0 A2 0
0 0 B2



 , (6.59)
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with

A2 =
u2

4

( (

v2/u2 + 1
)

g2l −glgh
−glgh g2h

)

=
v2x

4

(

(1/x+ 1) g2l −glgh
−glgh g2h

)

, (6.60)

and

B2 =
v2x

4





(1/x+ 1) g2l −glgh −g′gl/x
−glgh g2h 0
−g′gl/x 0 g′2/x



 . (6.61)

Here we have defined x as

x ≡ u2

v2
. (6.62)

Note that because uÀ v we have xÀ 1.

Mass eigenstate of the photon

We expect after diagonalization to find only one massless gauge boson, the photon. In the SM the
photon mass eigenstate was a linear combination of fields including the Bµ field. Indeed, when we
diagonalize the B2 matrix, we find again that it has one eigenvalue equal to zero. The normalized
eigenstate associated with this eigenvalue is

Aµ =
g′ghW 3

lµ + g′glW 3
hµ + glghBµ

√

g′2g2l + g′2g2h + g2l g
2
h

=
1

√

1/g2e

(

1

gl
W 3
lµ +

1

gh
W 3
hµ +

1

g′
Bµ

)

, (6.63)

where we have defined ge with
1

g2e
=

1

g2l
+

1

g2h
+

1

g′2
. (6.64)

We could imagine Aµ as a unit vector in the 3-dimensional space of (W 3
lµ,W

3
hµ, Bµ). The coupling

constants then determine the direction of this vector:

Aµ =

(

ge
gl
,
ge
gh
,
ge
g′

)

. (6.65)

Because we have here a normal 3-dimensional space, we could introduce spherical coordinates. A
common choice is

ge
gl

= sin θ cosφ,
ge
gh

= sin θ sinφ,
ge
g′

= cos θ. (6.66)

Note that the φ here is the same as in (6.47). In terms of these mixing angles, we have

Aµ = sin θ
(

cosφ W 3
lµ + sinφ W 3

hµ

)

+ cos θ Bµ. (6.67)

Mass eigenstates of the Z and Z ′

The other two eigenvalues of the B2 matrix are

M2
± =

M2
0

(

x+ sin4 φ
)

2 sin2 φ cos2 φ
+

M2
0

2 cos2 θ

±
M2

0

√

(

sin2 φ cos2 φ−
(

x+ sin4 φ
)

cos2 θ
)2

+ 4 sin6 φ cos2 φ cos2 θ

2 cos2 θ sin2 φ cos2 φ
, (6.68)

with

M2
0 ≡

g2ev
2

4 sin2 θ
. (6.69)

For very large values of x = u2/v2 À 1 we see that these masses become

lim
x→∞

M2
± =

M2
0

2 sin2 φ cos2 φ
x± M2

0

2 sin2 φ cos2 φ
x. (6.70)

Evidently M− vanishes when u → ∞. This means that M− must be the mass of the light Z boson
and M+ the mass of much heavier Z ′-boson. If we expand the expressions around 1/x = 0 we find

M2
Z =M2

− =
M2

0

cos2 θ

[

1− sin4 φ

x
+O

(

1

x2

)]

(6.71)
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and for Z ′,

M2
Z′ =M2

+ =M2
0

[

x

sin2 φ cos2 φ
+

sin2 φ

cos2 φ
+

sin4 φ

x cos2 θ
+O

(

1

x2

)]

. (6.72)

In the limit x→∞ one finds that the eigenstates are

lim
x→∞

Zµ ≡ Z1µ = cos θ
(

cosφ W 3
lµ + sinφ W 3

hµ

)

− sin θ Bµ, (6.73a)

lim
x→∞

Z ′
µ ≡ Z2µ = − sinφ W 3

lµ + cosφ W 3
hµ. (6.73b)

The eigenstates of Zµ and Z ′
µ for finite values of x can be nicely written as a perturbation of the states

Z1µ and Z2µ. To order O
(

x−2
)

we find

Zµ = Z1µ +
sin3 φ cosφ

x cos θ
Z2µ, (6.74a)

Z ′
µ = − sin3 φ cosφ

x cos θ
Z1µ + Z2µ. (6.74b)

Mass eigenstates of the W and W ′

The masses and mass eigenstates of the W and W ′ follow from the matrix A2, in a similar manner.
The mass of the W is

M2
W =M2

0

[

1− sin4 φ

x
−
(

2 cos2 φ− 1
)

sin6 φ

x2
+O

(

1

x3

)

]

, (6.75)

and for the W ′,

M2
W ′ =M2

0

[

x

sin2 φ cos2 φ
+

sin2 φ

cos2 φ
+

sin4 φ

x
+O

(

1

x2

)]

. (6.76)

Their ratio is
M2

W

M2
W ′

=
sin2 φ cos2 φ

x
+O

(

1

x2

)

. (6.77)

For the eigenstates we have to use

W±
lµ =

(

W 1
lµ ∓ iW 2

lµ

)

/
√
2, (6.78a)

W±
hµ =

(

W 1
hµ ∓ iW 2

hµ

)

/
√
2, (6.78b)

in order to have mass eigenstates that correspond to the same particles as in the SM. The eigenstates
of the W±

µ and W ′±
µ are then [32]

W±
µ = W±

1µ +
sin3 φ cosφ

x
W±

2µ, (6.79a)

W ′±
µ = − sin3 φ cosφ

x
W±

1µ +W±
2µ, (6.79b)

where the W±
1µ and W±

2µ correspond to the eigenstates in the limit x→∞,

W±
1µ = cosφ W±

lµ + sinφ W±
hµ, (6.80a)

W±
2µ = − sinφ W±

lµ + cosφ W±
hµ. (6.80b)

We can make some interesting remarks. For example, in contrary to the gauge bosons of the SM, the
heavy gauge bosons W ′± and Z ′ all have the same mass,

M2
W ′ =M2

Z′ =M2
0

[

x

sin2 φ cos2 φ
+

sin2 φ

cos2 φ

]

, (6.81)

up to the order O
(

x0
)

= O (1). A more important remark can be made about the ratio MW /MZ for
which

MW

MZ
= cos θ, (6.82)

up to order O
(

x−1
)

. Not surprisingly, the angle θ is the same as the weak mixing angle θw of the
SM. This is actually a very important property of the Topflavor theory, because this ratio has been
measured to high accuracy. If this theory would predict a ratio that is too far off, it would indicate
that theory is flawed.
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6.4 Fermion - gauge boson couplings

Before we can calculate any cross sections with the Topflavor model, we need to determine the vertices.
i.e. the couplings. The way to do this, is by evaluating the kinetic term for the fermions in our
Lagrangian,

LkF = iLfγ
µDµLf + iRfγ

µDµRf . (6.83)

The covariant derivative is

Dµ = ∂µ − ig′BµY − iglW a
lµT

a
l − ighW b

hµT
b
h, (6.84)

with T al = τa/2 the generators of the SU(2)l, and T
b
h = τ b/2 the generators of SU(2)h. As we have

seen in Chapter 3 with the Standard Model, it is better to use here

T± =
1

2
τ± =

1

2
√
2

(

τ1 ± iτ2
)

=
1√
2

(

T 1 ± iT 2
)

, (6.85a)

such that

W 1
lµT

1
l +W 2

lµT
2
l = W 1

lµ

(

T+ + T−)− iW 2
lµ

(

T+ − T−)

=
1

2

(

W+
lµ +W−

lµ

)

(

T+ + T−)+
1

2

(

W+
lµ −W−

lµ

)

(

T+ − T−)

= W−
lµT

− +W+
lµT

+. (6.86)

The covariant derivative is then

Dµ = ∂µ − ig′BµY − igl
(

W−
lµT

−
l +W+

lµT
+
l +W 3

lµT
3
l

)

−igh
(

W−
hµT

−
h +W+

hµT
+
h +W 3

hµT
3
h

)

. (6.87)

The next step is to write Dµ in terms of the mass eigenstates. To keep things simple, we examine here
only the eigenstate Aµ. Solving for W 3

lµ, W
3
hµ, and Bµ we obtain

W 3
lµ = [sin θ cosφ]Aµ + . . . , (6.88a)

W 3
hµ = [sin θ sinφ]Aµ + . . . , (6.88b)

Bµ = [cos θ]Aµ + . . . , (6.88c)

where the dots stand for expressions with Zµ and Z ′
µ. Substituting this into Dµ brings us

Dµ = ∂µ − ig′Y [cos θ]Aµ − iglT 3
l [sin θ cosφ]Aµ − ighT 3

h [sin θ sinφ]Aµ + . . .

= ∂µ − i
(

ge
cos θ

Y cos θ +
ge

sin θ cosφ
T 3
l sin θ cosφ+

ge
sin θ sinφ

T 3
h sin θ sinφ

)

Aµ + . . .

= ∂µ − ige
(

Y + T 3
l + T 3

h

)

Aµ + . . .

= ∂µ − igeQAµ + . . . . (6.89)

From this it is clear that the charge operator Q is

Q = Y + T 3
l + T 3

h , (6.90)

and that ge = e is the QED coupling constant.
We can do all of this also for the other gauge bosons. To order O

(

x−1
)

the complete expression is

Dµ = ∂µ − igeQAµ − igw
[

T±
l + T±

h +
sin2 φ

x

(

T±
h cos2 φ− T±

l sin2 φ
)

]

W±
µ

−i gw
cos θ

[

T 3
l + T 3

h −Q sin2 θ +
sin2 φ

x

(

T 3
h cos2 φ− T 3

l sin2 φ
)

]

Zµ

−igw
[

cosφ

sinφ
T±
h −

sinφ

cosφ
T±
l −

sin3 φ cosφ

x

(

T±
h + T±

l

)

]

W ′±
µ

−igw
[

cosφ

sinφ
T 3
h −

sinφ

cosφ
T 3
l −

sin3 φ cosφ

x cos2 θ

(

T 3
h + T 3

l −Q sin2 θ
)

]

Z ′
µ. (6.91)
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The weak coupling constant is again gw = ge/ sin θ.
To find the coupling between a fermion and a gauge boson, you simply substitute this Dµ into

the Lagrangian LkF with the quantum numbers corresponding to the fermion. As an example, the
interaction between a fermion and the W ′− boson is

LkF,W ′ = iLfγ
µDµLf + iRfγ

µDµRf

= gwLfγ
µ

[

cosφ

sinφ
T−
h −

sinφ

cosφ
T−
l −

sin3 φ cosφ

x

(

T−
h + T−

l

)

]

LfW
′−
µ , (6.92)

where we have used the fact that for right-handed particles Tl = Th = 0. If the fermion is top quark
then Tl = 0 also for the left-handed part, and therefore

LkF,W ′t = gwLtγ
µ

[

cosφ

sinφ
− sin3 φ cosφ

x

]

τ−

2
LtW

′−
µ

=
gw√
2

(

tL b
′
L

)

γµ
[

cosφ

sinφ
− sin3 φ cosφ

x

](

0
tL

)

W ′−
µ

=
gw√
2

[

cosφ

sinφ
− sin3 φ cosφ

x

]

b
′
Lγ

µtLW
′−
µ . (6.93)

Using the helicity operators PL and PR,

LkF,W ′t =
gw

2
√
2

[

cosφ

sinφ
− sin3 φ cosφ

x

]

b
′
γµ (1− γ5) tW ′−

µ

=
gw

2
√
2

[

cosφ

sinφ
− sin3 φ cosφ

x

]

(

Vtdd+ Vtss+ Vtbb
)

γµ (1− γ5) tW ′−
µ , (6.94)

with Vij the CKM matrix. This translates into the vertices like

t

b̄

W ′
=

igw

2
√
2

[

cosφ

sinφ
− sin3 φ cosφ

x

]

γµ (1− γ5)Vtb. (6.95)

In a similar way we find the interactions between the W− boson and the top:

LkF,Wt = gwLfγ
µ

[

T−
l + T−

h +
sin2 φ

x

(

T−
h cos2 φ− T−

l sin2 φ
)

]

LfW
−
µ

=
gw

2
√
2

[

1 +
sin2 φ cos2 φ

x

]

(

Vtdd+ Vtss+ Vtbb
)

γµ (1− γ5) tW−
µ . (6.96)

For the W− boson with other quarks (q = u, c such that Th = 0):

LkF,Wq =
gw

2
√
2

[

1− sin4 φ

x

]

(

Vqdd+ Vqss+ Vqbb
)

γµ (1− γ5) qW−
µ , (6.97)

and for the W ′− boson with q = u, c:

LkF,W ′q =
gw

2
√
2

[

− sinφ

cosφ
− sin3 φ cosφ

x

]

(

Vqdd+ Vqss+ Vqbb
)

γµ (1− γ5) qW−
µ . (6.98)

From the equations (6.94), (6.96), (6.97), and (6.98) we find the following changes in the couplings.
When we compare SM → Topflavor we find for the W bosons

gwVtb → gwUtb = gw

[

1 +
sin2 φ cos2 φ

x

]

Vtb (same for Vtd, Vts), (6.99a)

gwVud → gwUud = gw

[

1− sin4 φ

x

]

Vud (same for Vus, Vub, Vcd, Vcs, Vcb). (6.99b)
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Apparently the couplings in Topflavor model are a bit different from the SM. The couplings of the W ′

are

gwU
′
tb = gw

[

cosφ

sinφ
− sin3 φ cosφ

x

]

Vtb (same for Vtd, Vts), (6.100a)

gwU
′
ud = gw

[

− sinφ

cosφ
− sin3 φ cosφ

x

]

Vud (same for Vus, Vub, Vcd, Vcs, Vcb). (6.100b)

6.5 Single-top in the Topflavor model

The s-channel single-top process is influenced a lot by the introduction of new gauge bosons. Instead
of having only the W as the propagator, it is now also possible to have the heavy W ′ boson as
propagator4. The new Feynman diagram is:

u, c

d̄, s̄, b̄

W,W ′
t

b̄

(6.101)

Calculating the invariant amplitude for this process is not that hard. In Chapter 4 we have already
determined theM for s-channel single-top without the heavy W ′:

|M|2 =
1

4

∑

all spin

g4w
64

∣

∣

∣

∣

[v̄d̄γ
µ (1− γ5)uu]

[

VudVtbgµν
k2 −m2

W

]

[ūtγ
ν (1− γ5) vb̄]

∣

∣

∣

∣

2

=
1

256
g4wX

µκYµκνλZ
νλ. (6.102)

with k = pu + pd̄ the momentum of the W . The tensors Xµκ, Yµκνλ and Zνλ are

Xµκ = Tr
[

/pd̄γ
µ (1− γ5) /puγ

κ (1− γ5)
]

, (6.103a)

Yµκνλ = |Vud|2 |Vtb|2
[

gµν
k2 −m2

W

] [

gκλ
k2 −m2

W

]∗
, (6.103b)

Zνλ = Tr
[(

/pt +mt

)

γν (1− γ5) /pb̄γ
λ (1− γ5)

]

. (6.103c)

The only thing that changes in the Topflavor model is the tensor Yµκνλ,

Yµκνλ =

∣

∣

∣

∣

UtbUud
k2 −M2

W

+
U ′
tbU

′
ud

k2 −M2
W ′ + iMW ′ΓW ′

∣

∣

∣

∣

2

gµνgκλ. (6.104)

The decay width ΓW ′ of the heavyW ′ is needed to prevent the occurrence of a singularity at k2 =M2
W ′ .

The width of the light W is not needed because the energy of the partons ŝ = k2 will be in general
much larger than M2

W . According to [33] the width of the W ′ gauge boson is given by

ΓW ′ =
g2w
12π2

(

2

tan2 φ
+ tan2 φ

)

MW ′ . (6.105)

The products UtbUud and U ′
tbU

′
ud are

UtbUud =

(

1 +
sin2 φ cos2 φ

x

)(

1− sin4 φ

x

)

VtbVud

=

(

1− sin4 φ

x
+

sin2 φ cos2 φ

x
+O

(

x−2
)

)

VtbVud, (6.106)

4At CM-energies of several TeV’s the partons can aquire energies a much higher than the VEV of the electroweak
scale, v ≈ 175 GeV. One could argue that at this level the Higgs doublet now also contains a positively charged Higgs
boson, H+, which can also act as the propagator! Even though this is essentially true, we do not have to include this
particle. The fact is that the H+ is actually a Goldstone boson which is ‘hidden’ inside the W boson as it longitudinal
polarization state.
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and

U ′
tbU

′
ud =

(

cosφ

sinφ
− sin3 φ cosφ

x

)(

− sinφ

cosφ
− sin3 φ cosφ

x

)

VtbVud

=

(

−1 + sin4 φ

x
− sin2 φ cos2 φ

x
+O

(

x−2
)

)

VtbVud

= −UtbUud. (6.107)

The squared value of UtbUud is

|Utb|2 |Uud|2 =

(

1− 2
sin4 φ

x
+ 2

sin2 φ cos2 φ

x
+O

(

x−2
)

)

|Vtb|2 |Vud|2 (6.108)

We prefer to write this in terms of MW ′ instead of x. Using (6.77),

sin2 φ cos2 φ

x
=

M2
W

M2
W ′

, (6.109)

we find

|Utb|2 |Uud|2 =

(

1− 2
sin4 φ

x
+ 2

sin2 φ cos2 φ

x

)

|Vtb|2 |Vud|2

=

(

1 + 2
(

− tan2 φ+ 1
) M2

W

M2
W ′

)

|Vtb|2 |Vud|2 . (6.110)

The tensor Yµκνλ can now be written as

Yµκνλ = |Utb|2 |Uud|2
∣

∣

∣

∣

1

k2 −M2
W

+
−1

k2 −M2
W ′ + iMW ′ΓW ′

∣

∣

∣

∣

2

gµνgκλ. (6.111)

The invariant amplitude for the s-channel is then

|M|2 =
1

4
g4w |Vud|2 |Vtb|2

[(

û−m2
t

)

û
]

[

1 + 2
(

1− tan2 φ
) M2

W

M2
W ′

]

×





1

(ŝ−M2
W )

2 −
2
(

ŝ−M2
W ′

)

ŝ
(

(ŝ−M2
W ′)

2
+M2

W ′Γ2
W ′

) +
1

(ŝ−M2
W ′)

2
+M2

W ′Γ2
W ′



 , (6.112)

with ŝ = k2 = (pu + pd̄)
2
and û = (pd̄ − pt)2. This equation is equal to the one stated in [33].

We do not expect a big change in the cross section for the t-channel process. The contribution of
the W ′ goes like 1/(t̂ −M2

W ′)2, where t̂ is the difference between the momenta of the initial partons
squared. This difference can be neglected if we compare it to the mass of the heavy gauge bosons,
t̂ ¿ M2

W ′ , and therefore the contribution of the W ′ can be ignored. I.e. the results for the Topflavor
t-channel are the same as those for the t-channel in the Standard Model.

Also for the Wt-associated process we do not expect much change, the presence of a heavy W ′ has
little influence on the Wtb-coupling We do expect however to see a similar process,

b+ g → t→ t+W ′. (6.113)

The cross section for this process will have the shape of a Breit-Wigner resonance with its maximum
at s =M2

W ′ .

6.6 Monte Carlo results

Precise electroweak measurements give bounds to the values of the free parameters of the Topflavor
model. As can be seen from the equations for theW and Z masses in (6.75) and (6.71), the parameters
sin2 φ and 1/x must be small enough to ensure that the Topflavor predictions agree with experimental
results. The masses of the W ′ and Z ′ are directly related to sin2 φ and 1/x, via Equation (6.77).
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Therefore one can also use M 2
Z′ =M2

W ′ as a free Topflavor parameter, instead of the ratio x = u2/v2.
According to [34] valid ranges are

800 GeV ≤ MW ′ ≤ 2000 GeV, (6.114a)

0.05 ≤ sin2 φ ≤ 0.25. (6.114b)

In Figures 6.1 and 6.2 the cross sections for the s-channel single-top process are shown, for different
values of sin2 φ and MW ′ . For comparison we have included in Figure 6.3 the same graphs, but for
next-to-leading order [34]. One can see that for the Tevatron the NLO values are about 1.4 times larger
than the LO values. We can find approximately the same factor in Table 4.2: the ratio σNLO/σLO for
the s-channel at the Tevatron with

√
s = 2 TeV, is 1.47. Of course this is no solid proof that Figure

6.2 absolutely agrees with Figure 6.3; the values of Table 4.2 are for the Standard Model, while the
plots presented here are for Topflavor. But we do recognize that the curves of Figures 6.1 and 6.2
nicely follow the curves of Figure 6.3, e.g. none of the LO curves crosses its NLO curve. Also for the
LHC we find that ratio σNLO/σLO in the Topflavor plots roughly agrees with the values in Table 4.2,
in all cases around 1.4. If we compare the s-channel cross sections of the Standard Model to those of
the Topflavor, we see that the Topflavor s-channel cross sections can be up to four times larger for
the LHC. Even if MW ′ has a large mass of around 2 TeV the cross section is increased by about 25%.
At the Tevatron there are no big differences between the Standard Model cross section and those in
Topflavor. Therefore it is unlikely that the Tevatron will discover the W ′ via the s-channel.

The pT of the top quark for different values of MW ′ is presented in Figure 6.4-6.7, and for different
values of sin2 φ in Figure 6.8 and 6.9. It is clear that the heavy W ′ has a strong influence on the
s-channel single-top process. If the mass is relatively low (below 1 TeV) then the pT shows a clear
peak near pT = MW ′/2. This can be easily explained with kinematics. The left peak is the same
maximum as the one in the pT plots of the Standard Model (Figure 4.7 and 4.8). By introducing
a second, heavier W boson, we introduce a second peak. The pT of the top quark has its second
maximum around half the mass of the W ′, because there the W is close to becoming a real particle. If
there is enough energy then it is easier to create a real particle than a virtual one5, hence the increase
in cross section. The mass of the top quark is small compared to the W ′ mass. This means that when
the heavy boson decays (W ′+ → tb̄), each quark will receive about half the energy of the W ′, i.e. the
momentum of the top will be pt ≈MW ′/2.

As one can see in Figure 6.8 and 6.9, a small mixing angle leads to a small second peak. How
can we explain this? The answer is inside Equation (6.105): the decay width of the W ′. The decay
width is included in the invariant amplitude to avoid a singularity when W ′ becomes real; k2 ≈M2

W ′ .
Evidently, when ΓW ′ becomes smaller, the resonance quickly increase in size. The width is proportional
to

ΓW ′ ∝ 2

tan2 φ
+ tan2 φ =

2 cos2 φ

sin2 φ
+

sin2 φ

cos2 φ
=

2
(

1− sin2 φ
)

sin2 φ
+

sin2 φ
(

1− sin2 φ
) . (6.115)

If sin2 φ becomes really small, then

ΓW ′ ∝ 2
(

1− sin2 φ
)2

+ sin4 φ

sin2 φ
(

1− sin2 φ
) ≈ 2

sin2 φ
, (6.116)

and this becomes very large for small values of sin2 φ. Therefore a small sin2 φ results into a smaller
resonance, hence a small second peak.

Figures 6.10-6.17 show the pseudo(rapidity) of the top. These are quite similar to the ones in the
Standard Model, except for having a larger area (which is because the cross section is higher than in
the SM). The only noticeable thing is that in the pseudorapidity for the LHC (Figure 6.13) the small
dip disappears when MW ′ is large and sin2 φ is low.

The results for the t̄ at the Tevatron are the same as the results for the t. For the LHC the t̄ cross
sections are all roughly 50% lower than the t values. That is because the LHC collides two protons,
each built from two u-quarks and one d-quark. To produce an s-channel top quark, we need a u-quark
(and a d̄-quark). To produce an s-channel top antiquark, we need a d-quark (and a ū-quark). Hence,
the cross section for the top is twice as large.

5In mathematical terms: if the particle is (almost) real, then k2 ≈ m2 and the denominator in the propagator of the
s-channel becomes very small. This results into a large increase of the invariant implitude, i.e. a large cross section near
k2 = m2.
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Figure 6.1: Cross section of the s-channel single-top in the Topflavor model, as a function of MW ′ =
MZ′ . The σ here is the cross section for the Tevatron (pp̄,

√
s = 2 TeV). At the Tevatron the results

for t are equal to those for the t̄.
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Figure 6.2: Cross section of the s-channel single-top in the Topflavor model, as a function of MW ′ =
MZ′ . The σ here is the cross section for the LHC (pp,

√
s = 14 TeV).
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Figure 6.3: The NLO rate of the s-channel process qq̄′ → W,W ′ → tb̄ in pb at the Tevatron (lower
curves) and LHC (upper curves), for the Topflavor model with sin2 φ = 0.05 (solid curves) and sin2 φ =
0.25 (dashed curves), a a function of MZ′ = MW ′ . The Tevatron cross sections are multiplied by a
factor of 10. At the Tevatron, the t̄ production rate is equal to the t rate. At the LHC the t̄ rates are
shown for sin2 φ = 0.05 (dotted curve) and sin2 φ = 0.25 (dot-dashed curve). Taken from [34].
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Figure 6.4: Transverse momentum for s-channel single-top in the Topflavor model, at the Tevatron
(pp̄,
√
s = 2 TeV). We have plotted here the pT of the t-quark for different values of MW ′ , always with

sin2 φ = 0.25. At the Tevatron the results for t are equal to those for the t̄.
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Figure 6.5: Transverse momentum for s-channel single-top in the Topflavor model, at the Tevatron
(pp̄,
√
s = 2 TeV). We have plotted here the pT of the t-quark for different values of MW ′ , always with

sin2 φ = 0.05. At the Tevatron the results for t are equal to those for the t̄.
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Figure 6.6: Transverse momentum for s-channel single-top in the Topflavor model, at the LHC (pp,√
s = 14 TeV). We have plotted here the pT of the t-quark for different values of MW ′ , always with

sin2 φ = 0.25. The pT of the t̄-quark has the same shape as the t-quark, but is roughly 50% lower.
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Figure 6.7: Transverse momentum for s-channel single-top in the Topflavor model, at the LHC (pp,√
s = 14 TeV). We have plotted here the pT of the t-quark for different values of MW ′ , always with

sin2 φ = 0.05. The pT of the t̄-quark has the same shape as the t-quark, but is roughly 50% lower.
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Figure 6.8: Transverse momentum for s-channel single-top in the Topflavor model, at the Tevatron
(pp̄,

√
s = 2 TeV). We have plotted here the pT of the t-quark for different values of sin2 φ. The mass

of the heavy W boson is here MW ′ = 800 GeV. At the Tevatron the results for t are equal to those for
the t̄.
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Figure 6.9: Transverse momentum for s-channel single-top in the Topflavor model, at the LHC (pp,√
s = 14 TeV). We have plotted here the pT of the t-quark for different values of sin2 φ. The mass of

the heavy W boson is here MW ′ = 800 GeV. The pT of the t̄-quark has the same shape as the t-quark,
but is roughly 50% lower.
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Figure 6.10: Pseudorapidity for s-channel single-top in the Topflavor model, at the Tevatron (pp̄,√
s = 2 TeV). We have plotted here the η of the t-quark for different values of MW ′ , always with

sin2 φ = 0.25. At the Tevatron the results for t are equal to those for the t̄.
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Figure 6.11: Pseudorapidity for s-channel single-top in the Topflavor model, at the Tevatron (pp̄,√
s = 2 TeV). We have plotted here the η of the t-quark for different values of MW ′ , always with

sin2 φ = 0.05. At the Tevatron the results for t are equal to those for the t̄.
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Figure 6.12: Pseudorapidity for s-channel single-top in the Topflavor model, at the LHC (pp,
√
s = 14

TeV). We have plotted here the η of the t-quark for different values of MW ′ , always with sin2 φ = 0.25.
The pT of the t̄-quark has the same shape as the t-quark, but is roughly 50% lower.
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Figure 6.13: Pseudorapidity for s-channel single-top in the Topflavor model, at the LHC (pp,
√
s = 14

TeV). We have plotted here the η of the t-quark for different values of MW ′ , always with sin2 φ = 0.05.
The pT of the t̄-quark has the same shape as the t-quark, but is roughly 50% lower.
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Figure 6.14: Rapidity for s-channel single-top in the Topflavor model, at the Tevatron (pp̄,
√
s = 2

TeV). We have plotted here the y of the t-quark for different values of MW ′ , always with sin2 φ = 0.25.
At the Tevatron the results for t are equal to those for the t̄.
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Figure 6.15: Rapidity for s-channel single-top in the Topflavor model, at the Tevatron (pp̄,
√
s = 2

TeV). We have plotted here the y of the t-quark for different values of MW ′ , always with sin2 φ = 0.05.
At the Tevatron the results for t are equal to those for the t̄.
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Figure 6.16: Rapidity for s-channel single-top in the Topflavor model, at the LHC (pp,
√
s = 14 TeV).

We have plotted here the y of the t-quark for different values of MW ′ , always with sin2 φ = 0.25. The
pT of the t̄-quark has the same shape as the t-quark, but is roughly 50% lower.
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Figure 6.17: Rapidity for s-channel single-top in the Topflavor model, at the LHC (pp,
√
s = 14 TeV).

We have plotted here the y of the t-quark for different values of MW ′ , always with sin2 φ = 0.05. The
pT of the t̄-quark has the same shape as the t-quark, but is roughly 50% lower.
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Chapter 7

Little Higgs models

Recently, a new class of extensions to the Standard Model has been developed. These Little Higgs
models provide a natural way of giving the Higgs boson its mass. In the Standard Model the Higgs
mass suffers from the so-called hierarchy problem, something that is solved in Little Higgs theory.
We shall explain more about the hierarchy problem in the first section of this chapter. After that we
focus more on one particular model: the Littlest Higgs. This model has become quite popular in a
short period of time. In Section 7.2 we present the symmetric structure of this model, followed by the
calculation of the mass eigenstates of the gauge bosons in Section 7.3. In Section 7.4. the invariant
amplitudes for single-top are determined, with the results presented and discussed in Section 7.5.

7.1 The hierarchy problem

At tree level the Standard Model is a stable, well-behaving quantum field theory, but problems arise
when we include diagrams with loops. To calculate loop diagrams we need integrate over the momenta
of the fermions inside the loops. These integrals are often quadratically divergent and need to cancel
with the integrals of other loop diagrams. In the Standard Model the calculation of the Higgs mass
is a problem. There are three diagrams that give a large contribution to the Higgs mass, see Figure
7.1. Assuming that the Standard Model remains valid up to a cut-off scale of Λ ∼ 10 TeV, the three
diagrams give [35]

top loop − 3

8π2
λ2tΛ

2 ∼ −(2 TeV)2, (7.1a)

gauge boson loop
1

16π2
g2Λ2 ∼ (700 GeV)2, (7.1b)

Higgs loop
1

16π2
λ2Λ2 ∼ (500 GeV)2. (7.1c)

The Higgs mass is then

m2
h = m2

tree − (2 TeV)2 + (700 GeV)2 + (500 GeV)2. (7.2)

The parameters λt, g, and λ need some careful fine-tuning to make sure that all divergences are exactly
cancelled (Figure 7.2). This is possible, but is however a very unnatural situation. We would prefer
to have a theory where all quadratic divergences are canceled because of symmetries or some other
property of the theory. The need for fine-tuning is called the hierarchy problem.

There are several extensions of the Standard Model that solve the hierarchy problem. In super-
symmetric theories each particle has a superpartner that gives the same loop diagrams, but with the

a)

t

b)

W,Z, γ

c)

h

Figure 7.1: The three most significant loop contributions to the Higgs mass. In (a) the top loop
diagram, in (b) the Higgs loop diagram, and in (c) the gauge boson loop diagram.
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H

(200 GeV)2

tree

top

gauge
bosons

Higgs

Figure 7.2: The fine-tuning required to obtasin an acceptable Higgs mass in the Standard Model with
cut-off scale Λ ∼ 10 TeV (taken from [36]).

opposite sign. Therefore the supersymmetry causes a perfect cancellation of quadratic divergences.
There are still logarithmic divergences, but these do not invoke any fine-tuning. In this chapter we
examine a different class of theories: Little Higgs models. In these models the Higgs boson has a
stable mass because it is a pseudo-Goldstone boson1. Such a boson results from a spontaneously bro-
ken approximate global symmetry. A small mass term or Yukawa term breaks the global symmetry
explicitly, providing a small mass for the otherwise massless Goldstone boson. This term must be
small to prevent the theory from loosing the symmetry completely.

Early attempts to create such a theory were unsuccessful: the quadratic divergences to the Higgs
mass remained. The first successful Little Higgs model which canceled all relevant quadratic diver-
gences was constructed by Arkani-Hamed, Cohen, and Georgi in 2001 [37]. Subsequently, a lot of new
Little Higgs models were constructed, e.g. [38], [39], [40]. In this chapter we treat one of the most
popular models, the so-called Littlest Higgs [41].

7.2 The Littlest Higgs

Little Higgs models can be categorized by the symmetry breaking they are based upon. In the case of
the Littlest Higgs we have the breaking of SU(5) → SO(5), which occurs at a scale f of the order of 1
TeV. We introduce here an old notation: when the symmetry is global, the group is underlined. Within
the global SU(5) symmetry we imbed an SU(2)1×U(1)1×SU(2)2×U(1)2 gauge symmetry. After the
breaking SU(5) → SO(5) the gauge symmetry will break down to the Standard Model symmetry:

[SU(2)j×U(1)j ]
2 → SU(2)w×U(1)Y . Of course, at scale v we have again the electroweak symmetry

breaking.
Even though the symmetry breaking to U(1)em goes into two steps (just like Topflavor), this theory

only needs one Higgs field: a 5×5 matrix field called Σ. When Σ acquires a vacuum expectation value,
Goldstone bosons appear to the theory. These are then identified with the SM Higgs fields.

For the correct breaking to happen, we need the VEV of the Σ to be

〈Σ〉 = Σ0 =





12×2

1
12×2



 . (7.3)

What causes Σ to acquire exactly this VEV is not explained in the theory. But that this VEV leads
to the correct symmetry breaking can be shown by writing

Σ0 = A2 = ATA, (7.4)

where the matrix A is given by

A =
1

2





1 + i 1− i
2

1− i 1− i



 . (7.5)

With A we can define a new set of SU(5) generators Xa ≡ AλaA
−1, where λa are the usual SU(5)

generators as stated in Appendix B. It is easy to see that just like the λa, the Xa also satisfy the Lie

1This is a natural idea; the same principle occurs also for pions, which can be regarded as pseudo-Goldstone bosons
generated by the chiral symmetry breaking U(3)L×U(3)R →U(3)L+R in QCD.
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algebra of SU(5). If
[λa, λb] = ifabcλc, (7.6)

then

[Xa, Xb] =
[

AλaA
−1, AλbA

−1
]

= AλaA
−1AλbA

−1 −AλbA−1AλaA
−1

= AλaλbA
−1 −AλbλaA−1 = A [λa, λb]A

−1 = A (ifabcλc)A
−1

= ifabcAλcA
−1 = ifabcXc. (7.7)

The Xa are defined in such a way that

XaΣ0 =
(

AλaA
−1
)

A2 = AλaA = ± (AλaA)
T
= ± (XaΣ0)

T
= ±Σ0X

T
a , (7.8)

with the plus sign for the 14 symmetric λa and the minus sign for the 10 antisymmetric λa.
The matrix field Σ transforms as

Σ→ Σ′ = UΣUT = exp (iαaXa) Σ exp
(

iαaX
T
a

)

, (7.9)

where U is a SU(5) operator. The generators of the unbroken symmetry SO(5) are the ones that leave
the vacuum invariant:

exp (iαaXa) Σ0 exp
(

iαaX
T
a

)

= Σ0 (7.10)

Up to order O
(

α2a
)

we find

(1 + iαaXa) Σ0

(

1 + iαaX
T
a

)

= Σ0 + iαa
(

XaΣ0 +Σ0X
T
a

)

+O
(

α2a
)

, (7.11)

and therefore the SO(5) generators are given by:

XaΣ0 +Σ0X
T
a = 0. (7.12)

We see that these generators are the 10 matrices Ta ≡ AλaA
−1 for which λa is antisymmetric. The

other 14 generators Sa ≡ AλaA−1 with symmetric λa, are broken.

Introducing the gauge symmetries

Sofar we have only demonstrated the breaking of the global symmetries. We shall now gauge a part of
the SU(5) symmetry to introduce gauge bosons to the theory. We cannot turn the whole SU(5) into a
local symmetry, because then all Goldstone bosons would be eaten by the gauge bosons and we would
not have any Goldstone bosons left that can be identified as the Standard Model Higgs. Therefore we
only gauge a small part of the SU(5).

The kinetic term of Σ is given by

LkH =
f2

4
Tr
[

(DµΣ)
†
(DµΣ)

]

=
f2

4
Tr |DµΣ|2 , (7.13)

with the covariant derivativeDµ chosen in such a way that we have a [SU(2)j×U(1)j ]
2 gauge symmetry:

DµΣ = ∂µΣ− i
2
∑

j=1

[

gjW
a
µj

(

Qa
jΣ+ ΣQaT

j

)

+ g′jBµj
(

YjΣ+ ΣY T
j

)]

. (7.14)

The generators Qa
j correspond to the SU(2)j gauge symmetry and the generators Yj to the U(1)j . A

good way to embed these subgroups into the SU(5) is:

Qa
1 =

1

2

(

τa

03×3

)

, Y1 =
1

10
diag (−3,−3, 2, 2, 2) , (7.15a)

Qa
2 =

1

2

(

03×3

−τa
)

, Y2 =
1

10
diag (−2,−2,−2, 3, 3) . (7.15b)

With this choice one can easily check that their linear combinations,

Qa =
1√
2
(Qa

1 +Qa
2) , Y = Y1 + Y2, (7.16)
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remain unbroken after the symmetry breaking:

QaΣ0 +Σ0Q
T
a = 0 (7.17a)

Y Σ0 +Σ0Y
T = 0 (7.17b)

Therefore the generators Qa and Y are identified as the generators of the SM electroweak group
SU(2)w×U(1)Y .

The Qa
1 and Y1 still allow for a global SU(3) symmetry in the lower 3× 3 block. Also the Qa

2 and
Y2 allow for a global SU(3) symmetry, but there the symmetry is in the upper 3× 3 block. These are
two different symmetries, the first will be notated with SU(3)1 and the latter with SU(3)2.

Goldstone bosons

Goldstone’s theorem tells us that the symmetry breaking SU (5)→ SO (5) leaves us with 14 massless
Goldstone bosons, because there are 14 broken generators. At the same time the Higgs mechanism tells
us that breaking the gauge symmetry [SU(2)j×U(1)j ]

2 → SU(2)w×U(1)Y causes four gauge bosons to
become massive. This means that we are left with only 10 physical Goldstone fields.

To handle these fields, it is convenient to expand Σ about the expectation value:

Σ = exp (iαaSa) Σ0 exp
(

iαaS
T
a

)

= (1 + iαaSa)Σ0

(

1 + iαaS
T
a

)

+O
(

α2a
)

= Σ0 + iαa
(

SaΣ0 +Σ0S
T
a

)

+O
(

α2a
)

= Σ0 + 2iαaSaΣ0 +O
(

α2a
)

= Σ0 exp (2iαaSa)

≡ Σ0 exp (2iΠ/f) , (7.18)

where we have used SaΣ0 = Σ0S
T
a and defined the matrix

Π ≡ πaSa ≡ fαaSa. (7.19)

Using Sa as defined before, we can write Π explicitly as [42]

Π =





χ+ η/
(

2
√
5
)

h∗/
√
2 φ†

hT/
√
2 −2η/

√
5 h†/

√
2

φ h/
√
2 χT + η/

(

2
√
5
)



 , (7.20)

with η a real singlet, χ = χaτa/2 a Hermitian, traceless 2 × 2 matrix, h a complex doublet and φ a
2× 2 symmetric matrix. These fields represent the 14 Goldstone bosons. Under SU(2)w×U(1)Y they
transform as

10 ⊕ 30 ⊕ 2± 1
2
⊕ 3±1. (7.21)

The breaking of the gauge group [SU(2)j×U(1)j ]
2 causes the η and χ to be eaten. What remains left

are the h and φ which are identified as two Higgs fields:

h =

(

h+

h0

)

, φ =

(

φ++ φ+

√
2

φ+

√
2

φ0

)

. (7.22)

When these reach their VEV the electroweak symmetry breaking occurs.
Because the VEV f has such a large value, it is useful to expand Σ in powers of 1/f ,

Σ = Σ0 exp (2iΠ/f) = Σ0 +
2i

f
Σ0Π+O

(

1

f2

)

= Σ0 +
2i

f





02×2 h∗/
√
2 φ†

hT/
√
2 0 h†/

√
2

φ h/
√
2 02×2



+O
(

1

f2

)

. (7.23)
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Gauge bosons and their interaction with Higgs bosons

Now that we have determined the structure of the Littlest Higgs theory, it is time to determine the
mass eigenstates of the gauge bosons after the Σ has acquired its VEV. Substituting Σ0 into the
Lagrangian gives

LkH,Σ0
=

1

2

f2

4
Tr |DµΣ0|2

=
1

2

f2

4

(

g1W
a
1µ − g2W a

2µ

)2
+

1

2

f2

4

1

5
(g′1B1µ − g′2B2µ)

2

=
1

2

f2

4

(

g21W
a
1µW

aµ
1 + g22W

a
2µW

aµ
2 − 2g1g2W

a
1µW

aµ
2

)

+
1

2

f2

4

1

5

(

g′21 B1µB
µ
1 + g′22 B2µB

µ
2 − 2g′1g

′
2B1µB

µ
2

)

=
1

2
M2

W

(

W a
µ

)2
+

1

2
M2

B (Bµ)
2
+

1

2
M2

W ′

(

W ′a
µ

)2
+

1

2
M2

B′
(

B′
µ

)2
. (7.24)

To find the mass eigenstates of the W and B fields we first read off the mass matrices,

M2
W =

f2

4

(

g21 −g1g2
−g1g2 g22

)

, (7.25a)

M2
B =

f2

4

1

5

(

g′21 −g′1g′2
−g′1g′2 g′22

)

, (7.25b)

and diagonalize them. Note that these are again the same matrices as with the Standard Model, so
the eigenstates are the orthogonal transformations

W a
µ = sW a

1µ + cW a
2µ, W ′a

µ = −cW a
1µ + sW a

2µ, (7.26a)

Bµ = s′B1µ + c′B2µ, B′
µ = −c′B1µ + s′B2µ, (7.26b)

where the mixing angles are given by

s =
g2

√

g21 + g22
, c =

g1
√

g21 + g22
, (7.27a)

s′ =
g′2

√

g′21 + g′22
, c′ =

g′1
√

g′21 + g′22
. (7.27b)

The masses are then

m2
W = 0, M2

W ′ =
f2

4

(

g21 + g22
)

, (7.28a)

m2
B = 0, M2

B′ =
f2

4

1

5

(

g′21 + g′22
)

. (7.28b)

The W ′ and the B′ are new heavy gauge bosons and the W and the B are the gauge bosons from the
Standard Model.

For this model it is interesting to also take a look at the interactions between the gauge bosons
and the Higgs bosons h and φ. To find these interactions we simply substitute the expansion (7.23) of
Σ (x) into the Lagrangian, and substitute the W µa

1,2, B
µ
1,2 fields for their mass eigenstates. The relevant

terms are

LkH,W =
g2

4

[

W a
µW

bµ −
(

c2 − s2
)

sc
W a
µW

′bµ
]

Tr
[

h†hδab + 2φ†φδab + 2σaφ†σbTφ
]

−g
2

4

[

W ′a
µ W

′aµ Tr
[

h†h+ 2φ†φ
]

−
(

c4 − s4
)

2s2c2
W ′a
µ W

′bµ Tr
[

2σaφ†σbTφ
]

]

, (7.29)

and

LkH,B = g′2
[

BµB
µ −

(

c′2 − s′2
)

s′c′
BµB

′µ
]

Tr

[

1

4
h†h+ φ†φ

]

−g′2
[

B′
µB

′µ Tr

[

1

4
h†h

]

−
(

c′2 − s′2
)2

4s′2c′2
B′
µB

′µTr
[

φ†φ
]

]

. (7.30)
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Figure 7.3: Cancellation of the quadratic divergences due to the gauge bosons [43].

The g and g′ are the same couplings as in the Standard Model,

g = g1s = g2c, (7.31a)

g′ = g′1s
′ = g′2c

′, (7.31b)

and the weak mixing angle is defined as usual:

sw =
g′

√

g2 + g′2
, cw =

g
√

g2 + g′2
. (7.32)

In the Standard Model these interaction terms between the gauge bosons and the Higgs lead to quadrat-
ically divergent contributions to the Higgs boson mass (Figure 7.1b). However, in this model the Higgs
does not only have interactions with the W and the B, but also with the heavy W ′ and B′. As can
be seen in the equations (7.29) and (7.30) the couplings are equally strong, but have opposite sign.
Therefore the contributions cancel each other exactly, see Figure 7.3.

The Higgs potential

To make the electroweak symmetry breaking possible, the Higgs bosons need a quartic potential. In the
Littlest Higgs model this potential is not explicitly added to the Lagrangian, but comes from radiative
corrections at one- and higher-loop level. This potential was invented by Coleman and Weinberg in
1973 and is therefore most often referred to as the Coleman-Weinberg potential [44]. For the Higgs
fields h and φ it can be written as

V (h, φ) = λφ2f2 Tr
(

φ†φ
)

+ iλhφhf
(

hTφ†h− h†φh∗
)

− µ2h†h+ λh4

(

h†h
)2
, (7.33)

where we have left out small terms that involve φ4 and h2φ2. This potential allows for the proper
electroweak breaking, with

〈h〉 = 1√
2

(

0
v

)

, 〈φ〉 = −i
(

0 0
0 v′

)

. (7.34)

The coefficients λφ2 , λhφh and λh4 depend on the VEV’s f, v′, v and on µ. Their relationship is [45]

λh4 =
1

4
λφ2 , v2 =

µ2

λh4 − λ2hφh/λφ2

, v′ =
λhφh
2λφ2

v2

f
. (7.35)

From this we find

λhφh = 2λφ2

fv′

v2
, (7.36a)

λφ2 =
4µ2

v2
1

[

1− (4v′f/v2)2
] . (7.36b)

By diagonalizing the Higgs mass matrix, we find the mass eigenstates Φ and H with masses

M2
Φ ' 2m2

H

f2

v2
1

[

1− (4v′f/v2)2
] , (7.37a)

m2
H ' 2µ2. (7.37b)
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Because we want M2
Φ > 0, we also find that

v′2

v2
<

v2

16f2
. (7.38)

The self-interactions of the Higgs fields Φ and H lead again to divergent loop diagrams, but at one-
loop order these are logarithmically divergent and not quadratically divergent like in the Standard
Model. This is much better, because a logarithmically divergent integral diverges much slower than a
quadratically divergent one. In other words, the needed cancellations are much smaller in this case.
The two-loop diagrams still lead to quadratically divergent integrals, but because they are two-loop
also their contribution is small.

Fermion masses

By introducing a new set of gauge bosons we were able to cancel the loop diagram of Figure 7.1b. In
a similar way we can cancel the loop diagram of Figure 7.1a by introducing a new set of quarks, t̃ and
t̃′c. They transform under the two global SU(3)s as (3,1) and (3̄,1). These only need to interact with
the third family of quarks, because we only need to cancel the diagrams with the top-loops.

The Yukawa term can be written as

LY =
1

2
λ1fεijkεxyχiΣjxΣkyu

′c
3 + λ2f t̃t̃

′c + h.c., (7.39)

where χ is the row vector χi =
(

b3, t3, t̃
)

and u′3 is the right-handed top quark of the SM. The indices
i, j, k are summed over 1, 2, 3 and the indices x, y are summed over 4, 5. Note that the Yukawa term
is invariant under the SU(3)2 if λ1 = 0, and that it is be invariant under the SU(3)1 if λ2 = 0.

If we expand LY with the Σ as given in (7.23), we find

LY = −λ1
f
t̃h†hu′c3 + λ1f t̃u

′c
3 − iλ1

√
2q3h

†u′c3 + λ2f t̃t̃
′c + h.c. + . . . . (7.40)

In this expansion we have left out the contribution of the heavier φ boson. The q3 is a row vector
defined by q3 = (b3, t3). The terms λ1f t̃u

′c
3 and λ2f t̃t̃

′c should be combined to yield the mass eigenstate
t̃c:

t̃c =
1

√

λ21 + λ22

(

λ1u
′c
3 + λ2t̃

′c) , (7.41)

By substituting this mass eigenstate into (7.40) we find the mass term for the t̃:

−mt̃t̃t̃
c = f

√

λ21 + λ22t̃t̃
c, (7.42)

and the Standard Model Yukawa coupling for the top quark:

λtq3hu
c
3 =

λ1λ2
√

λ21 + λ22

. (7.43)

The mixing between the right-handed top quark u′3 and the new quark t̃ can be parameterized with

xL =
λ21

λ21 + λ22
. (7.44)

Note that 0 < xL < 1, and that there is no mixing when xL = λ1 = 0. If xL = 1(i.e. λ2 = 0) then the
mass eigenstate t̃c is equal to the right-handed top quark.

In the Yukawa term (7.40) the top loop of Figure 7.1a is cancelled. One can show this with the
use of the mass eigenstates t and t̃, but it can also be explained in terms of q3, u

′c
3 , and t̃

′. How this
cancellation happens is shown in Figure 7.4.

99



−iλ1
√
2 −iλ1

√
2

2λ21 +
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×
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t̃

−λ1/f

−λ21 = 0

Figure 7.4: Cancellation of the quadratic divergences due to the top quark, from (7.40). Taken from
[43].

7.3 Electroweak symmetry breaking

We have seen how the Littlest Higgs theory solves the hierarchy problem, now we must determine the
mass eigenstates of the gauge bosons after the EWSB. We substitute the VEV’s (7.34) into the Σ (x)
of (7.23) to get

Σ =













0 0 0 1 0
0 0 iv/f 0 1− 2v′/f
0 iv/f 1 0 iv/f
1 0 0 0 0
0 1 + 2v′/f iv/f 0 0













+O
(

1

f2

)

. (7.45)

This expression we insert into

LkH =
1

2

f2

4
Tr |DµΣ|2 , (7.46)

and then we diagonalize the resulting mass matrix. These calculations with 5 × 5 matrices can best
be done with the aid of a program like Maple or Mathematica. After some patience one finds the
following mass eigenstates. There are four neutral gauge bosons,2

AL = swW
3 + cwB, (7.47a)

ZL = cwW
3 − swB + xW

′

Z

v2

f2
W ′3 + xB

′

Z

v2

f2
B′, (7.47b)

AH = B′ + xH
v2

f2
W ′3 − xB′Z

v2

f2
(

cwW
3 − swB

)

, (7.47c)

ZH = W ′3 − xH
v2

f2
B′ − xW ′

Z

v2

f2
(

cwW
3 − swB

)

, (7.47d)

where

xH =
5

2
gg′

scs′c′
(

c2s′2 + s2c′2
)

(5g2s′2c′2 − g′2s2c2) , (7.48a)

xW
′

Z = − 1

2cw
sc
(

c2 − s2
)

, (7.48b)

xB
′

Z = − 5

2sw
s′c′

(

c′2 − s′2
)

. (7.48c)

Their masses are given by

M2
AL

= 0, (7.49a)

M2
ZL

= m2
z

[

1− v2

f2

(

1

6
+

1

4

(

c2 − s2
)2

+
5

4

(

c′2 − s′2
)2
)

+ 8
v′2

v2

]

, (7.49b)

M2
AH

= m2
zs

2
w

(

f2

5s′2c′2v2
− 1 +

xHc
2
w

4s2c2s2w

)

, (7.49c)

M2
ZH

= m2
w

(

f2

s2c2v2
− 1− xHs

2
w

s′2c′2c2w

)

, (7.49d)

2In order to write AL and ZL in the standard form, we have absorbed a minus sign into the definition of B.
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where mw and mz are the masses of the Standard Model W and Z, given by

mw =
gv

2
, (7.50a)

mz =
gv

2cw
. (7.50b)

The AL is the photon, and the ZL is the Z boson of the Standard Model. The gauge bosons AH and
ZH are new heavy particles.

Besides the neutral bosons, the Littlest Higgs model also predicts two charged gauge bosons,

W±
L = W± +

v2

2f2
sc
(

c2 − s2
)

W ′±, (7.51a)

W±
H = W ′± − v2

2f2
sc
(

c2 − s2
)

W±. (7.51b)

The masses are

M2
W±

L

= m2
w

[

1− v2

f2

(

1

6
+

1

4

(

c2 − s2
)2
)

+ 4
v′2

v2

]

, (7.52a)

M2
W±

H

= m2
w

(

f2

s2c2v2
− 1

)

. (7.52b)

The WL is the Standard Model W boson, the WH is a new heavy charged gauge boson.

Couplings

To find the couplings between the fermions and the gauge bosons, we follow the usual recipe. First
we rewrite the covariant derivative Dµ in terms of the mass eigenstates, and then we substitute that
expression into the kinetic Lagrangian term of the fermions. The resulting interactions for the charged
gauge bosons with quarks are (up to order v2/f2)

u

d̄

W =
igw

2
√
2

[

1− 1

2

v2

f2
c2
(

c2 − s2
)

]

γµ (1− γ5)Vud, (7.53a)

t

b̄

W =
igw

2
√
2

[

1− v2

f2

(

1

2
x2L +

1

2
c2
(

c2 − s2
)

)]

γµ (1− γ5)Vtb, (7.53b)

for the light Standard Model W boson, and

u

d̄

WH = − igw

2
√
2

c

s
γµ (1− γ5)Vud, (7.54a)

t

b̄

WH = − igw

2
√
2

c

s
γµ (1− γ5)Vtb, (7.54b)

for the heavy WH boson. See Equation (7.44) for the definition of xL. Note that the coupling with
the WH is the same for each combination of quarks (apart from the value of Vij of course). For the
couplings with the W , the (u, d) can be replaced by (u, s), (u, b), (c, d), (c, s), or (c, b), and the (t, b)
can be replaced by (t, d) or (t, s).

All of the results presented in this subsection have been checked with [46].
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7.4 Single-top in the Littlest Higgs model

The Littlest Higgs has almost the same gauge symmetry as Topflavor. Therefore we can copy a lot of
the formulas that we have used in Chapter 6. For the s-channel single-top process ud̄→W,WH → tb̄
the invariant amplitude is again

|M|2 =
1

256
g4wX

µκYµκνλZ
νλ, (7.55)

with

Xµκ = Tr
[

/pd̄γ
µ (1− γ5) /puγ

κ (1− γ5)
]

, (7.56)

Zνλ = Tr
[(

/pt +mt

)

γν (1− γ5) /pb̄γ
λ (1− γ5)

]

, (7.57)

and

Yµκνλ =

∣

∣

∣

∣

UtbUud
k2 −M2

WL

+
U ′
tbU

′
ud

k2 −M2
WH

+ iMWH
ΓWH

∣

∣

∣

∣

2

gµνgκλ. (7.58)

Just like with Topflavor, we need to use the decay width ΓWH
of the heavy WH to prevent the

occurrence of a singularity at k = pu + pd̄ = MWH
. However, because the couplings in the Littlest

Higgs are much different from those in Topflavor, we have here a different expression for the width
[46]:

ΓWH
=

g2w
16π

c2

s2
MWH

. (7.59)

For the Littlest Higgs the expressions for Uij and U ′
ij follow from

gwUtb = gw

[

1− v2

f2

(

1

2
x2L +

1

2
c2
(

c2 − s2
)

)]

Vtb, (7.60a)

gwUud = gw

[

1− 1

2

v2

f2
c2
(

c2 − s2
)

]

Vud, (7.60b)

and
gwU

′
ij = −gw

c

s
Vij . (7.61)

To make a comparison with the Topflavor easier, we shall use (7.52b),

v2

f2
=

1

s2c2
m2
w

M2
W±

H

+m2
w

≈ 1

s2c2
m2
w

M2
W±

H

, (7.62)

to write all expressions in terms of the heavy mass, MWH
. The product UtbUud becomes

UtbUud =

(

1− v2

f2

(

1

2
x2L +

1

2
c2
(

c2 − s2
)

))(

1− 1

2

v2

f2
c2
(

c2 − s2
)

)

VtbVud

=

[

1− v2

f2

(

c4 + c2s2 − 1

2
x2L

)

+O(v4/f4)
]

VtbVud (7.63)

=

[

1− 2c2 − x2L
2s2c2

m2
w

M2
W±

H

]

VtbVud, (7.64)

and the U ′
tbU

′
ud is simply

|U ′
tb|

2 |U ′
ud|

2
=
c4

s4
|Vtb|2 |Vud|2 .

Putting everything together, we see that the invariant amplitude for the s-channel is

|M|2 =
1

4
g4w |Vud|2 |Vtb|2

[(

û−m2
t

)

û
]

×





α2

ŝ2
+

2αβ
(

ŝ−M2
WH

)

ŝ
(

(

ŝ−M2
WH

)2
+M2

WH
Γ2
WH

) +
β2

(

ŝ−M2
WH

)2
+M2

WH
Γ2
WH



 , (7.65)
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(taking ŝÀM2
WL

) with

α = 1− 2c2 − x2L
2s2c2

m2
w

M2
W±

H

, (7.66a)

β =
c2

s2
. (7.66b)

The Mandelstam variables are as usual: ŝ = k2 = (pu + pd̄)
2
and û = (pd̄ − pt)2.

At tree-level the t-channel in the Littlest Higgs will not differ much from the Standard Model t-
channel. The argument is the same as with Topflavor: the contribution 1/(t̂−M2

WH
)2 is just too small

to have an influence. Also for the Wt-associated process we have the same thing as with Topflavor.
The Wtb coupling in (7.60a) does not differ enough from the SM coupling to cause a noticeable effect
in experiment.

We must make one additional note here. The Littlest Higgs model has a much larger Higgs sector
than the Standard Model (from the 14 pseudo-Goldstone bosons we had, only 7 were eaten). Therefore
one could expect to have an extra s-channel process like ud̄ → h+ → tb̄. In fact, there exists an
interaction vertex between u, d̄, and Φ+ where [46]

Φ+ =
v√

v2 + 4v′2
φ+ − 2v′√

v2 + 4v′2
h+, (7.67)

but there is no interaction between t, b̄, and Φ+. The reason for this is that the (u, d) has a different
Yukawa term than the (t, b). However, there are extra s-channel processes possible that have the t and
a T̄ in its final state (the T is a mass eigenstate of the t̃-quark).

7.5 Monte Carlo results

The valid ranges for the free parameters in the Littlest Higgs model are [47]:

f ≥ 1 TeV, (7.68a)

0.4 ≤ xL ≤ 0.6, (7.68b)

0 ≤ c ≤ 0.5. (7.68c)

The lower bound for the mass MWH
is about the same as for the MW ′ in Topflavor (∼ 800 GeV),

therefore we have used in our Littlest Higgs (LH) simulations the same range as with Topflavor.
Note that the mixing angle c2 in the LH has the same meaning as the sin2 φ in Topflavor. The

notation c is used to indicate that it is the cosine of some mixing angle. It is a bit unfortunate that
the cosine is used in the Little Higgs, while the sine is used in Topflavor.

An interesting difference between the Littlest Higgs and Topflavor, is that we have here an extra
parameter that the Topflavor does not have: xL. Unfortunately the range of xL is rather narrow and
small changes do not influence the single-top equations much. We only encounter xL in the equation

for |M|2, where it changes the value of α a bit, see Equation (7.66a). The result of this, is that any
changes of xL have not let to an significant change of the cross section in any way.

We present the cross sections for the Tevatron and the LHC in Figures 7.5 - 7.10. In Figure 7.5 the
cross section is presented as a function ofMWH

, in a similar way as Figure 6.1 and 6.2 in the Topflavor
chapter. The LH cross sections are of about the same size, up to 30 pb for t-production at the LHC.
This has been checked with [48], we come again to the conclusion that the WH should be easy to find,
if it has a relatively small mass.

The results are somewhat disappointing because a lot is the same as in the Topflavor model.
Changing the value of c2 has exactly the same effect as changing sin2 φ in the previous chapter (compare
Figure 7.7 and 7.8 with Figure 6.8 and 6.9). The only interesting difference is that the parameter c2 is
allowed to be larger than the sin2 φ is allowed to. This larger parameter space results the possibility
of higher peaks in the pT , as can be seen in Figure 7.7 and 7.8.

Also the pseudo(rapidity) plots show a large similarity with those of Topflavor. As an example we
have included Figure 7.10 which shows the mass dependence of the top quark pseudorapidity at the
Tevatron.
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Figure 7.5: Cross section of the s-channel single-top in the Littlest Higgs model, as a function ofMWH
.

Here we have used c2 = 0.3 and xL = 0.5. For the Tevatron the results for t are equal to those for the
t̄. Note that the cross sections of the Tevatron has been multiplied by a factor of 10.
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Figure 7.6: Cross section of the s-channel single-top in the Littlest Higgs model, as a function of c2.
Here we have used MWH

= 1000 GeV and xL = 0.5. For the Tevatron the results for t are equal to
those for the t̄. Note that the cross sections of the Tevatron has been multiplied by a factor of 10.
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Figure 7.7: Transverse momentum for s-channel single-top in the Littlest Higgs model, at the Tevatron
(pp̄,

√
s = 2 TeV), for different values of MWH

. In all cases c2 = 0.3 and xL = 0.5. The results for t̄
are equal to those shown here.

MWH
= 2.0 TeV

MWH
= 1.1 TeV

MWH
= 1.0 TeV

MWH
= 0.9 TeV

MWH
= 0.8 TeV

pT (GeV)

d
σ
/d
p
T
(p
b
/G

eV
)

6005004003002001000

0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 7.8: Transverse momentum for s-channel single-top in the Littlest Higgs model, at the LHC
(pp,

√
s = 14 TeV), for different values of MWH

. In all cases c2 = 0.3 and xL = 0.5. The results for t̄
have the same shape, but are roughly 50% lower.
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Figure 7.9: Transverse momentum for s-channel single-top in the Littlest Higgs model, at the Tevatron
(pp̄,

√
s = 2 TeV), for different values of c2. In all cases MWH

= 1000 GeV and xL = 0.5. The results
for t̄ are equal to those shown here.
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Figure 7.10: Pseudorapidity for s-channel single-top in the Littlest Higgs model, at the Tevatron (pp̄,√
s = 2 TeV). We have plotted here the η of the t-quark for different values of MWH

, always with
c2 = 0.3 and xL = 0.5. At the Tevatron the results for t are equal to those for the t̄.
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Chapter 8

Conclusions

If we assume that there is physics beyond the Standard Model, then one could ask ‘If so, what could
we discover?’ Now that we have reached the end of this thesis, we can answer this question simply
with ‘More particles and higher cross sections!’. The time to finish a thesis project is limited and it
was therefore impossible to examine more models and more processes. We have however learned a
great deal and found that the existence of an extra set of gauge bosons is a realistic option, as well as
extra quarks. One of the most important discoveries shall be the verification of the existence of Higgs
bosons. These particles are crucial for gauge theories with spontaneous symmetry breaking1.

The results of this thesis can be best described with Table 8.1, which summarizes our findings of
the chapters 4, 6, and 7. We see that the event rates for single-top at the Tevatron are rather low.
More importantly we see that it is virtually impossible to distinguish between the different models at
the Tevatron using only the s-channel single-top cross sections. Only if the heavy W is light enough,
the Tevatron will have a chance to find any signature of new physics this way. Especially the large
spike in the pT graphs could then be used as a potential smoking-gun signature.

The chance of discovering a sign of the Littlest Higgs or Topflavor is fortunately much higher at
the LHC. Even if the heavy W boson has a mass of around 2 TeV, it would be possible to see a clear
difference between the Standard Model s-channel and that of the other models. It is even possible to
see the difference between the Littlest Higgs and Topflavor, if we compare the t cross sections and the
t̄ cross sections.

The Monte Carlo program seems to be working fine, but it is a bit worrying that our cross sections
of Table 4.3 do not perfectly agree with those of Table 4.4. It might be necessary to perform more
elaborate tests, but we do not expect large chances in the results presented in this thesis. Extensive
testing is mandatory however, if the Monte Carlo program would ever be extended. Many extensions
of the program are possible. The program could be extended with the Wt-associated production, or
it could even be upgraded to do next-to-leading order (NLO) calculations.

As stated in Section 4.4 about top decay, the s-channel and the t-channel both give exactly the
same signal in an experiment. One can only make a distinction using the b-tagging technique, but this

1It must be mentioned that the electroweak symmetry breaking is also possible with the usual Higgs boson [49].

LHC (pp→ tX) LHC (pp→ t̄X) Tevatron
σ in pb ev/day σ in pb ev/day σ in pb ev/day

Standard Model (t-channel) 144.8 125,000 83.4 72,000 0.948 8
Standard Model (s-channel) 4.53 3,900 2.74 2,400 0.315 3
Topflavor (MW ′ = 1 TeV) 16 13,800 8.1 7,000 0.42 4
Topflavor (MW ′ = 2 TeV) 5.6 4,800 3.2 2,800 0.33 3
Littlest Higgs (MWH

= 1 TeV) 17 14,700 11.7 10,100 0.32 3
Littlest Higgs (MWH

= 2 TeV) 5.0 4,300 3.7 3,200 0.30 3

Table 8.1: Cross sections and event rates for single-top processes in the Standard Model, the Topflavor
model (with sin2 φ = 0.25), and the Littlest Higgs model (with c2 = 0.3 and xL = 0.5). The t-channel
cross section is the same for all three models. We have used here

√
s = 2 TeV for the Tevatron, and

high-luminosity for the LHC (L = 1034 cm−2s−1). The Standard Model cross sections are copied from
Table 4.4 and the data of Table 1.1 has been used to calculate the event rates.
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is not always possible for each event. To account for this, one should simulate the detector by including
hadronization and apply the proper cutoffs. Even though these options are already available in the
current program, they have not been used. This could be an interesting subject for further research,
as well as a more elaborate analysis of the background signals for single-top production. Finally, there
are still a lot of more theoretical explorations possible. One could investigate the possibility of flavor
changing neutral currents (FCNC) and custodial SU(2) symmetry in the Littlest Higgs model. Another
interesting topic is to do more research about Topflavor and its big brother, Technicolor.

The gauge symmetry of the Littlest Higgs model is, apart from an extra U(1), the same as in
Topflavor. We have seen the result of this: both models predict an extra set of W,Z bosons. Even
though Topflavor and the Little Higgs have a lot in common, there are some distinct differences. One
clear example is the width of the W ′ (or WH), which is different for both models. Probably the
best way to check which model describes nature correctly, is by measuring the W ′-couplings with the
quarks. Chapters 6 and 7 predict some clear relations between U ′

tb and U
′
ud the Standard Model CKM

matrix. Also relations like
|U ′

tb|
2 |U ′

ud|
2
= |Utb|2 |Uud|2 (8.1)

as in Topflavor, are strong predictions that provide for an easy way to check the model. But the
main difference between the models does not lie in the experimental results, but in their theoretical
structure. The Littlest Higgs model treats the Higgs as a pseudo-Goldstone boson, while in Topflavor
it is the usual scalar boson. With Topflavor the third generation of quarks transforms differently than
the other generations, while in the Littlest Higgs there is no such distinction. It is interesting to see
that we can find two theories that are so different theoretically, are so similar in experiment.
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Appendix A

Differential cross sections

Because the top has such a high mass, we can ignore the mass of the other quarks. We therefore take
a look at the differential cross section for the process A+B → C+D where mA = mB = 0. We define

s = (pA + pB)
2
= m2

A +m2
B + 2pA · pB

= (pC + pD)
2
= m2

C +m2
D + 2pC · pD, (A.1a)

t = (pA − pC)2 = m2
A +m2

C − 2pA · pC
= (pB − pD)2 = m2

B +m2
D − 2pB · pD, (A.1b)

u = (pB − pC)2 = m2
B +m2

C − 2pB · pC
= (pA − pD)2 = m2

A +m2
D − 2pA · pD. (A.1c)

The differential cross section can be written as

dσ =

∣

∣M
∣

∣

2

F
dQ, (A.2)

with F the flux

F = 4

√

(pA · pB)2 −m2
Am

2
B = 4

√

(

1

2
s

)2

= 2s. (A.3)

and dQ the Lorentz-invariant phase space,

dQ = (2π)
4
δ(4) (pC + pD − pA − pB)

d3pC

(2π)
3
2EC

d3pD

(2π)
3
2ED

=
1

(2π)
2 δ

(4) (pC + pD − pA − pB) d4pCδ+
(

p2C −m2
C

)

d4pDδ+
(

p2D −m2
D

)

, (A.4)

where δ+
(

p2 −m2
)

≡ θ
(

p0
)

δ
(

p2 −m2
)

. We now define two new invariants,

t1 = t−m2
C , (A.5a)

u1 = u−m2
D, (A.5b)

such that s+ t1 + u1 = 0. Wit the use of EC + ED =
√
s we then find

dQ =
1

(2π)
2 δ

(4) (pC + pD − pA − pB) δ+
(

p2C −m2
C

)

θ (ED) δ
(

p2D −m2
D

)

d4pDd
4pC

=
1

(2π)
2 δ+

(

p2C −m2
C

)

θ
(√
s−EC

)

δ
(

(pA + pB − pC)2 −m2
D

)

d4pC

=
1

(2π)
2 δ+

(

p2C −m2
C

)

θ
(√
s−EC

)

δ
(

(pA + pB)
2
+ p2C − 2pC · (pA + pB)−m2

D

)

d4pC

=
1

(2π)
2 δ+

(

p2C −m2
C

)

θ
(√
s− EC

)

δ
(

s+m2
C − 2 (pC · pA)− 2 (pC · pB)−m2

D

)

d4pC

=
1

(2π)
2 δ+

(

p2C −m2
C

)

θ
(√
s− EC

)

δ
(

s+m2
C + t−m2

C + u−m2
C −m2

D

)

d4pC

=
1

4π2
δ+
(

p2C −m2
C

)

θ
(√
s− EC

)

δ (s+ t1 + u1) d
4pC (A.6)
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It is useful to switch to the lightcone coordinates,

p+ =
p0C + p3C√

2
, p− =

p0C − p3C√
2

, pT =
(

p1C , p
2
C

)

, (A.7)

such that

p0C =
p+ + p−√

2
, p3C =

p+ − p−√
2

. (A.8)

In the CM frame we then have

pA = (EA, 0, 0, EA) =
1

2

√
s (1, 0, 0, 1) , (A.9a)

pB = (EB , 0, 0,−EB) =
1

2

√
s (1, 0, 0,−1) , (A.9b)

and therefore

2pA · pC =
√
s (1, 0, 0, 1) ·

(

p0C , p
1
C , p

2
C , p

3
C

)

=
√
s
(

p0C − p3C
)

=
√
2s p− = −t1, (A.10)

and

2pB · pC =
√
s (1, 0, 0,−1) ·

(

p0C , p
1
C , p

2
C , p

3
C

)

=
√
s
(

p0C + p3C
)

=
√
2s p+ = −u1. (A.11)

It is then easy to see that

d4pC = dp0Cdp
1
Cdp

2
Cdp

3
C =

∣

∣

∣

∣

∣

(

∂p0C
∂p+

∂p0C
∂p−

∂p3C
∂p+

∂p3C
∂p−

)∣

∣

∣

∣

∣

dp+dp−d2pT

=

∣

∣

∣

∣

∣

(

1√
2

1√
2

1√
2
− 1√

2

)∣

∣

∣

∣

∣

dp+dp−d2pT = dp+dp−d2pT

=

∣

∣

∣

∣

∣

(

∂p+

∂t1

∂p+

∂u1

∂p−

∂t1

∂p−

∂u1

)∣

∣

∣

∣

∣

dt1du1d
2pT =

∣

∣

∣

∣

∣

(

0 − 1√
2s

− 1√
2s

0

)∣

∣

∣

∣

∣

dt1du1d
2pT

=
1

2s
dt1du1d

2pT , (A.12)

and

p2C =
(

p0C
)2 −

(

p1C
)2 −

(

p2C
)2 −

(

p3C
)2

=
1

2

(

p+ + p−
)2 − (pT )

2 − 1

2

(

p+ − p−
)2

= 2p+p− − p2T

=
u1t1
s
− p2T . (A.13)

Hence, dQ becomes

dQ =
1

4π2
θ

(

p+ + p−√
2

)

δ

(

u1t1
s
− p2T −m2

C

)

θ

(√
s− p+ + p−√

2

)

1

2s
dt1du1d

2pT

=
1

8π2s
θ

(−u1 − t1√
2
√
2s

)

δ

(

u1t1
s
−m2

C − p2T

)

θ

(√
s− −u1 − t1√

2
√
2s

)

dt1du1d
2pT

=
1

8π2s
θ (− [u1 + t1]) δ

(

u1t1
s
−m2

C − p2T

)

θ (2s+ u1 + t1) dt1du1d
2pT , (A.14)

where we have left off the delta function δ (s+ t1 + u1), implying the constraint s+ t1 + u1 = 0. We
can use this constraint to get rid of the theta functions:

dQ =
1

8π2s
θ (s) δ

(

u1t1
s
−m2

C − p2T

)

θ (s) dt1du1d
2pT

=
1

8π2s
δ

(

u1t1
s
−m2

C − p2T

)

dt1du1d
2pT . (A.15)
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Here we have used θ (s) = 1 because s = EA + EB ≥ 0. This delta function can be rewritten as

δ

(

u1t1
s
−m2

C − p2T

)

=
1

2
√

u1t1
s −m2

C

δ

(

|pT | −
√

u1t1
s
−m2

C

)

+
1

2
√

u1t1
s −m2

C

δ

(

|pT |+
√

u1t1
s
−m2

C

)

. (A.16)

The latter term is zero because |pT | > 0. The 2-dimensional vector pT =
(

p1C , p
2
C

)

can be rewritten
in the polar coordinates (|pT | , φ). The infinitesimal area is then

d2pT = |pT | d |pT | dφ. (A.17)

Integrating dQ over |pT | and φ results in

dQ =
1

8π2s

1

2
√

u1t1
s −m2

C

[

δ

(

|pT | −
√

u1t1
s
−m2

C

)

|pT | d |pT | dφ
]

dt1du1

=
1

8π2s

1

2
√

u1t1
s −m2

C

[

√

u1t1
s
−m2

Cdφ

]

δ (s+ t1 + u1) dt1du1

=
2π

8π2s

1

2
δ (s+ t1 + u1) dt1du1

=
1

8πs
δ (s+ t1 + u1) dt1du1. (A.18)

This we substitute in the expression for the differential cross section,

d2σ

dt1du1
=

1

16πs2
∣

∣M
∣

∣

2
δ (s+ t1 + u1) . (A.19)

The δ-function is often left off:

d2σ

dt1du1
=

1

16πs2
∣

∣M
∣

∣

2
(with s+ t1 + u1 = 0). (A.20)
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Appendix B

Special unitary groups

The special unitary group SU(N) is the set of N × N unitary matrices with determinant +1. One
encounters these groups quite often in quantum mechanics, because quantum mechanical operators
are unitary. An arbitrary unitary matrix can always be written as

U = exp (iH) , (B.1)

where H is an Hermitian, traceless matrix,

H† = H, TrH = 0. (B.2)

That H must be traceless follows from detU = 1. Each traceless Hermitian N × N matrix can be
written as a linear combination of N 2 − 1 Hermitian matrices:

H = αaT a, (B.3)

where summation over a = 1, 2, . . . , N 2 − 1 is implied. The constant matrices T a are called the
generators of the SU(N) group, because with these matrices it is possible to generate every possible
unitary transformation U . For an infinitesimal small rotation we find

U = exp (iαaT a) = 1 + iαaT a +O
(

α2
)

. (B.4)

A special property of the SU(N) group is that an arbitrary unitary transformation can be obtained
by performing multiple rotations subsequently:

U = lim
n→∞

(1 + iαaT a)
n
= exp (iαaT a) . (B.5)

A continuous group with this structure is called a Lie group. Such a group is characterized by its Lie
algebra, i.e. the commutator of two generators can be written as a linear combination of the other
generators:

[

T a, T b
]

= ifabcT c, (B.6)

where fabc are the structure constants of the group. If we choose the set of generators in such a way
that

Tr
(

T aT b
)

= CRδ
ab, (B.7)

with CR a constant (a so-called Casimir number), then we can write the f abc as

fabc = − i

CR
Tr
([

T a, T b
]

· T c
)

. (B.8)

With this, one can show that the structure constants are completely antisymmetry, i.e. f abc = −f bac =
f bca. From the identity

[

T a,
[

T b, T c
]]

+
[

T b, [T c, T a]
]

+
[

T c,
[

T a, T b
]]

= 0 (B.9)

follows that the structure constants must also obey

fadef bcd + f bdef cad + f cdefabd = 0. (B.10)
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This relation is called the Jacobi identity.
Let us define a set of matrices T a, whose element (b, c) is given by

(T a)bc = −ifabc. (B.11)

The commutator is
[

T a, T b
]

= (T a)cd
(

T b
)

de
−
(

T b
)

cd
(T a)de

= −facdf bde + f bcdfade = f cadf bde + f bcdfade

= −f cdefabd = ifabd
(

ifdce
)

= ifabd
(

T d
)

ce

= ifabcT c. (B.12)

We see that the matrices T a have the same Lie algebra and therefore belong to the group SU(N),
just like the T a do. The T a are called the fundamental representation, because they are N × N
matrices. The T a are

(

N2 − 1
)

×
(

N2 − 1
)

matrices and are called the adjoint representation. There
are many other representations possible, each with matrices of a certain dimension. The trivial, or
singlet representation, is the set of 1× 1 matrices. To obey the Lie algebra (B.6), it is clear that each
generator in the trivial representation must be equal to zero.

Probably the most famous unitary group is SU(2). The generators of SU(2) are

T aSU(2) =
1

2
τa, (B.13)

where τa are the Pauli matrices:

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

. (B.14)

The generators are chosen such that

Tr
(

T aT b
)

= CRδ
ab =

1

2
δab. (B.15)

It is often useful to work with the τ± defined by

τ± ≡ 1√
2

(

τ1 ± iτ2
)

, (B.16)

or written explicitly,

τ+ =
√
2

(

0 1
0 0

)

, τ− =
√
2

(

0 0
1 0

)

. (B.17)

The structure constants of SU(2) are given by

fabc = εabc =







+1 if abc is an even permutation of 123,
−1 if abc is an odd permutation of 123,
0 otherwise

, (B.18)

which is known as the Levi-Civita tensor.
The SU(3) generators are usually defined as

T aSU(3) =
1

2
λa, (B.19)

with a = 1, 2, . . . , 8 and λ the Gell-Mann matrices given by

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1
−1

0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1
1
−2



 . (B.20)
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The generators are again chosen in such a way that

Tr
(

T aT b
)

=
1

2
δab. (B.21)

There are 83 = 512 structure constants for SU(3), but most of them are zero. One can obtain all of
them with

f123 = 1, f458 = f678 =
√
3/2,

f147 = f246 = f257 = f345 = f516 = f637 =
1

2
, (B.22)

and by making use of the fact that fabc is completely antisymmetric.
Finally we shall present here all the generators of SU(5). These are

T aSU(5) =
1

2
λ̃
a
, (B.23)

with

λ̃1 =













0 1 0
1 0 0
0 0 0













, λ̃2 =













0 −i 0
i 0 0
0 0 0













, λ̃3 =













1
−1

0
0

0













,

λ̃4 =













0 0 1
0 0 0
1 0 0













, λ̃5 =













0 0 −i
0 0 0
i 0 0













, λ̃6 =













0 0 0
0 0 1
0 1 0













,

λ̃7 =













0 0 0
0 0 −i
0 i 0













, λ̃8 =
1√
3













1
1
−2

0
0













,

λ̃9 =













1 0
0 0
0 0

1 0 0
0 0 0













, λ̃10 =













−i 0
0 0
0 0

i 0 0
0 0 0













, λ̃11 =













0 0
1 0
0 0

0 1 0
0 0 0













,

λ̃12 =













0 0
−i 0
0 0

0 i 0
0 0 0













, λ̃13 =













0 0
0 0
1 0

0 0 1
0 0 0













, λ̃14 =













0 0
0 0
−i 0

0 0 i
0 0 0













,

λ̃15 =













0 1
0 0
0 0

0 0 0
1 0 0













, λ̃16 =













0 −i
0 0
0 0

0 0 0
i 0 0













, λ̃17 =













0 0
0 1
0 0

0 0 0
0 1 0













,

λ̃18 =













0 0
0 −i
0 0

0 0 0
0 i 0













, λ̃19 =













0 0
0 0
0 1

0 0 0
0 0 1













, λ̃20 =













0 0
0 0
0 −i

0 0 0
0 0 i













,

λ̃21 =











 0 1
1 0













, λ̃22 =











 0 −i
i 0













, λ̃23 =













0
0

0
1
−1













,
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and

λ̃24 =
1√
15













−2
−2

−2
3

3













. (B.24)
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