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ABSTRACT

In this thesis we employ computer simulations and statistical physics to understand

the origin of liquid-liquid phase transitions and their relationship with anomalies

typical of liquid water.

Compared with other liquids, water has many anomalies. For example the den-

sity anomaly: when water is cooled below 4 ◦C the density decreases rather than

increases. This and other anomalies have also been found to occur in a few other one-

component liquids, sometimes in conjunction with the existence of a liquid-liquid

phase transition (LLPT) between a low-density liquid (LDL) and a high-density

liquid (HDL). Using simple models we explain how these anomalies arise from the

presence of two competing length scales. As a specific example we investigate the

cut ramp potential, where we show the importance of “competition” in this context,

and how one length scale can sometimes be zero. When there is a clear energetic

preference for either LDL or HDL for all pressures and temperatures, then there is

insufficient competition between the two liquid structures and no anomalies occur.

From the simple models it also follows that anomalies can occur without the

presence of a LLPT and vice versa. It remains therefore unclear if water has a

LLPT that ends in a liquid-liquid critical point (LLCP), a hypothesis that was first

proposed based on simulations of the ST2 water model. We confirm the existence
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of a LLCP in this model using finite size scaling and the Challa-Landau-Binder

parameter, and show that the LLPT is not a liquid-crystal transition, as has recently

been suggested.

Previous research has indicated the possible existence of a LLCP in liquid silica.

We perform a detailed analysis of two different silica models (WAC and BKS) at

temperatures much lower than was previously simulated. Within the accessible

temperature range we find no LLCP in either model, although in the case of WAC

potential it is closely approached. We compare our results with those obtained for

other tetrahedral liquids and conclude that insufficient “stiffness” in the Si-O-Si

bond angle might be responsible for the absence of a LLCP.
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Fig. 3.1 Overview of the state points at which simulations have been per-

formed. Colors away from the simulated points (full black circles)

are a linear interpolation of ρ for the sake of presentation. At high

temperatures we observe a high-density liquid state (HDL, shaded

in orange), while at lower temperatures we find a low-density liq-

uid (LDL, in blue). These are separated by a region where the

system is continuously flipping between the two states, as seen in

Fig. 3.2. This transition region (in yellow/green) is identified as the

liquid-liquid phase transition line (LLPT) at high pressures, and

the Widom line at low pressures. These lines join at the liquid-

liquid critical point (LLCP) estimated at PC = 208 ± 3 MPa and

TC = 246 ± 1 K (see Sec. 3.8). At low temperatures the LDL (or

LDL-like) region is bounded by the glass transition temperature Tg,

below which we can no longer fully equilibrate the system within

100 ns, and consider the liquid to have become a glass (see Sec. 3.5).

For small sizes (N ≤ 343) we observe spontaneous crystallization

within 1 ns-long simulations at six state points (indicated by the

red circles), all of them within the LDL (or LDL-like) region. Inset:

Average ρ(T ) for pressures P = 240 MPa (left-most), 215, 210, 205,

200, 195, and 190 (right-most). Here the average is taken over all

N ; excluding N ≤ 343 shows a much sharper transition at 240 MPa. 52
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Fig. 3.2 Phase flipping near the phase transition line (P = 215 MPa, with

N = 343 molecules). At high T the system is in the HDL phase

(with a density ρ ' 1.03 g/cm3), while at low T the system is in

the LDL phase (density ρ ' 0.88 g/cm3). However, near the phase

transition line (at T ' 244.5 K for this pressure) the system is

flipping between the two phases. . . . . . . . . . . . . . . . . . . . 53

Fig. 3.3 To validate our code, we compare our simulation results with those

from Poole et al. [151] at density ρ = 0.83 g/cm3 and for N =

216 molecules. We performed simulations in the NV T ensemble

applying pressure corrections and find the same results as Ref. [151]

within the error bars (standard error calculated from a set of 10 runs
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the LJ cutoff (proportional to ρ2) is equal to −12.66 MPa. The

variation of P with T along this isochore shows the occurrence of

both a density maximum at 305 K and a density minimum near

265 K, as at these state points (∂ρ/∂T )P = −ρKT (∂P/∂T )V = 0

with KT > 0 the isothermal compressibility. . . . . . . . . . . . . . 56
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Fig. 3.4 The structure factor SOO(k) for a range of temperatures at (a)

210 MPa and (c) 200 MPa for N = 729. (a) For P > PC the struc-

ture has a large change between T = 245 and 246 K, corresponding

to the LDL-HDL first-order phase transition. (b) The value of SOO

for k corresponding to the first maximum, the first minimum and

the second maximum as a function of T for P = 210 MPa as in
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Fig. 4.1 Even though the fragility of a glass-forming liquid is usually defined

via its dynamic properties (see Fig. 1.2), the behavior of the heat
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Ge) this transition in entropy is no longer a first-order transition.

It is still quite abrupt, however: the heat capacity shows a large

maximum separating a region with strong behavior (low T ) from a

region with fragile behavior (high T ). (c) This transition is even

more gradual for liquids such as SiO2 and BeF2 (figure taken from
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converge at the predicted point. However, at low temperatures the

isochores near 2.3 g/cm3 obtain a negative curvature. If this cur-

vature becomes more negative as T goes down, then it is possible

that the isochores will not cross below 3500 K. We conclude that

for the temperatures currently accessible, the isochores alone are

insufficient to demonstrate a LLCP in WAC. . . . . . . . . . . . . . 93

Fig. 4.3 Response functions of WAC, from Ref. [105]. (a) The isothermal

compressibility KT is consistent with a LLCP near 5 GPa, 4000 K

because near that point KT has a global maximum. (b) The isobaric
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expansivity αP has its global minimum in between the global max-

ima of KT and CP . The contour line where αP = 0 corresponds to

the location of the TMD. (d) The isochoric heat capacity CV has its

global maximum the furthest away from the global KT maximum. 98
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Fig. 4.4 Comparison of the heat capacities of BKS (panel a) and WAC (panel

b), obtained by calculating the smoothing spline of H(T ) at con-
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Fig. 4.5 Phase diagram of the modified Stillinger-Weber potential in terms

of the tetrahedral repulsion parameter λ and temperature T , at zero

pressure (figure adapted from [132]). The black triangles indicate
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squares denote the melting line of the bcc crystal. The dashed line
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CHAPTER 1: Introduction

Some people say, “How can you live without knowing?” I do not know

what they mean. I always live without knowing. That is easy. How you

get to know is what I want to know.

– Richard. P. Feynman, in The Meaning of It All

1.1 The liquid phase and critical points

Of the three classical states of matter, the liquid state seems to be the most chal-

lenging phase to characterize. It lacks the long-range order of crystals, but neither

does it have the complete disorder of a gas. Being the state between gas and solid,

it should come as no surprise that the physics of liquids is a field rich in interesting

phenomena.

At first glance, it might be obvious what constitutes as a liquid, but this is not

always trivial. Consider, for example, the standard phase diagram in Fig. 1.1 with

the three phases: solid, liquid, and vapor (gas). Between the solid and liquid there

is the melting line, and between the solid and vapor the sublimation line. The liquid

and gas phases are separated by the liquid-gas phase transition line, which usually

ends in a critical point. Near the critical point all differences between the gas and

liquid disappear, and above the critical temperature and critical pressure there is

no difference at all between the two phases. In this thesis, however, we shall only

consider temperatures far below the liquid-gas critical point, so it will always be

clear whether the fluid is a liquid or a gas.

An obvious question to ask here, is whether there exists such a thing as a crystal-

liquid critical point. The answer to that question is, in fact, negative. As we travel
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Figure 1.1: Standard phase diagram with the three stable phases as a function of
temperature and pressure. Near the critical point the difference between liquid and
gas (vapor) disappears.

along a phase transition line, approaching a critical point, we find that the distinction

between the two phases slowly disappears. A crystal is defined as a solid that

displays a long-range order, which can be represented by a unit-cell that is repeated

in all directions, and which is therefore highly symmetric. The liquid, however, has

no such long-range symmetry, and therefore the phase boundary between crystal

and liquid will always be discontinuous – one cannot smoothly transform a crystal

into a liquid, and so there is no critical point.

Note that it is still possible to have a solid-liquid critical point if the solid has

no long-range symmetry. These solids are not crystals, but are called amorphous

solids. One of the most famous examples of an amorphous solid is silica (SiO2),

which is ordinary window glass. Possibly for this reason amorphous solids are also

known as glasses, and we shall use these two names interchangeably.
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1.1.1 Amorphous solids

An amorphous solid can be considered to be a liquid whose molecules have practi-

cally stopped moving; its self-diffusion is so low, that the material behaves as a solid.

In most cases the self-diffusion D is related to the viscosity η via the Stokes-Einstein

equation

D =
kBT

6πηr
(1.1)

where r is the effective radius of the particle. From this relation it is clear that a glass

is like a liquid with an enormously large viscosity, and that a liquid becomes more

glassy when the temperature is lowered. In fact, one definition of what constitutes

as a glass (as opposed to a normal liquid) is that a glass has a shear viscosity of

η ≥ ηg ≡ 1012 Pa·s (1013 Poise) [46]. The glass transition temperature Tg is then

the temperature at which the viscosity has reached ηg. To put this number into

perspective, we have listed several familiar liquids in Table 1.1 and sorted them

according to their viscosity.

To create an amorphous solid in experiment one often starts with a liquid and

then rapidly cools it down1. As is indicated in Fig. 1.1, the solid state melts into the

liquid when it is heated to above the melting temperature. On the other hand, for

the liquid to crystallize, it needs a cluster of atoms that forms a tiny crystal from

which the rest of the crystal can grow. Without such a crystal nucleus the liquid

remains a fluid, even at low temperatures. Small disturbances (such as a speck of

dust) can act as a nucleus, but if done carefully it is possible to cool the liquid

down to below the melting temperature and obtain a metastable state known as a

1There are alternative methods for creating glasses, such as spraying vapor onto a very cold
plate, applying large pressures onto a crystal, or exposing a crystal to nuclear radiation [11]
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Fluid Viscosity in 10−3 Pa·s Reference
Helium (liquid) at 4 K 0.003319 Ref. [69]
Air (gas) at 300 K, 1 bar 0.0185 Ref. [69]
Liquid silica at 1800 K, 1 bar 0.541 Ref. [69]
Water 1.002 Ref. [69]
Mercury at 25 ◦C 1.526 Ref. [69]
Blood at 37 ◦C 4 Ref. [204]
60 wt% D-glucose solution in water 37.445 Ref. [69]
Vegetable oil 70 Ref. [204]
Motor oil SAE-30 200 Ref. [204]
Glycerol 1,460 Ref. [69]
Maple syrup 2,000 Ref. [204]
Honey 10,000 Ref. [204]
Ketchup 50,000 Ref. [204]
Peanut butter 200,000 Ref. [204]
Lard 1,000,000 Ref. [204]
Tar 30,000,000 Ref. [204]

Table 1.1: Several fluids and their viscosity (all at 20 ◦C and 1 bar, unless noted
otherwise). Values from [204] are approximate values.

supercooled liquid.

As the supercooled liquid is cooled to lower and lower temperatures, the molecules

move slower and slower. During this process, several things can happen, depending

on the type of liquid in question. In some cases the liquid displays homogeneous

nucleation and the molecules spontaneously crystallize no matter how carefully you

cool the liquid. In other cases an amorphous solid is produced, and the molecules

move too slow to be able to form the crystal (within the time window of the exper-

iment).

How fast the transition from liquid to glass is, depends on the type of liquid (see

Fig. 1.2). For the so-called “strong” liquids (such as SiO2) the viscosity increase

is approximately Arrhenius, i.e., it can be described well by η(T ) = A exp(E/kBT )

where A and E are independent of temperature [46]. On the other hand, the increase

in viscosity (as a function of inverse temperature) is much steeper for the “fragile”
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Figure 1.2: The “fragility” of several glass-forming liquids [11]. The viscosity of these
liquids rapidly increases upon lowering the temperature, until at T = Tg they reach
the glass transition at η = ηg = 1012 Pa.s, and are considered an amorphous solid.
The horizontal axis indicates the inverse temperature Tg/T , normalized by the glass
transition temperature Tg, which is different for each liquid. In this so-called Angell
plot, liquids are classified as “strong” liquids if they lie near the straight line of
slope ∼16 (such as SiO2), which means they approach the glass transition relatively
slowly, and follow the Arrhenius law η(T ) = A exp(E/kBT ) (see text). Liquids with
η(T ) far away from this straight line are called “fragile” liquids.
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liquids (such as toluene, ortho-terphenyl, and salol [165]). The difference between

the two types of liquids is particularly clear on an Angell plot (such as Fig. 1.2),

where the strong liquids lie close to a straight line while the fragile liquids display a

large curvature.

The field of glass-formers is a very active one, and there are many questions that

are still waiting for a good answer [7, 11]. In fact, the nature of the glass transition

is considered to be one of the major unsolved problems in physics and chemistry

today [5].

1.1.2 Liquid-liquid phase transitions

Apart from a liquid-gas critical point or a liquid-glass critical point, it is also theo-

retically possible [73, 193, 86] to have a liquid-liquid critical point (LLCP). Experi-

mentally, however, it is very difficult to measure such a critical point, and the first

liquid-liquid phase transitions (LLPTs) have only been discovered quite recently.

One can easily imagine a phase separation within a binary mixture of liquids

(such as water and oil), but it might be hard to see how a one-component liquid can

separate into two distinct liquids. The important thing we need to realize here, is

that liquids have structure.

Unlike the case of an ideal gas, where the particles have no interaction with

each other, in a liquid the interaction is such that particles typically like to be at

a certain distance of each other. The result is that they roughly order themselves

in spherical “shells” around one another, as in Fig. 1.3a. The average number of

nearest neighbors (those within the first shell) is known as the coordination number

and depends on the liquid. For simple liquids, such as liquid argon for example, the

coordination number is roughly 12. The molecules in water, on the other hand, form

a tetrahedral network of hydrogen bonds which means the coordination number is
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Figure 1.3: The structure of liquids. (a) Liquids are not completely disordered, but
show short-range order and form “shells” around one another. This is particularly
clear from the radial distribution function g(r) that represents the probability of
finding a neighbor at a distance between r and r + dr. (b) Radial distribution
function g(r) of the oxygen atoms in ST2 water at P = 210 MPa and T = 245 K.
The location of the first peak indicates that the nearest oxygen neighbor of each
oxygen atom is at an average distance of about 3 Å. (c) The structure factor S(k)
for the same system as in panel (b).

about 4.

The most common method to quantify the structure of a liquid, is by calculating

the radial distribution function (RDF), as in Fig. 1.3b. The radial distribution

function g(r) is defined as the average particle density at a distance r from any

given particle, normalized to that of an ideal gas (i.e., such that g(∞) = 1). Hence,

for an ideal gas we simply have g(r) = 1 for all r. The RDF of a perfect crystal

consists of a set of sharp peaks, because all particles are at discrete distances from

each other. In experiments such as neutron scattering one cannot measure g(r)

directly, but instead the structure factor S(k) is obtained, with k the wave number

(see Fig. 1.3c). The structure factor is related to the RDF via the Fourier transform,

and one can therefore easily convert S(k) to g(r) and vice versa. For isotropic liquids,
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the relation is given by

S(k) = 1 + ρ

∫
[g(r)− 1] exp (−ik · r) d3r

= 1 + 4πρ

∫ ∞
0

[g(r)− 1]
sin(kr)

kr
r2 dr (1.2)

with ρ = N/V the number density.

Because liquids have a distinct and quantifiable structure, it is in some cases

possible to have a phase separation between two liquids of different structure that

are made up of the same molecule. This can then lead to having a liquid-liquid

phase transition between those two liquids. Liquid phosphorus probably provides the

best example; it has a LLPT that was theoretically predicted [75] and subsequently

observed in experiment [94, 92, 93]. In the case of phosphorus the LLPT is associated

with the transformation from a molecular liquid of P4 molecules into a polymeric

liquid consisting of P atoms attached into chains and rings of various sizes (see

Fig. 1.4).

There is now a growing body of evidence, both experimental and computational,

that LLPTs may exist at high temperatures and pressures in group-IV elements like

silicon [166, 134, 123, 124] and germanium [153, 132, 19, 131], in certain molecular

compounds such as silica (SiO2) [125, 150, 159], in ionic salts such as BeF2 [71], and

also in molten Al2O3-Y2O3 [1] and in triphenyl phosphite [203, 103]. While some

systems are characterized by weakly directional interactions [116, 217], in triphenyl

phosphite the dominating interaction is expected to be non-directional, since the

substance consists of a simple organic molecule with a small dipole moment and has

no tendency to form hydrogen bonds [174]. Hence it is possible that LLPTs may also

occur in materials characterized by non-directional interactions. This possibility is

supported by a recent observation of a transition between two amorphous solid states
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Figure 1.4: Experiments of liquid phosphorus provide a clear example of liquid-liquid
phase transitions in one-component liquids. Ab initio simulations have confirmed
that the transition is between a polymeric liquid (left panel) and a molecular liquid
of P4 molecules (right panel). Adapted from [75].

of Ce55Al45 (a metallic glass with non-directional bonds), in which the transition is

caused by pressure-induced f -electron delocalization [177].

There is indirect experimental evidence for a LLPT in sulfur [26, 206, 15], sele-

nium [91], and some molecular liquids [104, 171, 215], and several ab initio computer

simulations suggest that LLPTs may exist in liquid hydrogen [146, 168, 23] and liq-

uid nitrogen [22] at high pressures and temperatures.

1.1.3 LLCP hypothesis of liquid water

A liquid-liquid phase transition ending in a liquid-liquid critical point might also

be present in supercooled water. Experiments on supercooled liquid water, done

by Angell and Speedy in the 1970s, indicate a huge increase in the heat capacity

(Fig. 1.5a) and the compressibility (Fig. 1.5b) upon lowering the temperature [13,

183, 14, 182]. The steep increase in both response functions seems to imply some
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Figure 1.5: Behavior of (a) heat capacity CP [14] and (b) compressibility KT [183]
in supercooled liquid water, at atmospheric pressure. The steep increase of both
response functions upon cooling might indicate the presence of a critical point below
233 K (−40 ◦C).

kind of critical phenomenon in supercooled liquid water at very low temperatures.

Unfortunately, homogeneous nucleation limits the experiments to T > TH (with

TH ≈ 233 K at 1 bar) as spontaneous crystallization rapidly occurs below this

temperature. Note that the homogeneous nucleation line is a kinetic boundary,

and not a thermodynamic boundary such as the melting line. This means that the

exact value of TH depends on the speed of the experiment – the faster you do the

measurement, the lower TH is – and that, in principle, the liquid can be cooled to

much lower temperatures.

Instead of carefully cooling liquid water, it is also possible to quickly quench

water to much lower temperatures, and produce a glassy state of water. Creation

of such a glass can be accomplished in several ways [31, 27, 127]. For example,

compressing hexagonal ice at 77 K to a pressure above 10 kbar creates a high-
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density amorphous ice (HDA) that has a density of about 1.17 g/cm3 at 1 atm

(0.1 MPa) and 1.31 g/cm3 at 1.0 GPa [128]. A glassy state called amorphous solid

water (ASW) is formed by slowly depositing water vapor onto a very cold metal

surface below 120 K [140]. The latter is very similar to another glassy water state

called low-density amorphous ice (LDA), which has a density of about 0.94 g/cm3. It

has been shown by Mishima et al. that LDA and HDA are separated by a reversible

abrupt change in density that resembles a first-order phase transition2 [128, 126,

129, 130].

Increasing the temperature of LDA or HDA does not turn the glass into a liquid,

but leads once again to crystallization. This happens around a temperature of TX ,

which lies below the homogeneous nucleation temperature TH . Just like TH , the

glass-crystal transition temperature TX represents a kinetic boundary that has no

fundamental value but merely depends on the time-scale of the measurement.

Experiments done so far have only been able to probe liquid water at T > TH ≈

233 K (1 bar) and glassy water at T < TX ≈ 150 K, which means that there is a

region in between TH and TX that is currently inaccessible to experiments, known

as the “no-man’s land” of liquid water [118] (see Fig. 1.6). Fortunately, computer

simulations can probe much shorter time-scales than is possible in experiments. In

fact, Poole et al. performed simulations [152] with a water model called ST2, and

discovered a liquid-liquid critical point (also indicated in Fig. 1.6). This result has

been reproduced with several other water models, such as TIP5P [224] and TIP4P-

Ew [144], but not with others, such as mW [78]. In addition, there has even been

some debate about the existence of the LLCP in ST2 [110, 111], but subsequent

studies have confirmed its existence [173, 112, 96, 149].

2Technically, a first-order phase transition can only occur between two stable phases. Since
LDA and HDA are metastable, the transition is sometimes referred to as a first-order-like phase
transition.
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Figure 1.6: The liquid-liquid critical point hypothesis of water (courtesy of Dr. O.
Mishima). Liquid water (orange) can be cooled to below the melting temperature
TM , producing supercooled liquid water (yellow). As of yet, experiments have failed
to measure the liquid below TH , as homogeneous crystallization occurs too quickly.
It is possible, however, to quench the liquid into a glassy state. Heating glassy
water does not produce a liquid, but leads once again to crystallization above TX .
There are two main types of glassy water, low-density amorphous (LDA, in blue)
and high-density amorphous (HDA, in pink), which are separated by a first-order
transition around 0.2 GPa (thick black line). According to the LLCP hypothesis,
this transition continues deep into the “no-man’s land” (white), where it becomes
a phase transition line between two liquids – low-density liquid (LDL) and high-
density liquid (HDL) – and finally ends in a liquid-liquid critical point.
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The LLCP hypothesis would nicely explain the diverging behavior of CP and KT

(Fig. 1.5), as well as the phase transition between LDA and HDA. The liquid-liquid

phase transition would separate two distinct metastable liquids: the low-density

liquid (LDL) and the high-density liquid (HDL). Upon lowering the temperature,

LDL would vitrify into the amorphous ice LDA, and similarly HDL would turn into

HDA (Fig. 1.6).

There are several alternative theories that predict what happens in the “no man’s

land”, some examples being the singularity-free scenario [167] and the retracing

spinodal scenario [182, 181]. Even though the LLCP scenario seems to have gained

the most attention in recent years, it is ultimately up to the experimental community

to provide a definite answer.

1.2 Water and its anomalies

Clearly, water is a particularly interesting liquid to study. It is the most common

liquid on Earth; not only does it cover 70% of the Earths surface, it also makes up

over 50% of the human body. It is of major importance to all living things and many

important chemical and biological processes occur within an aquatic environment.

But water is not only the most abundant liquid; compared with other liquids it is

also one of the most unusual. Although H2O seems to be a very simple molecule,

its liquid state displays very anomalous behavior. An example of such an anomaly

is the phenomenon that ice floats on liquid water, while for most materials the solid

state has a higher density than its liquid state. Another example is the unusually

high boiling point of H2O compared to similar molecules such as H2S, H2Se, and

H2Te; see Fig. 1.7. In this section we shall enumerate several anomalies which will

be further explored in this thesis.
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Figure 1.7: Boiling points of the hydrides of Groups IV and VII. Hydrogen bonds
are responsible for the anomalously high boiling point of water, as in comparison to
the other hydrides.

1.2.1 Density anomaly

A very important anomaly of water is the density anomaly. If we measure the density

as a function of temperature, while keeping the pressure fixed, one finds that the

density has a maximum at the so-called “temperature of maximum density” (TMD).

The existence of the TMD has been known for centuries, and its value is well known:

3.98 ◦C at 1 bar.

In terms of thermodynamics, the TMD can be defined as the temperature for

which the coefficient of thermal expansion is zero:

αP ≡
1

V

(
∂V

∂T

)
P

= 0 (1.3)

The density anomaly is then the range of temperatures for which αP < 0. On

a pressure-temperature plot (the PT -plane) the TMD can be traced as a curve

that encloses the density anomaly region. If the TMD line is not interrupted by a

phase transition line, then it curves back at low pressures, indicating a temperature

of minimum density (TmD). Thermodynamically, both the TMD and TmD are

equivalent, as αP = 0 for both.
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Note that the density anomaly we are considering here is not the same anomaly

as ice floating on water, although both anomalies are related. In this thesis we define

the density anomaly as a range of temperatures, where an decrease in temperature

leads to an decrease of the density of the liquid, i.e. where αP < 0. Hence, this

definition only concerns the liquid and does not involve the density of ice.

The density anomaly of liquid water has profound consequences for life on earth.

Water at a temperature of 4 ◦C will always sink to the bottom of a lake, regardless

of the temperature of the air above it. Apart from providing a constant temperature

environment, this also means that the bottom of a lake is unlikely to freeze during

winter, thus protecting fish and other aquatic life from the icy temperatures above

the lake’s surface.

Most liquids do not exhibit a density anomaly. Usually, as the temperature

goes up, molecules in the liquid move faster, and basically push each other away.

Therefore, as T goes up, the volume increases and the density goes down. The reason

why this does not happen for water below 4 ◦C, is mainly because of hydrogen bonds.

Hydrogen bonds are much stronger than the regular van der Waals forces between

molecules3, and because the H-O-H angle of a water molecule (104.5 ◦) is close to

the ideal tetrahedral bond angle of arccos(−1/3) ≈ 109.5 ◦, the molecules prefer to

form an open hexagonal lattice such as that of hexagonal ice (Fig. 1.8). This crystal

structure has exactly four nearest neighbors, while liquid water has slightly more

than four, on average. Below 4 ◦C, as the liquid is cooled, the number of nearest

neighbors is reduced (getting closer to four), and this leads to the decrease in density

[147].

3Hydrogen bonds in water have a length of 1.97 Å(compared to a water molecule with an
approximate diameter of 2.75 Å) and an energy of about 21 kJ/mol (8.5 kT at room temperature).
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Figure 1.8: Snapshot of one layer of hexagonal ice (Ih).

1.2.2 Diffusion anomaly

The molecules inside a liquid are constantly in motion. At very short time scales

(on the order of femtoseconds and below), the molecules move according to

rrms ≈ vrmst (1.4)

with rrms ≡
√
〈r(t)2〉 the root-mean-square displacement after a time t, and vrms =√

3kBT/m the root-mean-square speed. This is known as the “ballistic regime”

of the diffusion, because in the limit t → 0 the molecule follows a simple ballistic

trajectory.

In glassy systems, the ballistic regime is followed by a plateau where 〈r(t)2〉 is

virtually independent of time. The slow movements of the molecules lead to an

effect where each molecule is essentially trapped by its nearest neighbors. It takes

a lot of time for a molecule to escape this “cage” of neighboring molecules, and

therefore the mean squared displacement 〈r2〉 is nearly constant and equal to the

size of the cage. For obvious reasons, this regime is often called the “cage regime”.

At large timescales, the diffusion of a molecule is governed by Brownian dynam-

ics. Collisions with other molecules lead to a random walk trajectory, with the mean
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squared displacement given by

rrms ≡
√
〈r(t)2〉 =

√
6Dt (1.5)

Here D is the diffusion coefficient. At these timescales the motion is truly diffusive,

and we have reached the “diffusive regime”. The diffusion coefficient for a water

molecule inside water (i.e. the self-diffusion) is about 10−5 cm2/s.

For most liquids, increasing the pressure leads to molecules being closer together,

which makes it harder for one molecule to pass its neighbor. Hence, increasing the

pressure usually causes the diffusion coefficient to go down. Water, however, has

a diffusion anomaly: within a certain range of temperatures the diffusion goes up

when you increase the pressure (see Fig. 1.9).

In addition to the density anomaly, also the diffusion anomaly of water can

be explained with hydrogen bonds and the tetrahedral liquid structure that they

Figure 1.9: The diffusion anomaly of liquid water: at low temperatures (and be-
low 100–200 MPa) the diffusion increases upon increasing the pressure (adapted
from [68]). Left panel: diffusion above the melting line. Right panel: diffusion of
supercooled water.
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produce. Applying pressure to the tetrahedral hydrogen bond network causes bonds

to break or bend. This makes it easier for water molecules to move around, and

thus an increase in pressure leads to an increase in diffusion.

1.2.3 Compressibility anomaly

The isothermal compressibility KT indicates how much the volume of a liquid

changes when pressure is applied while the temperature is kept constant:

KT ≡ −
1

V

(
∂V

∂P

)
T

(1.6)

The compressibility is always positive, because it is impossible for any material to

have an increase in volume while pressure is increased. This fact is made explicit in

the definition through the minus sign; an increase in P leads to a decrease in V , so

∂V
∂P

< 0 such that KT > 0.

The derivative of KT , however, is not restricted by thermodynamics. Nonethe-

less, for most liquids KT increases as the temperature is increased or the pressure

reduced. Increasing the temperature causes the molecules to move more, making

it easier for the liquid to be compressed – and KT goes up. On the other hand,

applying pressure forces the molecules closer together, which makes the liquid more

compact and therefore harder to compress further (thus KT goes down). Liquid

water is anomalous in this aspect, because at low temperatures the liquid becomes

more stiff (KT goes down) upon heating (see e.g. Fig. 1.5b).

The compressibility anomaly is closely related to the density anomaly. In fact,

it has been shown by Sastry et al. [167] that if a liquid has a density anomaly

(i.e. expands upon cooling) that thermodynamics demands that the compressibility

increases upon lowering the temperature as well. Furthermore, the locus of KT
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Figure 1.10: Part of the phase diagram of H2O (both figures from [213]). In the left
figure it is particularly clear that the melting line between ice-Ih and the liquid has a
negative slope, meaning that it is possible to melt the crystal by applying pressure.

maxima always crosses the TMD curve exactly where its slope is infinite in the

PT -diagram, i.e., where
(
∂P
∂T

)
αP=0

= ∞ [167]. It is possible, however, to have a

compressibility anomaly without a density anomaly. One such example is the cut-

ramp potential with parameter λ > 0.28, which is discussed in Sec 2.4.

1.2.4 Negatively-sloped melting line

One unique thing about water is that it has a rich polymorphism; there exist many

different crystal structures of ice. As of 2014, there are sixteen different crystalline

phases of H2O known: hexagonal ice (Ih), cubic ice (Ic), and the ices II, III, ...,

XV. Most of these are stable crystalline phases, with the exception of ice-four (IV),

ice-nine (IX), and ice-twelve (XII) which are metastable. A few of these ices are

shown in Fig. 1.10.

Fig. 1.10 also shows that the melting line between ice-Ih and the liquid has a

negative slope. It is therefore possible to start with hexagonal ice-Ih and pressurize

it into a liquid. Normal liquids do not display this behavior, and always have a

melting line with a positive slope. Upon increasing the pressure, the liquid becomes
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more compact, the movement of the molecules becomes more constrained, and this

allows crystal nuclei to grow into full crystals4.

With respect to the crystal, melting leads to a gain in entropy caused by the

spatial randomization of the molecules: ∆S = Sliquid−Scrystal > 0. At the same time,

melting also leads to a gain in enthalpy, ∆H = Hliquid−Hcrystal = ∆Etot +P∆V > 0,

mainly because the liquid occupies a larger volume than the crystal (for normal

liquids ∆V > 0). Melting occurs when the change from crystal to liquid lowers the

Gibbs energy:

∆G = Eliquid − Ecrystal + P (Vliquid − Vcrystal)− T (Sliquid − Scrystal) < 0 (1.7)

We see that, when ∆V > 0, a decrease in P or an increase in T makes this inequality

easier to be satisfied, and thus promotes melting.

On the other hand, ice-Ih has a lower density than liquid water (see Fig. 1.10)

which means that ∆V < 0 and therefore an increase of pressure actually promotes

melting. All of this is nicely summarized by the Clapeyron relation, which relates

the slope dP/dT of a phase transition line to the change in entropy and volume:

dP

dT
=

∆S

∆V
(1.8)

It should be noted that this relationship is valid for any phase transition line, in-

cluding liquid-liquid phase transitions.

It is commonly believed that the negative slope of the ice-Ih melting line is the

reason why we can skate on ice—the weight of a person on ice skates exerts a large

pressure on the ice, which causes the ice to melt slightly, and this layer of water

4Crystal nuclei always form within a liquid, but when T is too high or P too low, the nuclei
remain small and cannot survive long enough to start crystal growth (see also Chapter 3).
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reduces the friction between the skates and the ice. However, this explanation is

only partially true [145]. The reduced friction is indeed caused by a very thin layer

of water, but pressure is not the main reason why that layer is there. A simple

calculation of the pressures involved shows that the pressure of a skate is only

sufficient to cause melting when the ice is very close to its melting point. Instead,

simple frictional heating plays the most important role, possibly together with the

existence of an ultra-thin surface layer of disorganized and weakly held frozen water

that naturally occurs [213, 145].

For some liquids the melting line has a positive slope at very low and very high

pressures, as well as a region at medium pressures where the melting line has a

negative slope. A consequence of this S-shaped melting line is that it is possible to

pressurize the liquid into a crystal, and then pressurize it further until it hits the

melting line a second time, turning the crystal back into a liquid. This phenomenon

is called “re-entrant melting”. Increasing the pressure even further would finally

lead to second crystallization event, possibly with a different crystal structure.

1.3 Conclusion

Even though many of the anomalies of water can be explained by the hydrogen

bonds and the formation of a tetrahedral network of bonds, there exist liquids that

display some or all of these phenomena without having any hydrogen bonds. It

is important to understand the origin of these anomalies and their relation with a

possible liquid-liquid critical point. Not only is the question “What is the cause of

these anomalies?” an interesting question from a purely scientific point of view, it

also is likely that the answer will be useful to experiments involving liquids, chemical

engineers, and industry. It might be even possible to engineer a liquid such that it
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has one of these anomalies.

Take for example the diffusion anomaly. If increasing the pressure on a particular

liquid leads to a higher diffusion coefficient (and reduced viscosity), then this might

be extremely useful regarding the transport of the liquid. Other applications might

benefit from the density anomaly, which can lead to a constant-temperature region

at the bottom of a tank (similar to the 4 ◦C water at the bottom of a lake in the

winter).

In Chapter 2 we start this research by considering several simple models. Al-

though they cannot provide any quantitative results, they are the best method to

obtain a good understanding of the physics involved. We then continue in Chapter 3

with a more realistic model: the ST2 model for water. It is the same model that

was used by Poole et al. to predict the LLCP in water, and is still considered the

best model when investigating the LLCP in liquid water. In Chapter 4 we consider

two models of liquid silica, and investigate the possibility of having a LLCP in that

liquid. We end this thesis with a short discussion and outlook in Chapter 5.
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CHAPTER 2: Phase transitions and anomalies in simple models

If, in some cataclysm, all scientific knowledge were to be destroyed, and

only one sentence passed on to the next generation of creatures, what

statement would contain the most information in the fewest words? I

believe it is the atomic hypothesis (or atomic fact, or whatever you wish

to call it) that all things are made of atoms—little particles that move

around in perpetual motion, attracting each other when they are a little

distance apart, but repelling upon being squeezed into one another.

– Richard. P. Feynman, in Lectures on Physics

2.1 Introduction

Simple models are possibly the most valuable tool to a theorist. Although one

cannot expect to obtain any quantitative results from them, they are incredibly

useful to obtain an understanding of the mechanisms and processes involved that

lead to the behavior one is interested in.

One of the simplest models for liquids is the popular Lennard-Jones potential,

ULJ(r) = 4ε[(σ/r)12 − (σ/r)6], where ε indicates the energy scale and σ the length

scale (see Fig. 2.1). The interaction is spherically symmetric and only depends on the

distance r between two atoms. The force between two atoms simply follows from

F = −dU/dr, and the movements of the atoms obey simple Newtonian classical

mechanics.

This model captures one of the most fundamental properties of atoms: at very

short distances the atoms repel, but at larger distances the attract each other. The

1/r6 term represents the long-range van der Waals (dipole) attraction, while the
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Figure 2.1: The Lennard-Jones potential captures the most important aspect of
atomic interactions: short-range repulsion at r < σ, together with a long-range
attraction at r > σ.

1/r12 term describes the short-range Pauli repulsion that is caused by overlapping

electron orbitals (the exchange interaction). The 12th power is mainly chosen for

computational efficiency, as it is exactly the square of the 1/r6 term. In other

models the attractive 1/r6 term is combined with a different repulsive term, such as

an exponential in the case of the Buckingham potential.

The LJ potential works remarkably well for “simple liquids” such as liquid argon.

However, it fails to accurately describe more complex liquids such as those that

have directional bonds, or ionic liquids where the electrostatic interaction plays an

important role. The potential also fails for very small atoms such as liquid hydrogen

or helium, where quantum mechanics has a considerable effect.

It should therefore come as no surprise that the LJ potential shows no sign of

water-like anomalies, as water is a very complex liquid. Surprisingly, however, there

are simple spherically symmetric potentials such as the Jagla potential (or “spherical

water”) that are actually able to reproduce several of the anomalies that are present

in water [87, 222, 219]. Evidently, these models might provide some insight into

what is causing these anomalies.



25

2.2 Anomalies: two competing length scales

As is the case with the Lennard-Jones potential, a liquid consisting of hard spheres

(“billiard balls”) does not produce any water-like anomalies, although hard spheres

can be used to simulate crystal-liquid phase transitions [79]. However, when adding

a “soft core” to the hard sphere potential it is possible to introduce anomalies.

Soft core potentials have a long history of being used to model isostructural

critical points in crystals [73, 193, 229, 209], polymorphism of crystal phases [85,

86, 33, 34], liquid-liquid phase transitions (LLPTs) [45, 44, 157, 86, 87, 56, 29, 30,

65], polymorphism in glasses [88, 98, 222, 220], and anomalous thermal expansion of

liquids at low temperatures [44, 41, 42, 195, 157, 86, 158, 216, 98, 226, 135, 225, 227,

142]. All these phenomena can be associated with the existence of two competing

local structures: an expanded structure characterized by large open spaces between

particles, and a collapsed structure in which particles are spaced more closely. The

expanded structure is the result of interactions between the particles, which differ

depending on the material.

In water, for example, the expanded structure is caused by the hydrogen bonds

that favor a tetrahedral network of water molecules such that each molecule has only

four nearest neighbors (the extreme case being the crystal structure of hexagonal

ice). In other words, the first coordination shell of liquid water consists of only four

molecules [24, 172, 35, 170, 180, 25, 29, 224, 162, 143, 151, 198, 117, 228, 223]. This

is in comparison with simple liquids, such as argon, where the first coordination

shell consists of approximately twelve particles arranged in a closely-packed config-

uration. Accordingly, water has much more empty space between molecules than

argon and its density can be significantly increased by increasing the pressure which

distorts the hydrogen bond structure and increases the number of particles in the
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first coordination shell [42]. This distortion is associated with an increase in entropy,

which leads to a density anomaly (via a Maxwell relation):

αP ≡
1

V

(
∂V

∂T

)
P

= − 1

V

(
∂S

∂P

)
T

< 0, (2.1)

where αP is the thermal expansion coefficient (see also Eq. 1.3).

Probably one of the easiest examples of a soft core potential is the addition of a

linear ramp to the hard sphere potential [73, 193, 85]:

U(r) =


∞ for r ≤ σ0,

(1− r/σ1)U1 for σ0 < r < σ1,

0 for r ≥ σ1.

(2.2)

It has been shown that this hard-core plus linear ramp (HCLR) potential can display

water-like anomalies, provided that the ratio Λ ≡ σ0/σ1 between the hard core radius

σ0 and the total interaction range σ1 is not too large [225]. We consider here Λ = 4/7

(for which anomalous behavior was reported in [98]) and analyze the relationship

among the melting line, the anomalous behavior, and the structural properties.

As shown in Fig. 2.2, the melting line displays a positive dP/dT slope at small

pressures, consistent with the idea that particles cannot “climb up” the soft core at

low densities. As the pressure increases, the soft repulsive ramp becomes less and less

effective and the melting line passes through a maximum in temperature, followed

by a region where re-entrant melting occurs (into a different crystal lattice). At

higher pressures, where the soft repulsion becomes ineffective, the HCLR potential

is characterized by the hard core repulsion, and the melting line accordingly recovers

a positive slope. Ultimately the liquid crystallizes into a rhombohedral lattice [98].

The density and diffusion anomalies occur in the same pressure range where the
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Figure 2.2: Phase diagram of the hard core plus linear ramp (HCLR) potential. Solid
green line indicates the melting line. The blue solid line and red dashed lines are the
temperature at maximum/minimum density (TMD) and the diffusion extrema (DM)
lines, respectively. The orange dashed lines represents the loci of compressibility
extrema. Axes are in reduced units: P ∗ = P σ3

1/U1 and T ∗ = kB T/U1. Inset: The
hard core plus linear ramp potential U(r) as a function of the interparticle distance
r.

HCLR system undergoes re-entrant melting, while both anomalies are found to

disappear at the higher pressures where the melting line recovers a positive slope.

The two repulsive length scales are quite explicit in the HCLR model: the soft

core at σ1 (effective at low P, T ) and the hard core at σ0 (effective at high P, T ). The

competition between these two length scales can be made evident with the structure

factor (see Fig. 2.3). At very low pressures, the first peak of S(k) is much larger

than the second peak. This first peak is associated with the larger soft radius σ1

(remember that k has units of inverse distance), which means that at low P most

particles are located near r = σ1 rather than r = σ0. In that case the liquid behaves

as a hard sphere liquid with particle diameter σ1. At very high pressures the first

peak disappears, indicating that the effect of the soft core completely disappears,
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Figure 2.3: Structure factor S(k) of the hard core plus linear ramp potential at
constant temperature (T ∗ = 0.036) for several pressures. The first peak of S(k)
decreases with increasing pressure, while the second peak grows. At pressures below
P ∗ ≈ 4 the first peak of S(k) is the largest, while the second peak is the largest
above P ∗ ≈ 4. At very high pressures the first peak disappears completely.

and the liquid behaves like a hard sphere potential with particle diameter σ0.

The notion of two competing length scales can provide an intuitive explanation

for all anomalies considered here. Outside the anomalous region, only one of the

two length scales dominates, and the liquid behaves like a simple hard sphere liquid.

Within the anomalous region (approximately between P ∗ ≡ P σ3
1/U1 = 1 and P ∗ =

2), the particles can temporarily jump onto the soft core if they have gained sufficient

energy. This increase of particle energy can be obtained either by increasing the

temperature or applying a higher pressure (i.e. by applying work).

From these considerations it is clear that increasing the temperature leads to

an increase of density (the density anomaly). Increasing the pressure means the

particles suddenly have more freedom to move, leading to an increase in diffusion

(the diffusion anomaly). For the same reason, the crystal can become unstable when
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we increase P , and thus applying pressure turns the crystal into a liquid (re-entrant

melting). Also, near the anomalous region the liquid becomes easier to compress

upon increasing pressure, which constitutes to the compressibility anomaly bounded

by the compressibility maxima.

2.3 Anomalies and the liquid-liquid critical point

When an interaction potential introduces two separate length scales, it is possible

for the liquid to locally exhibit two different liquid structures: a low-density liquid

(LDL) and a high-density liquid (HDL). However, the hard core plus linear ramp

(HCLR) model of the previous section shows no sign of a liquid-liquid phase transi-

tion. The reason for this is simple; the potential is repulsive everywhere and has no

attractive part. Therefore the two different liquid phases cannot coalesce, i.e., there

is no phase segregation, and thus no phase transition between the liquids.

Adding an attractive tail to the HCLR potential indeed introduces a liquid-

liquid phase transition (LLPT) line. The one-dimensional version of this model was

studied by Hemmer and Stell in 1970 [73], but it was not until 1999 that E. A.

Jagla did computer simulations of the model in three dimensions [86] and pointed

out that the model displays water-like anomalies as well as a liquid-liquid critical

point (LLCP). Depending on the parameters, the model can produce the LLCP in

the supercooled region or in the stable region of the phase diagram, i.e., above the

melting line.

In 2001 Jagla introduced a similar model [87] consisting of a hard core and two
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Figure 2.4: The Jagla potential consists of a hard-core at r = a, a soft repulsive
ramp at a < r < b, and an attractive tail at b < r < c.

linear ramps, nowadays known as the Jagla model or spherical water model,

UJagla(r) ≡



∞ r < a

UA + (UR − UA)(b− r)/(b− a) a ≤ r < b

UA(c− r)/(c− b) b ≤ r < c

0 c ≤ r

(2.3)

Here b = 1.72a, c = 3a, and UR = 3.5UA are most commonly used [222, 219] (see

Fig. 2.4). With these values for the parameters, the model has a liquid-liquid phase

transition ending in a liquid-liquid critical point (LLCP) that lies above the melting

line, within the stable region of the liquid. The critical point is therefore easy to

access, and for that reason this model has been extensively studied [222, 219], in

particular in relation to the liquid-liquid critical point hypothesis of water.

Even though the Jagla model displays several of the anomalies of water (see

Fig. 2.5), there are some distinct differences between the phase diagram of the Jagla

model and the phase diagram of water according to the LLCP hypothesis. Apart

from the critical point being in the stable region—which is obviously not the case for

water—the Jagla model also displays a phase transition line with a positive slope,
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Figure 2.5: Phase diagram of the Jagla model (from [219]). In the PT -plane, the iso-
chores (gray lines) cross at the critical point (red dot) and within the LDL-HDL co-
existence region. The coexistence region is bounded by the LDL- and HDL-spinodals
(indicated by the black triangles), which separates the region where LDL/HDL is
metastable from the region where LDL/HDL is unstable. It is clear that the critical
point lies above the melting line (green curve), and thus within the region where the
liquid is stable. The density anomaly (bound by the TMD, indicated by the blue
curve) and the diffusion anomaly (dashed red curve) are also shown.

while the phase transition line of water would have to be negative.

Recent studies [65] have indicated that these two discrepancies are in fact related

to each other. By adjusting the parameters such that the Jagla potential becomes

more and more like the Lennard-Jones potential, one finds that the critical point

crosses the melting line, moves deeper and deeper into the supercooled region, until

at some point the critical point crosses the homogeneous nucleation line and can

no longer be observed because of spontaneous crystallization. At the same time

the positive slope of the phase transition line becomes smaller and smaller, until

it becomes almost negative. The transition of the slope from positive to negative

occurs exactly when the critical point is close to the homogeneous nucleation line

(Fig. 2.6).
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Figure 2.6: Changing the parameters of the Jagla model can make the LLCP dis-
appear. (a) It is possible to change the value of r1 ≡ b/a such that the standard
Jagla model (r1 = 1.72) starts to looks more like the Lennard-Jones potential (at
r1 ≈ 1.1). (b) The effect of this is that the location of the LLCP (crosses) moves to
lower temperatures while the freezing temperature (black dots) rises. This means
that the critical point moves from the stable region into the metastable supercooled
region, until at r1 < 1.59 the critical point can no longer be measured (figures
adapted from [65]).
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2.4 Soft core bounded repulsive interaction potentials

In the previous sections we have seen that several water-like anomalies can be ex-

plained by the principle of having an interaction potential that has two competing

length scales. To obtain a better appreciation of the details of this principle, we shall

investigate in this section a model [107] that at first glance appears to defy what we

have just learned. The “uncut linear ramp model” has only one length scale, but

still shows the usual set of anomalies. We can introduce a second length scale by

cutting the potential at a certain height, but this actually removes the anomalies

even though there are now two length scales.

The family of interactions we consider here is called the “cut ramp potential” and

is obtained by cutting a repulsive linear ramp at different heights (see also Fig. 2.7):

Ucr(r) ≡


(1− λ)U1 for r ≤ σcut,

(1− r/σ1)U1 for σcut < r < σ1,

0 for r ≥ σ1,

(2.4)

where λ ≡ σcut/σ1. For λ = 0 the potential in Eq. (2.4) corresponds to the uncut

repulsive linear ramp, whereas for λ > 0 it possesses a flat region where the repulsive

force vanishes for r ≤ σcut. As λ increases, the flat top gets larger and larger, until

in the limit λ → 1 the potential approaches that of the “penetrable sphere model”

[109].

The unique thing about these potentials is that they do not diverge to infinity

as r → 0, and they are therefore known as bounded potentials. Of course, in

the context of microscopic interactions of atomic systems, bounded potentials are

unphysical—the strong repulsion at short distances (the Pauli repulsion) always

prevents full particle overlap in a true microscopic interaction. However, if one
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Figure 2.7: The cut ramp potential. For λ ≡ σcut/σ1 = 0 the potential U(r)
corresponds to the uncut ramp potential, while for λ→ 1 it becomes equivalent to
the penetrable sphere model [109]. Shown here is λ ≈ 0.5.

considers interactions among macromolecules such as long polymers, then effective

interactions may result in a bounded repulsion that actually allows the particles to

“sit on top of each other”, imposing only a finite energy cost for a full overlap [108,

189, 81, 82]. For this reason bounded repulsive potentials have been proposed to

model effective interactions in polymers, dendrimers, and microgels [108].

2.4.1 Clustering

We may expect that the overlap of particles (also called clustering) will have a

significant effect on the behavior of the liquid. Depending on the pressure the

amount of overlap can be significant, as is evident from the radial distribution

function g(r) of the uncut ramp potential, shown in Fig. 2.8. At low pressures

the g(r) looks just like any other liquid, with a large first maximum at r = σ1 and

smaller oscillations for r > σ1. However, from the inset of Fig. 2.8 we see that when

the pressure is increased above P ∗ ≈ 1 a “zeroth” peak starts to grow around r ≈ 0.

This zeroth maximum never occurs in any real liquids and is an effect caused by the

clustering.

In order to fully understand the behavior of this model, it is necessary to have
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Figure 2.8: Radial distribution function of the uncut ramp potential (λ = 0) at
constant temperature (T ∗ = 0.040) for several pressures, in steps of ∆P ∗ = 0.0416.
The red dashed line represents g(r) for the smallest pressure (P ∗ = 0.15), and the
green dashed line represents g(r) for the largest pressure (P ∗ = 1.72). The apparent
thick black line located between the red and green lines results from the overlap of
many thin black lines in the range of pressures where g(r) changes very little with
pressure. Inset: Plot of the peak heights of g(r) versus pressure, for the first and
second maximum, as well as the “zeroth” maximum which is the peak at r < σ1.

some kind of measure to quantify the amount of clustering. To achieve this, we

adopt the average number Ncl of neighbors of a particle that lies within a distance

smaller than the first minimum r0 (with r0 ≤ σ1) of the radial distribution function

(see Fig. 2.9):

Ncl ≡
∫ r0

0

4πr2ρg(r) dr, (2.5)

where ρ ≡ N/V is the particle density [107].

At low pressures the amount of clustering Ncl should be near zero, as the ramp

starting at r = σ1 prevents the particles from overlapping. Upon increasing the
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Figure 2.9: Explanation of how we determine the amount of clustering. Shown
here is the radial distribution function g(r) for the uncut ramp potential (λ ≡
σcut/σ1 = 0). Both graphs refer to the liquid state at T ∗ = 0.035. To quantify
the amount of clustering, we calculate the average number of neighbors Ncl between
r = 0 and r0, where r0 is the location of the first minimum of g(r). In other words,
Ncl ≡

∫ r0
0

4πr2ρg(r) dr, with r0 ≤ σ1. The corresponding region is indicated by the
shaded area.

pressure, particles will slowly start to overlap, and Ncl attains a value between zero

and one. When the pressure becomes high enough, Ncl ≈ 1 and most particles

will completely overlap with another, effectively forming a liquid of dimers. At

even higher pressures, it should be expected that multiple particles can overlap

simultaneously, such that Ncl > 1.

2.4.2 Calculation of the melting temperature

The standard method for locating the melting line via molecular dynamics is by

doing a constant pressure/constant temperature (NPT) simulation of an elongated

box that starts with one half being liquid and the other half being in the solid state.

An example of such a system for the uncut ramp potential is shown in Fig. 2.10.
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Figure 2.10: Snapshot of the liquid/crystal system for the uncut ramp potential
(λ = 0) at pressure P ∗ = 1.2 and temperature T ∗ = 0.035 (on the melting line).
The complete system has a size of approximately 10σ1 × 10σ1 × 36σ1, but shown
here is a thin slice of about one σ1 thick. The FCC structure of the crystal is clearly
visible at the ends, with the liquid phase in the center. The distance between two
neighboring particles in the crystal is approximately one σ1. Shown in red are the
“clustered” particles (those that lie within a distance of 0.5σ1 of one other). This
particular state point lies well within the anomalous region where the clustering Ncl

inside the liquid is much higher than in the crystal (see also Figure 2.15).

The box is chosen to be twice as long in the z-direction, as this forces the liquid-

crystal boundaries to form parallel to the xy-plane (which minimizes the surface

area of the liquid and is therefore energetically favored). If at a given pressure P

the crystal grows, then the temperature T lies below the melting temperature Tmelt.

However, if the liquid is found to grow, then T must lie above Tmelt. Fig. 2.11 shows

the variations of the potential energy as a function of time. If the potential energy

increases, the liquid grows, so T > Tmelt. By extrapolating Upot(t) for different

temperatures and looking at the slope of those curves, one can estimate the value

of Tmelt for a given pressure.

This procedure is a little more complicated for bounded potentials, as the par-

ticles can overlap. To prepare the initial state of half liquid/half solid, one first

prepares an FCC crystal1 in the shape of an elongated box, containing a fixed num-

1For the cut ramp potential with the values of λ, T , and P considered here, the crystal lattice
is always FCC.
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Figure 2.11: Plot of potential energy vs. time, to help determine the melting tem-
perature T ∗melt for the λ = 0 cut at pressure P ∗ = 1.12. Shown here is the potential
energy Upot(t) for temperatures T ∗ = 0.0360, 0.0365, 0.0370, 0.0375 (from bottom
to top) for a box with 5600 particles, which started as a FCC crystal. After a short
equilibration period, at t∗ = 70 half the crystal is melted by temporarily lowering
the interaction potential for the particles in the center of the box. At t∗ = 100
the interaction potential is fully restored and the simulation is allowed to run till
t∗ = 3500. By considering the slope of Upot(t) one can determine if either the liquid
or the crystal is growing. The lowest temperature (bottom curve) crystallizes com-
pletely before the simulation ends; the nearly constant potential energy indicates
the system has reached an equilibrium. Similarly, the system at the highest tem-
perature is seen to liquefy completely near t∗ = 1500. The melting temperature at
this pressure is estimated to be T ∗melt = 0.0367.

ber of particles with none of them overlapping. Since cluster formation is strongly

related to the density, and thus the pressure, it is important to ensure that the FCC

crystal has the number of clusters corresponding to the particular pressure P at

which we are trying to find the melting temperature. This can be accomplished by

first melting half of the crystal at this pressure, and then making it recrystallize.

Subsequently, the other half is melted and recrystallized. Additional local melt-

ing and recrystallization can be used to prevent grain boundaries from forming, to
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obtain a homogeneous crystal with the correct amount of clustering.

Different methods can be used to locally melt the crystal. One such method is to

temporarily replace the interaction potential by a weaker potential within a certain

region of the box [107]. Once the crystal has melted in this region, the original

potential is restored. To ensure recrystallization, the initial state of half liquid/half

solid must be prepared at a temperature slightly below Tmelt.

2.4.3 Effect of clustering on the anomalies

The phase diagram of the uncut ramp potential is shown in Fig. 2.12. It is remark-

ably similar to that of the HCLR model (Fig. 2.2); there is the density anomaly, the

diffusion anomaly, the compressibility anomaly, and the melting line has a region

where it has a negative slope (re-entrant melting). Furthermore, just as with the

HCLR model, all anomalies occur approximately within the same region (between

P ∗ = 0.8 and 1.4).

That both models show the same behavior at low P is no surprise. Equations

2.2 and 2.4 indicate that the models are identical when r > σcut, σ0, and at low P

the particles cannot reach the hard core or the cut, but only feel the effects of the

linear ramp. As indicated before, this causes the liquid to change from a normal

liquid to an anomalous liquid as the pressure is increased.

However, the reason why the anomalies disappear at high P is different for

each model. In the HCLR model the soft core ramp becomes ineffective at high

pressures, and the particles start to behave like a liquid of simple hard spheres.

This is not the case for the uncut ramp potential. As clustering sets in, more and

more particles are being replaced by dimers. The interaction between the dimers

and single particles has the same shape as the original particle-particle interaction

(an uncut ramp), except that now the ramp is twice as steep. The result is that
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Figure 2.12: Phase diagram of the (uncut) ramp potential (λ = 0). The isoclustering
lines shown refer to the liquid phase (simulated deep into the supercooled liquid
region), and run from Ncl = 0.9 at the top to Ncl = 0.0 at the bottom in steps of 0.1
(thin black/brown lines). The green solid line is the melting line, which displays re-
entrant melting where the slope dP/dT is negative. The blue solid line is the TMD,
and the red dashed lines indicate the extrema in diffusivity. The loci of isothermal
compressibility extrema are represented by the orange dashed lines. Axes are in
reduced units: P ∗ = P σ3

1/U1 and T ∗ = kB T/U1.

the increase of clustering makes it harder for particles to climb up the ramp, and

thus the anomalies disappear. When the pressure has been increased so much that

Ncl ≈ 1.0, we are left with only dimers, and the anomalies are completely gone (see

Fig. 2.12).

How do we resolve this with the principle of two competing length scales? For

simple liquids, each particle has a preferred distance to its nearest neighbor. Within

the anomalous region of the HCLR model, the nearest neighbor can be at one of

two distances: r ≈ σ1 (at the foot of the ramp) or r ≈ σ0 (tightly against the hard

core). We see that for the uncut ramp, the nearest neighbor can be either at r ≈ σ1

(at the foot of the ramp) or r ≈ 0 (full overlap). In other words, also in the uncut
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ramp model there are two competing length scales, namely r ≈ σ1 and r ≈ 0.

Fig. 2.13 shows what happens when we cut the ramp at lower and lower heights.

When λ = 0.25 the liquid still has all its anomalies, but the density anomaly region

and the diffusion anomaly region have been considerably reduced in size. The same

is true for the region with the compressibility anomaly. In addition to all of that,

the part of the melting line that has a negative slope becomes more and more steep,

and when λ = 0.25 the slope is nearly everywhere positive. When λ reaches a value

of approximately λc ≈ 0.28 the density anomaly has been reduced to a point in

the phase diagram [107]. At very low cuts (such as λ = 0.5 in Fig. 2.13) all the

anomalies, except for the compressibility anomaly, have disappeared.

It might seem strange that the cut ramp potential with λ = 0.5 has no anomalies

apart from the compressibility. Clearly this potential has two length scales (the foot

of the ramp at r = σ1, and the location of the cut at rcut), yet its phase diagram

shows no density anomaly, no diffusion anomaly, and its melting line has a positive

slope for all pressures.

Clearly, at low pressures the cut ramp potential is the same as the HCLR model

and the uncut ramp. In this regime the particles only feel the foot of the ramp at

r = σ1, and all potentials are identical. Upon increasing the pressure, the particles

will start to climb up the ramp. In the case of both HCLR and the uncut ramp,

neighboring particles can now choose to be either at the foot of the ramp (low E,

but high V ) or at the top of the ramp (high E, but low V ). The preferred state

of the liquid is the one with the lowest Gibbs energy G = E + PV − TS. Hence,

for a certain range of pressures and temperatures, both configurations (both length

scales) have approximately the same Gibbs energy, and one could say that the two

length scales are “competing”.

In the case of the cut ramp potential, however, particles at the top of the ramp
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Figure 2.13: Phase diagram of the cut ramp potential for different cuts (left:
λ = 0.25, right: λ = 0.5). The isoclustering lines shown refer to the liquid phase
(simulated deep into the supercooled liquid region), and run from Ncl = 0.9 at the
top to Ncl = 0.0 at the bottom in steps of 0.1 (thin black/brown lines). The line
with Ncl = 0 is omitted for λ = 0.5. The green solid line is the melting line, which
displays re-entrant melting where the slope dP/dT is negative. The blue solid line
is the TMD/TmD (enclosing the density anomaly), and the red dashed lines indi-
cate the extrema in diffusivity. The loci of isothermal compressibility extrema are
represented by the orange dashed lines. Axes are in reduced units: P ∗ = P σ3

1/U1

and T ∗ = kB T/U1. Note the difference in scale of the vertical axes. When λ = 0.25
(left panel) there is still a strong competition between the two length scales σ1 and
σcut, and full overlap does not occur until the pressure goes above P ∗ = 1.6. This
is similar to the uncut ramp of Fig. 2.12. When λ = 0.5 (right panel) the height of
the top of the ramp is so low that there is no longer any competition, and moderate
pressures already leads to full overlap (above the Ncl = 0.9 line). All anomalies have
disappeared, except the compressibility anomaly.

pay a small price in energy E, yet gain a large reduction in volume. This means that

upon increasing the pressure of the liquid, particles immediately start to cluster, as

full overlap has the lowest Gibbs energy and is the preferred state. This can also

be seen in Fig. 2.13, where the isoclustering line of Ncl = 0.9 (90% particle overlap)

occurs already at much lower P for λ = 0.5 (right panel) than for λ = 0.25 (left

panel).

In conclusion, the cut ramp potential does have two length scales, but if the

height of the cut is too low there will be no competition between the two length
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scales, and thus no anomalies. The compressibility anomaly does not seem to re-

quire this competition, however. The existence of a soft core (such as the ramp) is

sufficient to allow for this anomaly to occur. This can also be seen in Figs. 2.12 and

2.13, where the compressibility anomaly region (bound by the KT extrema) roughly

coincides with the region where 0.1 . Ncl . 0.9 for all λ.

2.4.4 The clustering anomaly

The uncut ramp potential also displays two other anomalies, in addition to the den-

sity anomaly, diffusion anomaly, compressibility anomaly, and re-entrant melting.

In Fig. 2.14 we present the density of the crystal compared to that of the liquid

(both measured at the melting line). For λ = 0.5, and all pressures, we have the

normal behavior that the crystal has a higher density than the liquid. The same

is true for the uncut ramp potential (λ = 0), except within the range P ∗ = 0.9 to

1.3. This is the same common phenomenon as with water: the crystal floats on the

liquid. We should note that this is not exactly the same anomaly as the density

anomaly, because the density anomaly is purely a property of the liquid, and is

unrelated to the solid state (see its definition in Sec. 1.2.1).

The range of pressures where the crystal has a lower density than the liquid,

corresponds exactly to the range where the melting line of the uncut ramp potential

has a negative slope (see Fig. 2.13). This should come as no surprise, since we have

already seen in Sec. 1.2.4 that the Clapeyron relation (Eq. 1.8) dictates that the

slope of the melting line dP/dT should be negative when ∆V = Vliquid−Vcrystal < 0,

because the change in entropy ∆S = Sliquid−Scrystal is always positive (the liquid is

always more disordered than the crystal).

In Fig. 2.15 we compare the amount of clustering Ncl in the liquid vs. the crystal.

We see that in all cases the particles in the crystal have more overlap than those in
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Figure 2.14: Particle density of the crystal and liquid on the melting line, for the
cut ramp potential with λ = 0, 0.25, and 0.5. For P ∗ roughly between 0.9 and 1.3,
and λ = 0, the liquid phase is more dense than the coexisting solid.

the liquid, except for λ = 0 where there is a region with a “clustering anomaly”. This

anomalous region corresponds roughly to the same pressure range as the anomaly

in Fig. 2.14. Since an increase in clustering automatically leads to an increase in

density, it is clear that for this potential the clustering anomaly is responsible for

why the crystal floats on the liquid.

2.5 Conclusion

In this chapter we have considered a variety of simple models in an attempt to un-

derstand why certain liquids have water-like anomalies such as the density anomaly

and the diffusion anomaly. We have seen that these anomalies can be caused by

different effects. For water most anomalies can be explained with the hydrogen

bonds, while for the simple models discussed in this chapter a soft repulsive core

is the direct cause of the anomalies. Although different effects are causing these
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Figure 2.15: Average number of neighbors Ncl within a distance smaller than the
first minimum of g(r) (see Eq. (2.5)). Results are shown for temperatures on the
melding line (both the liquid and solid state) for the cut ramp potential with λ = 0,
0.25, and 0.5. In most cases the clustering is higher for the solid state, except for
λ = 0 in the pressure range corresponding to the anomalous region.

anomalies, all lead to the same general mechanism: the existence of two competing

length scales.

Which two length scales are competing is not always immediately clear, even

in simple models. In Sec. 2.4.3, for example, we found that it is possible to have

one length scale being r = 0 (in the case of clustering with a bounded potential).

Furthermore, it is important that the two length scales are actually competing, and

that e.g. a small change in pressure does not immediately lead to a large change in

structure (as in the case of the cut ramp potential with λ = 0.5 in Sec. 2.4.3).

The anomalies seem to be independent of the existence of a liquid-liquid phase

transition (LLPT). Some models have the anomalies but no LLPT (such as the hard

core linear ramp model in Sec. 2.2), while others models have both (e.g. the Jagla

potential in Sec. 2.3).
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Likewise, a LLPT can occur without anomalies, depending on the nature of the

soft-core repulsion. For example, a simple model with a soft repulsion that consists

of a square shoulder shows no anomalies but does have a LLPT for certain parameter

values [56, 57, 16]. The possibility that a LLPT may occur disjointed from anomalies

was recently supported by the experimental study of triphenyl phosphite, where in

association with the LLPT the heat capacity shows no anomalous behavior [203]

and a density increase is expected upon cooling.

It is often hard to establish if a liquid has a LLCP, even with computer simu-

lations. In the next two chapters several techniques will be discussed, using liquid

water and liquid silica as an example.
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CHAPTER 3: Liquid-liquid critical point in ST2 water

We’ve learned from experience that the truth will come out. Other ex-

perimenters will repeat your experiment and find out whether you were

wrong or right. Nature’s phenomena will agree or they’ll disagree with

your theory. And, although you may gain some temporary fame and ex-

citement, you will not gain a good reputation as a scientist if you haven’t

tried to be very careful in this kind of work.

– Richard. P. Feynman, in Surely You’re Joking, Mr. Feynman!

3.1 Introduction

Simple models are an important tool to obtain a good understanding of the behavior

of liquids, but if one wishes to make theoretical predictions of a real liquid, it is often

necessary to use a model that describes that liquid as accurately as possible. On the

other hand, a higher accuracy usually means a more demanding calculation, which

leads to a slower or smaller simulation. To make matters worse, different models

might be better at describing different phenomena. For example, model A might

be able to reproduce the melting line very well, but might give the wrong boiling

temperature. Model B might be exactly the opposite, and only reproduces the

boiling temperature well. Clearly, an investigation of e.g. crystal nucleation would

yield better results if model A was used to do the simulations. It is important to

choose a model depending on the phenomena one is interested in, and to not forget

the strengths and weaknesses of that particular model.

In this chapter we present an analysis of the liquid-liquid critical point in ST2.

This is quite an old water model (and much “better” models are available nowadays),



48

but it is believed to have a liquid-liquid critical point (LLCP) that is not too hard

to access with molecular dynamics. For this reason, it is the model of choice if one

wants to study the liquid-liquid phase transition (LLPT).

The results of this chapter indicate that the ST2 water model indeed has a LLPT

ending in a LLCP, which separates two metastable liquids of different densities.

However, the fact that ST2 has such a critical point, does not necessarily mean

that there is one in real water—that is a matter that can only be fully resolved

by experiments. Fortunately, to echo the words of Richard Feynman, we may be

confident that one day the truth will come out.

3.2 Overview of the LLCP in ST2 water

For many centuries, water and its anomalies have been of much interest to scientists.

A particular rise of interest occurred in the late 1970s after experiments done by An-

gell and Speedy seemed to imply some kind of critical phenomenon in supercooled

liquid water at very low temperatures [13, 183, 14, 182]. Even though liquid wa-

ter experiments are limited by spontaneous crystallization below the homogeneous

nucleation temperature (TH ≈ 233 K at 1 bar), it is possible to further explore

the phase diagram by quenching water to far lower temperatures [31, 27, 127]. The

result of these experiments is an amorphous solid, i.e. a glassy ice, corresponding

to an out-of-equilibrium state that is very stable with respect to the equilibrium

crystalline ice phase. The type of amorphous solid depends on the applied pressure:

at low pressure, below ≈ 0.2 GPa, the low density amorphous ice (LDA) is formed,

while at higher pressure the high density amorphous ice (HDA) is observed [115]. It

has been shown by Mishima et al. that these two amorphous ices are separated by a

reversible abrupt change in density that resembles in all its respects an equilibrium
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first order phase transition [128, 126, 129, 130].

Raising the temperature of either LDA or HDA does not turn the sample into

a liquid, but leads once again to spontaneous crystallization (around TX ≈ 150 K).

In fact, between TH and TX , often called the “no man’s land” of bulk water, crys-

tallization occurs at a time scale that is too short for current experimental meth-

ods, although a new technique is possibly succeeding in the task of measuring the

metastable liquid phase [136]. Computer simulations of water, however, involve time

scales small enough to witness spontaneous crystallization and are therefore able to

explore liquid water in the “no man’s land”. In 1992 Poole et al. [152] performed

a series of molecular dynamics simulations using the ST2 water model [194], using

the reaction field method for the long-range interactions (ST2-RF), and discovered

a liquid-liquid phase transition ending in a critical point, separating a low density

liquid (LDL) and a high density liquid (HDL). These two liquids can be considered

to be the liquid counterparts of the LDA and HDA, respectively.

The existence of the critical point also allows one to understand X-ray spec-

troscopy results [205, 84, 137, 214], explains the increasing correlation length in

bulk water upon cooling as found experimentally [83], the hysteresis effects [230],

and the dynamic behavior of protein hydration water [120, 52, 21]. It would be con-

sistent with a range of thermodynamical and dynamical anomalies [102, 172, 188,

101, 100, 59, 163, 164, 121] and experiments [49, 187, 185, 186].

Many more computer simulations investigating the phenomenology of the liquid-

liquid critical point (LLCP) have been performed since then [67, 56, 58, 51, 81, 184,

141, 122, 55, 197, 43, 210, 211, 221, 62, 199, 200, 20]. Detailed studies using ST2-

RF have been made by Poole et al. [151] using molecular dynamics, while Liu et

al. simulated ST2 with Ewald summation (ST2-Ew) for the electrostatic long-range

potential using Monte Carlo [113, 114]. Also in other water models the liquid-liquid
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phase transition (LLPT) and its LLCP are believed to be found, for example by

Yamada et al. in the TIP5P model [224], by Paschek et al. in the TIP4P-Ew model

[144], and in TIP4P/2005 by Abascal and Vega [2, 3].

In 2011 Limmer and Chandler used Monte Carlo umbrella sampling to investigate

the ST2-Ew model, but claimed to have found only one liquid metastable phase

(HDL) rather than two [110, 111]. They therefore concluded that LDL does not

exist because it is unstable with respect to either the crystal or the HDL phase.

The emphasis in their work is about the difference between a metastable phase,

i.e. separated from the stable phase by a finite free-energy barrier, and an unstable

state, where the free-energy barrier is absent and the state does not belong to a

different phase.

Shortly after, Poole et al. [148] and Kesselring et al. [96] presented results using

standard molecular dynamics for ST2-RF showing the occurrence of the LLCP with

both HDL and LDL phases metastable with respect to the crystal, and not unstable.

This result was confirmed, using the same method as Limmer and Chandler, by

Sciortino et al. [173] and Poole et al. [149] in ST2-RF water and by Liu el al. in

ST2-Ew water [112].

In this chapter we investigate the possible existence of a liquid-liquid critical

point in simulated water in the thermodynamic limit using finite-size scaling tech-

niques, and confirm that LDL is a bona fide metastable liquid. We use the ST2-RF

model because it has been well-studied in the supercooled region, making it eas-

ier to compare and verify our data. In the supercooled phase it has a relatively

large self-diffusion compared to other water models, and therefore suffers less from

the slowing down of the dynamics at extremely low temperatures. We explore a

large region of the phase diagram of supercooled liquid ST2-RF water (Fig. 3.1)

using molecular dynamics simulations with four different system sizes by keeping
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constant the number N of molecules, the pressure P and the temperature T (NPT

ensemble).

Within the explored region we find both LDL and HDL, separated at high pres-

sures by a LLPT, ending in a LLCP estimated at PC ≈ 208 MPa and TC ≈ 246 K.

This phase transition is particularly clear in Fig. 3.2 where one can see from the

density how the system continuously flips between the two states. However, due to

finite-size effects this phase flipping also occurs below the critical point along the

Widom line (the locus of correlation length maxima) [222, 60]. For this reason it is

necessary to apply finite-size scaling methods to establish the exact location of the

critical point.

For six state points and for small system size N ≤ 343 we observe, in only

one over the (on average) seven simulations we performed for each state point,

irreversible crystal growth, indicated as full red circles in Fig. 3.1. Each of these

crystallization events occurred within the LDL (or LDL-like) region. Analysis of

these crystals revealed them to have a diamond cubic crystal structure. As we will

discuss later, because these events disappears for larger systems, we ascribe these

crystallization to finite-size effects.

We start in Sec. 3.3 with a description of the model and the procedures that

were used. In Sec. 3.4 we discuss the use of the intermediate scattering function to

analyze the structure of the liquid, and in Sec. 3.5 its use in defining the correlation

time. The analysis of the liquid structure is continued in Sec. 3.6 where we define

and compare a selection of structural parameters. The parameter d3 is found to be

particularly well-suited to distinguish between the liquid and the crystal state, and

this fact is subsequently used in Sec. 3.7 where we discuss the growth and melting

of crystals within the LDL liquid. In Sec. 3.8, by defining the appropriate order

parameter, we show that the LLCP in ST2-RF belongs to the same universality
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Figure 3.1: Overview of the state points at which simulations have been performed.
Colors away from the simulated points (full black circles) are a linear interpolation
of ρ for the sake of presentation. At high temperatures we observe a high-density
liquid state (HDL, shaded in orange), while at lower temperatures we find a low-
density liquid (LDL, in blue). These are separated by a region where the system
is continuously flipping between the two states, as seen in Fig. 3.2. This transition
region (in yellow/green) is identified as the liquid-liquid phase transition line (LLPT)
at high pressures, and the Widom line at low pressures. These lines join at the liquid-
liquid critical point (LLCP) estimated at PC = 208 ± 3 MPa and TC = 246 ± 1 K
(see Sec. 3.8). At low temperatures the LDL (or LDL-like) region is bounded by the
glass transition temperature Tg, below which we can no longer fully equilibrate the
system within 100 ns, and consider the liquid to have become a glass (see Sec. 3.5).
For small sizes (N ≤ 343) we observe spontaneous crystallization within 1 ns-long
simulations at six state points (indicated by the red circles), all of them within the
LDL (or LDL-like) region. Inset: Average ρ(T ) for pressures P = 240 MPa (left-
most), 215, 210, 205, 200, 195, and 190 (right-most). Here the average is taken over
all N ; excluding N ≤ 343 shows a much sharper transition at 240 MPa.
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Figure 3.2: Phase flipping near the phase transition line (P = 215 MPa, with
N = 343 molecules). At high T the system is in the HDL phase (with a density
ρ ' 1.03 g/cm3), while at low T the system is in the LDL phase (density ρ '
0.88 g/cm3). However, near the phase transition line (at T ' 244.5 K for this
pressure) the system is flipping between the two phases.

class as the 3D Ising model. We accurately determine where the LLCP is located

in the phase diagram in the thermodynamic limit by applying finite-size scaling

on the Challa-Landau-Binder parameter. We discuss our results and present our

conclusions in Sec. 3.9.

3.3 Simulation details

In the ST2 model [194] each water molecule is represented by a rigid tetrahedral

structure of five particles. The central particle carries no charge and represents the

oxygen atom of water. It interacts with all other oxygen atoms via a Lennard-Jones

(LJ) potential, ULJ(rij) ≡ 4ε [(σ/rij)
12 − (σ/rij)

6] with ε ≡ 0.31694 kJ/mol and

σ ≡ 3.10 Å. Two of the outer particles represent the hydrogen atoms. Each of them
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carries a charge of +0.2357 e, and is located a distance 1 Å away from the central

oxygen atom. The two remaining particles carry a negative charge of −0.2357 e, are

positioned 0.8 Å from the oxygen, and represent the lone pairs of a water molecule.

The electrostatic potential in ST2 is treated in a special way. To prevent charges

a and b from overlapping, the Coulomb potential is reduced to zero at small dis-

tances:

Uel(rab) ≡ S(rij)
1

4πε0

qaqb
rab

(3.1)

where S(rij) is a function that smoothly changes from one to zero as the distance

between the molecules decreases,

S(rij) ≡


0 (rij ≤ RL)

(rij−RL)2(3RU−RL−2rij)

(RU−RL)3
(RL ≤ rij ≤ RU)

1 (rij ≥ RU)

(3.2)

with RL ≡ 2.0160 Å, RU ≡ 3.1287 Å, and where rij is the distance between the

oxygen atoms of the interacting molecules. In the original model a simple cutoff

was used for the electrostatic interactions. In this thesis, however, we apply the

reaction field method [192] which changes the ST2 Coulomb potential to

Uel(rab) ≡ S(rij)T (rij)
qaqb
4πε0

(
1

rab
+

r2
ab

2R3
c

)
(3.3)
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where T (rij) is another smoothing function:

T (rij) ≡


1 (rij ≤ RT )

1− (rij−RT )2(3Rc−RT−2rij)

(Rc−RT )3
(RT ≤ rij ≤ Rc)

0 (rij ≥ Rc).

(3.4)

We use a reaction field cutoff Rc ≡ 7.8 Å together with RT ≡ 0.95Rc. These

parameters define our ST2-RF water model and are the same that were used in

previous ST2-RF simulations.

For the LJ interaction we use a simple cutoff at the same distance of 7.8 Å. We do

not adjust the pressure to correct for the effects of the LJ cutoff [80, 4], since these

adjustments come from mean field calculations which become increasingly unreliable

as one approaches a critical point. In order to facilitate comparing results with and

without this correction, we denote that for LDL (ρ ≈ 0.90 g/cm3) the correction is

P ≈ −15 MPa, and for HDL (ρ ≈ 1.05 g/cm3) the correction is P ≈ −20 MPa.

We use the SHAKE algorithm [156] to keep the relative position of each particle

within a ST2 molecule fixed. The temperature and pressure are held constant using

a Nosé-Hoover thermostat [138, 4, 139] together with a Berendsen barostat [18]. In

all simulations periodic boundary conditions are applied.

Our code is validated by simulating the same state points as those published

by Poole et al., see Fig. 1b in [151], where pressure corrections for the LJ cutoff

were applied in the NV T (constant N , T and volume V ) ensemble. Averaging at

each state point over 10 simulations with different initial conditions allows us to

estimate the error bars. In Fig. 3.3 we compare our results for N = 216 molecules

and density 0.83 g/cm3, and find that our data, after pressure correction, matches

that of Ref. [151] well.
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Figure 3.3: To validate our code, we compare our simulation results with those
from Poole et al. [151] at density ρ = 0.83 g/cm3 and for N = 216 molecules. We
performed simulations in the NV T ensemble applying pressure corrections and find
the same results as Ref. [151] within the error bars (standard error calculated from
a set of 10 runs at each state point). At this density the pressure correction due
to the LJ cutoff (proportional to ρ2) is equal to −12.66 MPa. The variation of
P with T along this isochore shows the occurrence of both a density maximum at
305 K and a density minimum near 265 K, as at these state points (∂ρ/∂T )P =
−ρKT (∂P/∂T )V = 0 with KT > 0 the isothermal compressibility.

For each of the simulations done in the NPT ensemble, we use the following

protocol. We first create a box of N molecules at n different initial densities (with n

up to 21) ranging from 0.85 to 1.05 g/cm3. We then perform a 1 ns NV T simulation

at T = 300 K. In this way we obtain n independent configurations all at T = 300 K

in the prefixed range of densities. Next, we use these independent configurations as

starting points for NPT simulations at T = 265 K and different pressures ranging

from 190 to 240 MPa, and continue the simulation for an additional 1 ns. This

results in n independent configurations at T = 265 K and the given pressure. For

all pressures considered here, this will lead the system into the HDL phase. Finally
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the system is quenched to the desired temperature at the given pressure, followed

by 100–200 ns of equilibration time. In Sec. 3.5 it will be shown that this provides

enough time for the system to reach equilibrium for the state points above the line

marked with the label Tg in Fig. 3.1.

3.4 Intermediate scattering function

The intermediate scattering function S(k, t) plays an essential role in the analysis

of liquid structure, since it is frequently measured in experiments as well as eas-

ily calculated from simulation data. It describes the time evolution of the spatial

correlation at the wave vector k, and can be used to distinguish between phases of

different structure, such as LDL and HDL or crystal. It is defined as

S(k, t) ≡ 1

N

〈
N∑
`,m

eik·[r`(t
′)−rm(t′+t)]

〉
t′

where 〈...〉t′ denotes averaging over simulation time t′, and r`(t
′) the position of par-

ticle ` at time t′. For simplicity we only apply the intermediate scattering function

to the oxygen atoms, which we denote as SOO(k, t).

Since the system has periodic boundary conditions, the components of k have dis-

crete values 2πn/L, where L is the length of the simulation box and n = 1, 2, 3, . . . .

We define SOO(k, t) ≡ 〈SOO(k, t)〉n where the average is taken over all vectors k

with magnitude k belonging to the nth spherical bin π(n− 1
2
)/L ≤ k < π(n+ 1

2
)/L

for n = 2, 3, . . . , 300. Similarly, we define the structure factor SOO(k) ≡ 〈SOO(k, t)〉t

as the time-averaged intermediate scattering function, with (unless indicated other-

wise) the average taken over the whole duration of the run.

We study SOO(k) above and below our estimate for the LLCP pressure. At

P = 210 MPa > PC (Fig. 3.4a,b) we observe a discontinuous change in the first
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Figure 3.4: The structure factor SOO(k) for a range of temperatures at (a) 210 MPa
and (c) 200 MPa for N = 729. (a) For P > PC the structure has a large change
between T = 245 and 246 K, corresponding to the LDL-HDL first-order phase
transition. (b) The value of SOO for k corresponding to the first maximum, the
first minimum and the second maximum as a function of T for P = 210 MPa as in
panel (a). (c) For P < PC the structure changes in a way that is smoother than
the case in panel (a), with the more evident change occurring between T = 249 and
250 K, corresponding to the crossing of the Widom line, as marked by the value of
SOO at first maxima and minima in panel (d).

two peaks of SOO(k) as T changes between 245 and 246 K, and a continuous change

above and below this temperatures. This is the expected behavior for a first order

phase transition occurring at 245 K. T . 246 K and P = 210 MPa between two

phases with different structure, consistent with our results in Fig. 3.1. The fact that

for both phases SOO(k) ∼ O(1) for all k shows that both phases are fluid. Indeed,
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for a crystal-like configuration, with a long-range order, there would be at least one

wave vector such that SOO(k) ∼ O(N) [57]. Furthermore, the fact that at lower T

the first peak increases and the other peaks only have minor changes indicates that

the lower-T liquid has a smaller density than the higher-T liquid. Therefore, this

result show a first-order phase transition between the LDL at lower-T and HDL at

higher-T . This transition occurs at the same temperature at which we observe the

phase flipping in density (Fig. 3.2) and corresponds to the yellow/green region at

P > PC in Fig. 3.1.

The fact that the peaks of SOO(k) are sharper in LDL than HDL is an indica-

tion that the LDL phase is more structured. We can also observe that the major

structural changes in SOO(k) between LDL and HDL are for k ' 1.8 and 2.8 Å−1,

corresponding to r = 4π/k ' 7 and 4.5 Å, respectively, i.e. the third and the second

neighbor water molecules. This change in the structure is consistent with a marked

shift inwards of the second shell of water with increased density, and almost no

change in the first shell (at k ' 4.6 Å−1 and r ' 2.75 Å), as seen in structural ex-

perimental data for supercooled heavy water interpreted with Reverse Monte Carlo

method [179]. These changes are visible also in the OO radial distribution function

gOO(r).

For P < PC (Fig. 3.4c,d) by increasing T we observe that the first peak of

SOO(k) merges with the second, transforming continuously into a shoulder (the

same qualitative behavior can be observed for gOO(r)). These quantities show us

also that the lower-T structure is LDL-like, while the higher-T structure is HDL-

like. However, the absence of any discontinuous change in the structure implies

the absence of a first-order phase transition in the structure of the liquid. This

is consistent with the occurrence of a LLCP at the end of the first-order phase

transition somewhere between 200 and 210 MPa, at a temperature between 245 and
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250 K. In Sec. 3.8 we shall apply a different method to locate the LLCP with more

precision.

At P < PC , in the one-phase region, we expect to find the Widom line ema-

nating from the LLCP. The Widom line is by definition the locus of maxima of the

correlation length, therefore, from general thermodynamic considerations [60] near

the LLCP, it must be also the locus of maxima of the response functions [106]. In

particular, it must be the locus where the isobaric heat capacity CP ≡ T (∂S/∂T )P ,

where S is the entropy of the system, has its maximum along a constant-P path.

This maximum occurs where the entropy variation with T is a maximum, and is

expected where the structural variation of the liquid is a maximum, i.e. where the

derivatives of the values of SOO(k) (Fig. 3.4d) and gOO(r) with T are at a maxi-

mum. The interval of temperatures for each P where this occurs corresponds to the

yellow/green region at P < PC in Fig. 3.1, indicated as the Widom line.

It is actually possible to follow the structural changes during the simulation. An

example is given in Fig. 3.5 where we focus on a 30 ns time period of a simulation

at 200 MPa and 248 K. We divide this time period into six 5 ns intervals and for

each interval we calculate the intermediate scattering function, time-averaged over

those 5 ns. We observe that the liquid is LDL-like for the first and third interval,

having low density and LDL-like SOO(k) (first peak near 2 Å−1, separated from

the second). On the contrary, for the fifth and sixth interval the density is high

and SOO(k) is HDL-like (the first peak is merely a shoulder of the second peak),

indicating that the liquid is HDL-like. For the second and fourth interval, the liquid

has an intermediate values of density and SOO(k), indicating that it is a mix of

LDL-like and HDL-like structures.
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Figure 3.5: As the density changes from ρ(LDL) to ρ(HDL), also the structure
changes. The inset shows how the density is changing with time for six consecutive
time intervals of 10 ns, with the corresponding SOO(k) shown in the main plot
(N = 343 at 200 MPa and 248 K).

3.5 Correlation time

Apart from its use in structure analysis, the intermediate scattering function SOO(k, t)

can also be used to define a correlation time τ , i.e. the time it takes for a system to

lose most of its memory about its initial configuration [190, 99].

In Fig. 3.6 we show how SOO(k, t) decays with time for a fixed value of k. Its

decay is characterized by two relaxation times, the α-relaxation time τα and the

β-relaxation time τβ. On very short time scales, the molecules do not move around

much and each molecule is essentially stuck in a cage formed by its neighbors. This

is represented by the β-relaxation time τβ which is on the order of picoseconds. On

longer time scales, the molecule can escape from its cage and diffuse away from its

initial position. The time τα is the relaxation time of this structural process.
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Figure 3.6: Decay of SOO(k, t) with time, for P = 210 MPa, T = 250 K andN = 343.
Symbols indicate FOO(ki, t) for three different values of k: the first maximum of
SOO(k) at k1 (red circles), the second maximum at k2 (blue squares), and the third
maximum k3 (green diamonds). Solid lines are fits according to Eq. (3.5). The
two components of Eq. (3.5) are explicitly shown for FOO(k3, t): the green dashed
line represents the β-relaxation and is given by [1 − A(k)] exp[−(t/τβ)2], the green
dotted line represents the α-relaxation and satisfies A(k) exp[−(t/τα)b]. The solid
green line going through FOO(k3, t) is the sum of both.

Mode-coupling theory of supercooled simple liquids predicts that [63]

FOO(k, t) ≡ SOO(k, t)/SOO(k, 0)

= [1− A(k)] e−(t/τβ)2 + A(k) e−(t/τα)b (3.5)

The factor A(k) is the Debye-Waller factor arising from the cage effect, which is

independent of the temperature and follows A(k) = exp(−a2k2/3) with a the radius

of the cage. We are able to fit Eq. (3.5) remarkably well to all our data, as for

example in Fig. 3.6.

Data in Fig. 3.6 was collected every 10 fs for simulations of 1 ns. This rate of
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sampling results in a large amounts of data and is unfeasible for our runs up to

1000 ns. Therefore, for the 1000 ns runs we collect data at 10 ps intervals. At this

rate of sampling it is no longer possible to estimate τβ or the cage size a, but it is

still possible to determine τα accurately, utilizing the fact that SOO(k, t) reaches a

plateau near t ≈ τβ. One can therefore define

COO(k, t) ≡ SOO(k, t)/SOO(k, τβ), (3.6)

which is S(k, t) normalized by its value at the plateau. A good estimate of τα is

then the time for which COO(k, τα) = 1/e ≈ 0.37.

From the shorter 1 ns runs (which were mostly done in the HDL regime) we find

that the cage radius is a = 0.35±0.09 Å with a stretching exponent of b = 0.63±0.09.

Both parameters a and b do not show a significant dependence on the state point

within the studied range of temperatures and pressures. As shown in Fig. 3.6,

different k result in slightly different values for τα. We use as the correlation time

τ the largest value of τα which is usually found at k = k1, the first maximum in

〈SOO(k)〉 (inset Fig. 3.6). As is to be expected, the correlation time does not seem

to depend on the box size. It does however depend strongly on the phase, which is

evident from Fig. 3.7.

At high temperatures the system is in the HDL phase, and has a correlation

time τ on the order of 10–100 ps. As we decrease the temperature at fixed pressure,

the value of τ has a large increase when we cross the phase transition line or the

Widom line, depending on if P is above or below PC , respectively. Apparently, the

LDL states evolve nearly four orders of magnitude slower than HDL states, with

correlation times in the nanosecond range.

If we lower the temperature further, the correlation time slowly increases until
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Figure 3.7: Arrhenius plot of the correlation time τ for different pressures. Errors
on our estimates are of the order of the discontinuities along the curves. At high
temperatures (the HDL regime) the correlation time is of the order of 10–100 ps,
which jumps several orders up as we pass the phase transition line and enter the
LDL regime. To obtain this plot, we dismissed the simulations that had a significant
increase in τ because of crystal growth (see Sec. 3.7).

the system becomes a glass rather than a liquid, and we are no longer able to fully

equilibrate the system. As we can only run simulations up to 1000 ns, we consider

the state points with a correlation time above 100 ns to be beyond our reach. We

therefore designate the effective glass transition temperature Tg as the temperature

for which τ > 100 ns (see Fig. 3.1).

3.6 Structural parameters

Apart from the intermediate scattering function, there are other ways to quantify

the structure of a liquid. In this section we shall examine several structural param-

eters, and determine which of those are the most effective in distinguishing between

LDL, HDL, and the crystal. Apart from considering several global parameters, we
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shall mainly focus on local parameters which can be used to analyze the local envi-

ronment of a molecule. In addition, we study here not only the parameters based

on the nearest neighbors, but also those based on the next-nearest neighbors (the

second coordination shell). Finally, we determine the best local parameter to use

for identifying tiny crystals in the liquid, an important result that will be used in

the next section.

The structural parameters are designed to distinguish between different phases

by analyzing the geometrical structure. This is typically done by evaluating the

spherical harmonics Y m
` (ϕ, ϑ) for a particular set of neighboring atoms, with ϕ and

ϑ the polar angles between each pair of oxygen atoms in that set. In this chapter

we consider two different sets: we define the first coordination shell n1(i) to be the

four nearest neighbors of molecule i, and define the second coordination shell n2(i)

as the fifth to sixteenth nearest neighbors (the sixteenth nearest neighbors minus

those in the first shell). For simplicity, we approximate the center of mass of a water

molecule with the center of its oxygen atom.

Different values of ` are sensitive to different symmetries. The spherical har-

monics with ` = 3, for example, are sensitive to a diamond structure. Those with

` = 6 are more sensitive to the hexagonal closest packing (hcp) structure. Since we

expect the liquid and crystal structures to be hcp, diamond, or a mix of these, we

focus primarily on ` = 3 and ` = 6.



66

3.6.1 Parameters q3 and q6

All parameters defined in this section are based on q
(s)
`,m(i) which quantifies the local

symmetry around molecule i. It is defined as

q
(s)
`,m(i) ≡ 1

Ns

∑
j∈ns(i)

Y m
` (ϕij, ϑij) − ` ≤ m ≤ ` (3.7)

where ` and m are integers, s = 1, 2 indicates the shell we are considering, and

with Ns the number of molecules within that shell (i.e. N1 ≡ 4 for the first co-

ordination shell, and N2 ≡ 12 for the second). Y m
` is normalized according to∫

|Y m
` |2 sin(ϑ)dϕdϑ = 1. We can consider q

(s)
`,m(i) as a vector q

(s)
` (i) in a (4` + 2)-

dimensional Euclidean space having components Re(q
(s)
`,m(i)) and Im(q

(s)
`,m(i)). This

means that we can define an inner product

q
(s)
` (i) · q(s)

` (j) ≡
∑̀
m=−`

[
Re(q

(s)
`,m(i)) Re(q

(s)
`,m(j)) + Im(q

(s)
`,m(i)) Im(q

(s)
`,m(j))

]
(3.8)

and a magnitude

q
(s)
` (i) ≡

√
q

(s)
` (i) · q(s)

` (i) (3.9)

The local parameter q
(s)
` (i) is one way to distinguish between different structures,

and can be used to label individual molecules as LDL-like or HDL-like. We can

convert it into a global parameter by averaging over all molecules,

q
(s)
` ≡

1

N

N∑
i=1

q
(s)
` (i) (3.10)
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where N is the total number of molecules. In Fig. 3.8 we see that all global q
(s)
`

are sensitive to the difference between LDL and HDL, especially q
(1)
3 and q

(2)
6 . We

conclude that the structural difference is visible in both the first and second shell,

and that LDL and HDL differ mostly in the amount of diamond structure of the

first shell and the amount of hcp structure in the second shell. This is confirmed by

the histograms in Fig. 3.9, in which the largest difference between LDL and HDL is

seen in q
(1)
3 and, next, in q

(2)
6 . The latter is the parameter that better discriminate

with respect to the crystal structure.

3.6.2 Global parameters Q3 and Q6

An alternative approach, as used by Steinhardt et al. [191], is to first average q
(s)
`,m(i)

over all molecules, defining Q`,m ≡
∑N

i=1 q
(s)
`,m(i), and then calculate the magnitude

Q
(s)
` ≡

1

N

( ∑̀
m=−`

Q`,mQ
∗
`,m

)1/2

. (3.11)

Our calculations show that the parameters Q
(s)
3 and Q

(s)
6 , with s = 1, 2, are not

efficient in discriminating between LDL and HDL (Fig. 3.8), although Q6 ≡ Q
(1)
6

has been proposed recently as a good parameter to this goal [110] and consequently

has been used by several authors [173, 112, 149]. In particular, we observe that there

is not much correlation between the fluctuations of Q
(s)
` and those of the density,

except for Q
(1)
3 .

However, we confirm that Q
(1)
6 and Q

(2)
6 are excellent parameter to distinguish

between the liquids (LDL and HDL) and the crystal, with the value of Q
(s)
6 approx-

imately 10 times larger for the crystal than it is for the liquids (Fig. 3.10). This

large increase of Q
(s)
6 for crystal-like structures might be related to the few instances
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Figure 3.8: Fluctuations of the density and the global structural parameters as
a function of time. The parameters are shown for one run using 343 molecules
at 200 MPa and 248 K, the same as in Fig. 3.5. Parameters q

(1)
3 , q

(2)
6 , and ψ

(1)
3

(defined in the text) are as sensitive as ρ to the difference between LDL-like and

HDL-like structures, while the others are more noisy, with Q
(2)
3 and ψ

(2)
3 being

much less sensitive than all the others. Q
(s)
6 and ψ

(s)
6 , for both s = 1 and 2, have

similar behaviors that might be related to the temporary appearance of crystal-like
structures.
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Figure 3.9: Histograms of q
(s)
` for ` = 3, 6 and coordination shells s = 1, 2 at

215 MPa with N = 343 molecules. The solid red (dark) curves correspond to HDL
structures, and the solid blue (light) curves to LDL structures. The dashed black
curve corresponds to the crystal structure found in run C described in Sec. 3.7. The
parameter q

(1)
3 (a) discriminates better between HDL and LDL structures, while the

parameter q
(2)
6 discriminates better between liquid-like and crystal-like structures.

Parameters in (b) and (c) are much less sensitive to structural changes.
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Figure 3.10: Histograms of Q
(s)
` for ` = 3, 6 and coordination shells s = 1, 2 at

215 MPa with N = 343 molecules. The symbols are as in Fig. 3.9. The parameter
Q

(s)
6 , for the first shell in (b) and the second in (d), shows a clear difference between

the liquid-like structures and the crystal-like structure, but not between the two
liquids. Note that scales on x-axis in panels (a) and (c) are one order of magnitude

smaller than those in panels (b) and (d). As a consequence, Q
(s)
3 , for the first shell

in (a) and the second in (c), is much less sensitive to structural changes than Q
(s)
6 .
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in Fig. 3.8 where an increase in Q
(s)
6 corresponds to a decrease of density (such as

within interval t = 230–237 ns), consistent with the observation that the crystal-like

structures have a density comparable to the LDL structure and smaller than the

HDL structure.

To confirm that LDL remains a liquid in the thermodynamic limit, we look at how

Q6 changes with the system size. For liquids Q6 scales like N−1/2 while for crystals

the value Q6 remains finite as N → ∞. We find that the probability distribution

functions of Q6N
1/2 for N = 216, 343, 512, and 729 overlap, which means that

Q6N
1/2 is independent of the system size, therefore Q6 ∼ N−1/2 (Fig. 3.11). We

conclude that the metastable LDL is not transforming into the stable crystal in

the thermodynamic limit. This implies that the LDL and the crystal phase are

separated by a free-energy barrier that is higher than kBT at the temperatures we

consider here, and that the system equilibrates to the stable (crystal) phase only on

a time scale that is infinite with respect to our simulation time (1000 ns), as occur

in experiments for metastable phases. Therefore, the LDL is a bona fide metastable

state. Our conclusion is consistent with recent calculations by other authors [173,

112, 149].

3.6.3 Bond parameters d3 and ψ3

We define the bond order parameter d
(s)
` similar to that defined by Ghiringhelli et al.

in Ref. [64], where the quantity d
(1)
3 (i, j) characterizes the bond between molecules i

and j, and is designed to distinguish between a fluid and a diamond structure. The

local parameter d
(s)
` (i, j) is defined as the cosine of the angle between the vectors
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Figure 3.11: Finite size scaling of parameter Q6 in the LDL phase (210 MPa, 243 K).
The probability distribution function of Q6N

1/2 is independent of the system size
N , which means LDL scales like a liquid in the thermodynamic limit: Q6 ∼ N−1/2.

q
(s)
` (i) and q

(s)
` (j):

d
(s)
` (i, j) ≡ q

(s)
` (i) · q(s)

` (j)∣∣∣q(s)
` (i)

∣∣∣ ∣∣∣q(s)
` (j)

∣∣∣ (3.12)

with the inner product and magnitude as defined in Eqs. (3.8) and (3.9).

A crystal with a perfect diamond structure has d
(1)
3 (i, j) = −1 for all bonds. For

a graphite crystal only the bonds within the same layer (three out of four) have

d
(1)
3 (i, j) = −1, while the bonds connecting atoms in different layers (one out of

four) have d
(1)
3 (i, j) = −1/9.

We find that the parameters d
(s)
` for ` = 3, 6 and s = 1, 2 do not distinguish

well between the two different liquid-like structures, but that d
(1)
3 and d

(s)
6 for both

s = 1 and 2 are suitable to discriminate between the crystal-like structure and the

liquids (Fig. 3.12). In particular, for the crystal, most molecules have d
(1)
3 < −0.87,



73

Figure 3.12: Histograms of d
(s)
` for ` = 3, 6 and coordination shells s = 1, 2 at

215 MPa with N = 343 molecules. The symbols are as in Fig. 3.9. Apart from d
(1)
3

in (a), these parameters do not distinguish well between the two different liquid-like

structures, but d
(1)
3 and d

(s)
6 for the first shell (b) and the second (d) are suitable

to distinguish between the crystal and the liquids. The parameter d
(2)
3 in (c) is

remarkably the same for the three structures.
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and we therefore consider a molecule to be part of a crystal if at least three out of

its four bonds with its nearest neighbors have d
(1)
3 < −0.87. This is the same cutoff

used by Ghiringhelli et al. in [64].

The global parameter associated with d
(s)
` (i, j) is defined as

ψ
(s)
` ≡

1

N

N∑
i=1

ψ
(s)
` (i) (3.13)

where

ψ
(s)
` (i) ≡ 1

4

4∑
j=1

d
(s)
` (i, j) (3.14)

is the average of d
(s)
` (i, j) over the first four nearest neighbors of the molecule i. We

observe that each ψ
(s)
` (i) has the same features of the corresponding d

(s)
` (i, j), with

ψ
(1)
3 (i) discriminating well between the crystal-like and the liquids-like structures

(Fig. 3.13). We observe that ψ
(1)
3 discriminates well between LDL-like and HDL-like

structures (Fig. 3.8), while ψ
(s)
6 for s = 1 and 2 might be able to emphasize the

temporary appearance of crystal-like structures, as noted for Q
(s)
6 .

In Fig. 3.14 we see that there is no significant difference between the low-T curves

at P = 240 MPa, 215 MPa (Fig. 3.13a) and 195 MPa, and no significant difference

between the high-T curves. We therefore conclude that at the Widom line the low

density liquid (at low T ) is LDL-like, and similarly that the high density liquid (at

high T ) is HDL-like.

From the figure we can also see that the difference between the LDL- and HDL-

structure decreases when we decrease P , indicating that far from the LLPT the

distinction between LDL-like and HDL-like disappears as is to be expected in the

one-phase region.
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Figure 3.13: Histograms of ψ
(s)
` for ` = 3, 6 and coordination shells s = 1, 2 at

215 MPa with N = 343 molecules. The symbols are as in Fig. 3.9. Each ψ
(s)
` (i) has

similar features as the corresponding d
(s)
` (i, j) in Fig. 3.12.
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Figure 3.14: Probability distribution function of ψ
(1)
3 for both P = 195 MPa and

240 MPa, with N = 343 molecules (see Fig. 3.13a for P = 215 MPa). At the
Widom line (195 MPa) the structure of the low-density liquid is similar to that
of LDL at 240 MPa, and the structure of the high-density liquid near the Widom
line is practically the same as HDL. This demonstrates that we the LDL-like and
HDL-like phases are indeed structurally similar to LDL and HDL. Furthermore, the
structural difference between the LDL-like and HDL-like phases becomes smaller as
we move away from the phase transition line to lower and lower pressures.

3.7 Growth and melting of crystal nuclei

In a small percentage of our simulations, the system was found to spontaneously

crystallize. These are interesting events because spontaneous crystallization of wa-

ter in molecular dynamics is extremely rare; only recently Matsumoto et al. were

the first to successfully simulate the freezing of water on a computer [119]. Crystal-

lization events in supercooled ST2 water are particularly important to study, as it

has been proposed that LDL is unstable with respect to crystallization [110, 111].

Following the discussion in Sec. 3.6, we define a crystal as a cluster of molecules

which has three out of four bonds with d
(1)
3 < −0.87 and belong to the first coordi-
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Figure 3.15: Density vs. time near the phase transition line at P = 205 MPa and
T = 246 K for several different configurations of N = 343 molecules. This state
point lies near the phase transition, and therefore phase flipping is seen to occur.
Runs C and F (partially) crystallize and, at that moment, cease to phase flip and
remain stable at a low density.

nation shell of each other. In this section we shall study the growth and melting of

these crystal nuclei, and estimate the critical nucleus size needed to overcome the

free energy barrier. The existence of this barrier allows us to conclude that LDL is

in fact a bona fide metastable state with respect to the crystal.

In Fig. 3.15 we show the density evolution for 11 different configurations, each

with 343 molecules and at 205 MPa and 246 K. Each of these runs started at a differ-

ent initial density (between 0.85 and 0.95 g/cm3) and was subsequently equilibrated

to the final temperature and pressure using the procedure described in Sec. 3.3.

Because this state point lies close to the LLPT, we see phase flipping in all of them.

However, the two configurations C and F display a sudden jump to a stable low den-

sity plateau. This is a hallmark of crystallization. We confirm this by calculating

the size of the largest crystal as a function of time (Fig. 3.16). During most runs the
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Figure 3.16: Evolution of crystal size with time for the same configurations as in
Fig. 3.15. The y-axis goes from 0 to 34, except for configurations C and F which go
up to 343. The system spontaneously crystallizes in both C and F, while the largest
crystals in the remaining configurations never reach a size larger than 30 molecules.

largest crystal continuously grows and shrinks, but never reaches a size larger than

30 molecules. On the other hand, configurations C and F show a jump in crystal

size exactly matching the jump in density. Run F ends up partially crystallized,

while for C we find that over 90% of the box is crystallized in a diamond structure

with a density of about 0.92 g/cm3 (Fig. 3.17).

The correlation time increases dramatically if crystals appear with a size com-

parable to the system size, as is evident from Fig. 3.18. The correlation functions

of C and F decay very slowly, leading to correlation times of 200–400 ns, while the

other configurations have a correlation time of less than 4 ns.

For spontaneous crystallization to occur, a sufficiently large crystal nucleus needs

to form within the liquid. According to classical nucleation theory, this nucleus

needs to reach a minimum size to prevent it from melting. We observed in many
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Figure 3.17: A snapshot (at t = 1000 ns) of the diamond cubic crystal produced by
run C of Figs. 3.15 and 3.16. Shown here are all N = 343 molecules, with a small
part still in the liquid state (bottom-left corner), and a crystal defect in the center.
Note that the defect only affects the position of the hydrogen atoms, and not that
of the oxygen.

Figure 3.18: The correlation time increases dramatically if crystals of a size com-
parable to the system size appear (i.e. runs C and F of Figs. 3.15 and 3.16). The
correlation time of two other runs (H and J) are slightly larger than average because
these runs spend more time in the LDL phase (see Fig. 3.15).
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Figure 3.19: Growth and melting of crystal nuclei. (a) The largest nucleus that
melted reached a size of 62 molecules during a simulation of 512 molecules at
210 MPa and 244 K. (b) The second-largest nucleus was 55 molecules during a sim-
ulation of 343 molecules at 210 MPa and 243 K. (c) A few runs lead to irreversible
crystallization (N = 216 at 195 MPa and 245 K). (d) Some crystal nuclei survive
for hundreds of nanoseconds (N = 343 at 195 MPa and 246 K) before disappearing.

simulations that a small nucleus grows and melts, and a few runs in which the

nucleus grows further or remains stable. Therefore, we can make an estimate of the

critical nucleus size.

The two largest crystals that formed and subsequently melted, both reached a

size of about 50–60 molecules (Fig. 3.19a and 3.19b). The smallest crystal that

formed and remained stable, had a size of about 50–80 molecules (Fig. 3.19c). We

therefore conclude that the critical nucleus size is approximately 70± 10 molecules.

A similar value of ' 85 molecules was found by Reinhardt and Doye [154] for ice

nucleation in the monatomic water model [131].

For a more accurate estimate it is necessary to run longer simulations, as the

crystal nuclei can survive for hundreds of nanoseconds (e.g., Fig. 3.19d in which a

small crystal lasts for 700 ns).
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3.8 Location of the critical point

In Sec. 3.4 we used the intermediate scattering function SOO(k) to estimate the

position of the liquid-liquid critical point, and found it to lie near 200–210 MPa and

244–247 K. It is commonly believed that the LLCP falls in the same universality

class as the three-dimensional Ising model [113]. At the critical point the order

parameter distribution function (OPDF) of a system has the same bimodal shape

as all other systems that belong to the same universality class. Therefore one can

locate the LLCP accurately by fitting our data to the OPDF of the 3D Ising model,

as was done in [96]. Based on our fit, we locate the LLCP to be at PC = 206±3 MPa

and TC = 246± 1 K.

To establish that the LLPT does not vanish in the thermodynamic limit N →∞,

we consider the finite-size scaling of the Challa-Landau-Binder parameter [36, 54,

50, 53, 201, 202]. Near the critical point the density distribution function D(ρ) has

a bimodal shape that can be approximated by the superposition of two Gaussians.

The Challa-Landau-Binder parameter Π is a measure of the bimodality of D(ρ) and

is defined as

Π ≡ 1− 〈ρ4〉
3〈ρ2〉2

(3.15)

When there is only one phase, D(ρ) is unimodal and Π = 2/3. But in a two-

phase region, with two phases that have different densities, the shape of D(ρ) is

bimodal (Fig. 3.20) and Π < 2/3. For a finite system D(ρ) is always bimodal at

both the Widom line and the LLPT, but in the thermodynamic limit there exists

only one phase at the Widom line, while there remain two at the phase transition

line. Therefore, Π → 2/3 at the Widom line, while Π < 2/3 at the LLPT even
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Figure 3.20: 2D histogram of the density and the total energy for a system at
247.5 K and 200 MPa (on the Widom line), obtained via histogram reweighting.
The histogram of the energy (curve a) seems to indicate that the system is mostly
in the LDL state, while the histogram of the density (curve b) indicates the HDL
state is more predominant. For liquids the order parameter M ≡ ρ + sE is ac-
tually a linear combination of the density ρ and the energy E (curve c), with
s = 0.0362 (g/cm3)/(kJ/mol). By fitting the OPDF (curve c) to the critical OPDF
of the 3D Ising model, it is possible to accurately locate the critical point [96].

in the limit N → ∞. Hence, the finite-size scaling of Π allows us to distinguish

whether an isobar crosses the LLPT or the Widom line, and is yet another method

of estimating the location of the critical point.

We study Π versus temperature T and system size N for different pressures,

finding minima Πmin at a specific temperature for each pressure (Fig. 3.21). The

finite-size dependence of Πmin(P ) reveals if P < PC or P > PC (Fig. 3.22).

For P < PC the minimum Πmin approaches 2/3 linearly with 1/N , while for
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Figure 3.21: The Challa-Landau-Binder parameter Π as a function of temperature
and system size N , for four different pressures. For finite system sizes Π shows a
minimum at the LLPT and the Widom line, while Π ≈ 2/3 (thin dashed line) at
temperatures where D(ρ) is given by a single Gaussian. The finite-size scaling of the
minimum of Π, indicates that the critical point exists in the thermodynamic limit
(Fig. 3.22).

P ≤ PC it approaches the limit [36]

Πmin →
2

3
− 1

3

(ρ2
H − ρ2

L)2

(ρ2
H + ρ2

L)2.
(3.16)

This limiting value is also approached linearly with 1/N . Here ρH ≡ ρH(P ) and

ρL ≡ ρL(P ) are the densities of the two phases LDL and HDL [50]. Above the

critical pressure the limiting value of Πmin decreases as P increases, i.e. the two

peaks of the bimodal D(ρ) move further apart. This happens because ρH − ρL

increases at coexistence as (P − PC)β where β ≈ 0.3 is the critical exponent of the

3D Ising universality class [76, 77].

From this analysis (Fig. 3.22) we conclude that our results agree with theory
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Figure 3.22: Minima of the Challa-Landau-Binder parameter Π as a function of
system size N for different pressures. The minimum Πmin occurs at the pressures
and temperatures of the LLPT and the Widom line, and is always less than 2/3
for a finite system because of the bimodality of the density histogram. As N →∞
the bimodality disappears in the one-phase region but remains at the LLPT, and
therefore Πmin → 2/3 at the Widom line while Πmin < 2/3 on the LLPT, even
in the thermodynamic limit. We conclude that the critical point survives in the
thermodynamic limit, and that it is located between P = 200 and 210 MPa (in
agreement with the results found in Secs. 3.2 and 3.4).

and that the critical pressure PC ≈ 190–210 MPa, in agreement with the estimate

of Sec. 3.8. Furthermore, as Π remains less than 2/3 for P > PC even in the limit

N →∞, we conclude that the LLPT does not vanish in the thermodynamic limit.

3.9 Conclusion

We performed molecular dynamic simulations in the NPT ensemble for ST2-RF

water in the supercooled region of the phase diagram for different system sizes with

simulation times of up to 1000 ns. Using several different techniques we confirmed

the existence of two liquid phases, LDL and HDL, separated by a liquid-liquid phase

transition line. Near the LLPT line the system continuously flips between the two
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phases. Because of finite-size effects this phenomenon also occurs near the Widom

line, but by fitting the order parameter distribution function to that of the 3D Ising

model we were able to accurately determine the location of the liquid-liquid critical

point (at TC = 246 ± 1 K, PC = 208 ± 3 MPa). These results agrees exactly with

(TC = 246 K, PC ≈ 188 MPa) as found by Poole et al. [151], with the discrepancy

in pressure attributed to the LJ pressure correction of ' −20 MPa (see Sec. 3.3).

Finite size scaling of the Challa-Landau-Binder parameter indicates that the critical

point does not disappear in the thermodynamic limit.

Both phases have been confirmed to be bona fide metastable liquids that differ

substantially in structural as well as dynamical properties. It is found that the LDL

phase is a more “structured” liquid, and that it has a correlation time of almost

four orders of magnitude larger than that of HDL, with LDL correlation time of

the order of 100–1000 ns. We show that Q6 structural parameter is not able to

discriminate between HDL and LDL, but can discriminate well between liquids and

crystal. Finite size scaling of the Q6 parameter confirms that LDL scales as a liquid

and not as a crystal.

The different structures of LDL and HDL are better discriminated by structural

parameters like q
(1)
3 and q

(2)
6 . These parameters show that LDL and HDL differ

mostly in the amount of diamond structure of the first shell and the amount of hcp

structure in the second shell.

For small box sizes (N = 343) there were a few simulation runs that resulted

in spontaneous crystallization, always within the LDL region of the phase diagram.

Further analysis revealed that during all simulations small crystals grow and melt

within the liquid, a clear indication that LDL is metastable with respect to the

crystal. From the few crystallization events that occurred, we were able to conclude

that the critical nucleus size is approximately 70± 10 molecules.
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CHAPTER 4: Search for the liquid-liquid transition in models of silica

We have found it of paramount importance that in order to progress,

we must recognize our ignorance and leave room for doubt. Scientific

knowledge is a body of statements of varying degrees of certainty—some

most unsure, some nearly sure, but none absolutely certain.

– Richard. P. Feynman, in The Value of Science

4.1 Introduction

Previous research has indicated the possible existence of a liquid-liquid critical point

(LLCP) in liquid silica [160]. As this point is located near or even below the glass

transition, molecular dynamics simulations have thus far failed to accurately locate

and characterize it. In this chapter we look at two different silica models, the BKS

model (considered to be one of the most accurate descriptions of experimental silica

currently available) and the WAC model (believed to have a LLCP that is more

accessible), and perform a more detailed analysis of the phase diagram at lower

temperatures than was simulated before.

Liquid SiO2 is the archetypal glassformer, and the extreme “strong” member of

the “strong-fragile” liquid spectrum (see Fig. 1.2). Silica is to geochemistry what

water is to biochemistry [9]. Furthermore, like water, it is complex and incompletely

understood. The glass transition of tetrahedral systems like water and silica are

very different from “normal” glassforming liquids (Fig. 4.1). Both substances are

characterized by a heat capacity behavior quite atypical of normal glassformers,

namely a tiny increase at Tg and an increasing value as T increases above Tg [175,

8]. This is in contrast with the normal large increase at Tg, and decrease as T rises
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above it for molecular liquids. Therefore the strong liquid behavior of silica might

be a consequence of the same factors that lead water itself to behave as a “strong”

liquid near its glass transition temperature. Since some theories predict a liquid-

liquid critical point (LLCP) in water, it makes sense to investigate the possibility

of a LLCP in liquid silica.

Figure 4.1: Even though the fragility of a glass-forming liquid is usually defined via
its dynamic properties (see Fig. 1.2), the behavior of the heat capacity (a thermo-
dynamic quantity) is also different for fragile and strong glass-formers. (a) Fragile
liquids such as molecular liquids and metallic glass-formers show a sharp drop in the
excess heat capacity ∆CP , which is related to a first-order transition in the excess
entropy S. (b) For tetrahedral liquids (such as water, Si, and Ge) this transition in
entropy is no longer a first-order transition. It is still quite abrupt, however: the
heat capacity shows a large maximum separating a region with strong behavior (low
T ) from a region with fragile behavior (high T ). (c) This transition is even more
gradual for liquids such as SiO2 and BeF2 (figure taken from [8]).
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4.2 Models of liquid silica

There are several models for silica. One of the simplest models is the WAC model

introduced by L. V. Woodcock, C. A. Angell, and P. Cheeseman [218]. The model

is sometimes also known as the Transferrable Ion Model (TRIM), as its potential

is quite general and can also be used to model other ionic liquids [70]. In the WAC

model, the material simply consists of a 1:2 mixture of Si+4 and O−2 ions, without

any explicit bonds. Apart from the electrostatic force, the ions also interact with

each other via an exponential term, which is the repulsive part of the Buckingham

potential (representing the interpenetration of the closed electron shells [28]):

UWAC(rij) ≡
1

4πε0

zizje
2

rij
+ aij

(
1 +

zi
ni

+
zj
nj

)
exp [Bij(σi + σj − rij)] (4.1)

Here the subscripts i, j ∈ Si,O indicate the species of the two ions involved, zi the

charge of each ion (zSi = +4, zO = −2), nSi = nO = 8 the number of outer shell

electrons, and σi the size of each ion (σSi = 0.1310 nm, σO = 0.1420 nm). For WAC

silica the parameters aij and bij are the same for all pairs: aij = 0.19× 10−19 J/ion

≈ 11.44 kJ/mol and Bij = 34.48 nm−1 [70]. The potential can also be written as

UWAC(rij) =
1

4πε0

qiqj
rij

+ Aij exp(−Bijrij) (4.2)

with ASiSi = 1.917 991 469 × 105 kJ/mol, ASiO = 1.751 644 217 × 105 kJ/mol, and

AOO = 1.023 823 519× 105 kJ/mol.

The second model that we consider in this chapter is BKS. Currently one of the

most popular models, the BKS model was introduced by B. W. H. van Beest, G.

J. Kramer, and R. A. van Santen [17], and is very similar to WAC. Again, silica

is modeled as a simple 1:2 mixture of Si- and O-ions, and with no explicit bonds.
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To produce results that better match experiments and ab initio simulations, and to

be able to effectively represent screening effects, the charges in BKS are not integer

values of e but are instead given by qSi = +2.4e and qO = −1.2e. Apart from the

charges having different values, the BKS potential also differs from WAC because it

includes the attractive r−6 term of the Buckingham potential:

UBKS(rij) ≡
1

4πε0

qiqj
rij

+ Aij exp(−Bijrij)− Cijr−6
ij (4.3)

There is no Buckingham interaction between two Si-ions (only electrostatic), i.e.

ASiSi = BSiSi = CSiSi = 0. The parameters for the Si-O pair areASiO ≡ 18 003.7572 eV,

BSiO ≡ 4.87318 Å−1, and CSiO ≡ 133.5381 eV Å6. For the O-O interaction, the num-

bers are AOO ≡ 1388.7730 eV, BOO ≡ 2.76 Å−1, and COO ≡ 175 eV Å6.

Although the BKS model has been quite successful in simulations of quartz and

amorphous silica, at temperatures above ∼ 5000K two ions can come very close,

causing problems. As r → ∞ the BKS potential diverges to −∞ and the two ions

fuse together—a non-physical phenomenon that is an artifact of the model. One

way to solve this issue is by including an additional repulsive term at very small

r, e.g., by adding a r−30 term [160]. When such a large power is used, however,

a small time step is required to prevent large forces, which leads to much slower

simulations. Because of this, we instead adjust the BKS potential at small r by

adding a second-degree polynomial for r ≤ rs. Here rs is the point at which the

original BKS force has an inflection, i.e., where d2FBKS/dr
2 = −d3UBKS/dr

3 = 0.

We choose the coefficients of the polynomial such that the new potential U(r) has no

inflection at r = rs. Adding the polynomial still leads to U(r)→ −∞ when r → 0,

but increases the height of the energy barrier sufficiently to allow us to simulate the

high temperatures we wish to explore. Choosing a short-range correction to BKS
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Si-O O-O units
aij 2.678 430 850×105 9.208 901 230×104 kJ/mol nm2

bij −7.343 377 221×104 −4.873 373 066×104 kJ/mol nm
cij 2.353 960 789×103 7.337 042 047×103 kJ/mol
Aij 1.737 098 076×106 1.339 961 920×105 kJ/mol
Bij 48.7318 27.6 nm−1

Cij 1.288 446 484×10−2 1.688 492 907×10−2 nm6 kJ/mol
Uc,ij −0.465 464 470 −0.575 753 031 kJ/mol
rs 0.139 018 528 0.195 499 453 nm
rc 0.55 0.55 nm

Table 4.1: Parameters of the modified BKS potential of Eq. (4.4). Because Si-Si
only has the (repulsive) Coulomb interaction, all parameters are zero for Si-Si. One
mol here indicates one mol of ions, not one mol of SiO2 molecules.

has been found to have little effect on the simulation results, and merely prevents

the ions from fusing.

To further speed up the simulations, we modify the BKS potential as described

by K. Vollmayr, W. Kob, and K. Binder in Ref. [212], and truncate and shift the

potential at rc = 0.55 nm. Although this truncation leads to a shift in pressure, it

otherwise produces approximately the same results [212]. In conclusion, the modified

BKS potential we use is given by

U ′BKS(rij) =
1

4πε0

qiqj
rij

+


aijr

2
ij + bijrij + cij − 1

4πε0

qiqj
rij

(rij < rs)

Aij exp(−Bijrij)− Cijr−6
ij − Uc,ij (rs < rij < rc)

0 (rij > rc),

(4.4)

with the parameter values for ij = SiO and ij = OO listed in Table 4.1. For the

Si-Si interaction the potential is U ′BKS(rSiSi) = 1
4πε0

q2
Si/rij and does not involve any

cutoffs, apart from the real-space cutoff of the Ewald sum.

All simulations are done using Gromacs 4.6.1 [74], with N = 1500 ions, using the
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Ewald sum (PME) for electrostatics, and the v-rescale thermostat [32] to keep the

temperature constant. Most simulations are done in the constant-volume/constant-

temperature (NV T ) ensemble. For the few constant-pressure (NPT ) simulations

we use the Parrinello-Rahman barostat. For most of the simulations we use a time

step of 1 fs, but at very low temperatures we increase the time step to 4 fs to speed

up the simulations to approximately 250 ns/day using 16 threads on a machine with

four 12-core AMD Opteron 2.4 GHz CPUs. We carefully check the temperatures

below which the 4 fs time step gives the same results as the 1 fs time step and do

not include any 4 fs data that lead to noticeable differences in pressure, energy, or

diffusion.

As a measure of the equilibration time, we define τ as the time at which
√
〈rO(t)2〉 =

0.56 nm, i.e., the average time it requires for an O ion to move twice its diameter

of 0.28 nm. Most simulations run for over 10 τ , well beyond the time necessary

for the system to reach equilibrium. For the range of temperatures and pressures

considered here, the root mean squared displacement of the O ion is roughly 1.1–1.6

times that of the Si ion, this factor being the largest at low temperatures and low

pressures.

An important structural feature is the coordination number of Si by O, since a

tetrahedral network is defined by 4-coordination of the network centers. We calcu-

late the Si coordination number by the usual method, integrating the Si-O radial

distribution function up to the first minimum. For both models, and at all state

points considered here (below 10 GPa), the coordination number lies between 4.0

and 4.9. The coordination number is the largest at high densities, and levels off to

4 when the density is decreased and the pressure becomes zero or negative.
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4.3 Isochores of BKS and WAC silica

The most direct method of locating a critical point is to calculate the pressure P

as a function of temperature T along different isochores. For fixed particle number

N , constant volume V is also constant density. In a PT -diagram the isochores

cross within the coexistence region and at the critical point. At those state points

(at a given P and T ) the system is a combination of two different phases with

different densities. One can also locate a critical point by plotting the isotherms in

a PV -diagram in order to determine the region in which the slope of the isotherms

becomes zero (critical point) or negative (coexistence region). Because it is easier to

determine whether two lines are crossing than whether a curve is flat, we study the

isochores. Figure 4.2 shows the PT -diagrams with the isochores of BKS and WAC.

Both diagrams are qualitatively similar. There is a clear density anomaly to the

left of the temperature of maximum density (TMD), and if we shift the temperature

scale for BKS by approximately +4000 K, then the BKS isochores match those of

WAC reasonably well. At very low P and high T the liquid phase is bounded by

the liquid-gas (or liquid-vacuum) spinodal, and lowering P below the spinodal leads

to spontaneous bubble formation. At very low T the diffusion coefficient drops

rapidly and the liquid becomes a glass. Because the time it takes to equilibrate

the system is inversely proportional to the rate of diffusion, simulations require too

much time once the oxygen diffusion DO drops below ∼ 10−8 cm2/s, which is where

the isochores stop in Fig. 4.2. For both models this limit is reached at a higher

temperature for low P than for high P . This is caused by the diffusion anomaly (an

increase in P leads to an increase in diffusion), which is present in both BKS and

WAC models.

No crystallization was observed, unless the pressure was raised to values far
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Figure 4.2: Isochores of liquid BKS silica (panel a) and liquid WAC silica (panel
b). Thin black/brown lines are the isochores, the temperature of maximum density
(TMD) is indicated by a thick black line, and green diamonds indicate part of the
liquid-vacuum spinodal. Blue question marks indicate the approximate locations
where a LLCP has been predicted by previous studies [160, 10]. The location of
a LLCP can be identified by where the isochores cross. It seems a LLCP in BKS
is unlikely, as the isochores do not approach each other. The isochores in WAC
do approach each other, and might converge at the predicted point. However, at
low temperatures the isochores near 2.3 g/cm3 obtain a negative curvature. If this
curvature becomes more negative as T goes down, then it is possible that the iso-
chores will not cross below 3500 K. We conclude that for the temperatures currently
accessible, the isochores alone are insufficient to demonstrate a LLCP in WAC.
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outside the range of our detailed studies (e.g., above 40 GPa the WAC liquid spon-

taneously crystallizes into an 8-coordinated crystal). Normally, crystallization is

readily detected by a rapid drift of the energy to lower values. However, when the

diffusivity is very low (as in the present system, in the domain of greatest interest)

the situation is different and crystal growth can be unobservably slow. More direct

tests are then needed. In the present case we have sought information on crystal

growth and melting by creating a crystal front (half simulation box of the liquid

interfacing with half box of the topologically closest crystal) and have watched the

crystal front receding at high temperature. However, the attempt to determine

melting point by lowering the temperature and observing reversal of the interface

motion, was unsuccessful because the growth rate became unobservably small (ob-

served over microseconds) before any reversal was seen. We conclude that, since this

crystal front was put in by hand, the possibility of crystallization by spontaneous

nucleation (always the slowest step) followed by crystal growth, is undetectably

small.

Based on the fitting and extrapolation of data, previous studies have predicted a

liquid-liquid critical point (LLCP) in both WAC and BKS [160]. With the increase

in computing power, and using the techniques to speed up the simulations discussed

in Sec. 4.2, we are able to obtain data at lower temperatures than was previously

possible. Our results for BKS (Fig. 4.2a) show that for T > 2500 K the isochores

are nearly parallel, and therefore a LLCP in BKS is very unlikely. On the other

hand, the isochores of the WAC model (Fig. 4.2b) show a more interesting behavior

in that they clearly approach one another at low T in the vicinity of P ≈ 5 GPa.

If we only consider the WAC isochores above 4000 K, then extrapolation would

predict that the isochores cross around 3500 K and 5 GPa. However, below 4000 K

we see that the isochores are starting to display a negative curvature in the PT -
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plane. This signals an approach to a density minimum, which is the low-T boundary

of the density anomaly region. The negative curvature makes it hard to perform an

extrapolation that convincingly shows that the isochores cross at lower T . We can

therefore only conclude that (for the temperatures currently accessible) the behavior

of the isochores is insufficient to prove or disprove the existence of a LLCP in WAC.

4.4 Response functions of BKS and WAC silica

Upon approaching a critical point, the response functions diverge. Although true di-

vergence occurs only in the thermodynamic limit N →∞, a large maximum should

still be visible in response functions such as the isothermal compressibility KT and

the isobaric heat capacity CP even when the box size is relatively small. Calcula-

tions using the Ising model and finite size scaling techniques applied to simulation

results have shown that (for sufficiently large boxes) the location of the critical point

is very close to where both KT and CP reach their global maximum [97, 106]. If a

LLCP truly exists in WAC, then the PT -diagrams of CP and KT should show a

large CP maximum close to where KT has a maximum—exactly where the isochores

come together and where the LLCP has been predicted to be.

In order to construct isobaric response functions from a large set of constant-

volume (NV T ) data, some type of fit or interpolation is needed. For example,

to calculate CP = (∂H/∂T )P we consider the enthalpy H as a function of both

P and T and fit the data [P, T,H] with a smooth 3-dimensional surface H(P, T ).

Abrupt changes in H(P, T ) lead to large spikes in its derivative ∂H/∂T , and thus

the H(P, T ) surface must be smooth if we are to obtain a meaningful CP . Fitting

a surface rather than a curve has the additional advantage that more data is taken

into account, resulting in better statistics. An alternative approach is to calculate
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CP via fluctuations in H, but it has been shown [106] that first fitting H(T ) and

then taking a derivative leads to cleaner results. It is of course easier to calculate

CP by doing constant-pressure (NPT ) simulations instead, but then one would have

the same problem with calculating CV . We conclude that we can easily calculate all

response functions if we apply a smooth surface fit f(x, y) to a set of 3-dimensional

points zk(xk, yk).

Fitting a surface to a set of points means striking a balance between the “smooth-

ness” of the fit and the fitting error induced. One measure of smoothness is the

Laplacian ∇2f , since a small Laplacian means little change in the slope of f(x, y),

and thus a smoother function. Hence, to obtain a smooth surface fit f(x, y) through

the data points zk(xk, yk) with k = 1, 2, . . . , N , we minimize

J =
N∑
k=1

wk [f(xk, yk)− zk]2 +

∫∫ ∣∣∇2f(x, y)
∣∣2 dx dy. (4.5)

The weights wk provide the balance between the smoothness and the fitting error.

If we set wk too low, we obtain a very smooth fitting function f(x, y) that poorly

represents the data. If we set wk too high, the function f(x, y) will go through

all the data points but will show large variations. Because large variations in the

surface lead to even larger variations in the derivatives, the H(P, T ) surface must

be very smooth when we calculate the CP . Fortunately, introducing small fitting

errors does not cause problems, because the simulation data already suffers from

small statistical errors. If the underlying response function is in fact smooth, then

it is possible to use the fitting errors to partially cancel the statistical errors.

Minimization of the functional J in Eq. 4.5 is not a new concept. For example,

the csaps function in MATLAB applies a similar minimization scheme to calculate

a cubic smoothing spline. As opposed to this MATLAB function, we do not impose
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the constraint that f(x, y) is a tensor product spline, but instead represent f(x, y)

by a set of 100 × 100 points (xi, yj, fij) placed on a regular grid (xi, yj). Bilinear

interpolation is used to estimate the value of f(x, y) between these grid points, and

the derivatives and the Laplacian are calculated using finite (central) differences.

To compensate for the reduced number of data points near the edges of the domain,

we recommend that higher-order differences near the edges be used.

Figure 4.3 shows four response functions for WAC: (a) the isothermal compress-

ibility KT , (b) the isobaric heat capacity CP , (c) the isobaric thermal expansivity

αP , and (d) the isochoric heat capacity CV . These have been obtained using NV T

simulations together with the smooth surface technique described above. To check

the results generated by this technique, we determine whether the response func-

tions satisfy the thermodynamic relation V Tα2
P/KT + CV − CP = 0. Because of

statistical errors in the data we find slight deviations from zero, but these are less

than 1 J/(mol K) in magnitude.

The compressibility KT in Fig. 4.3a shows a clear global maximum near P ≈

5 GPa and T ≈ 4000 K, because this is where the isochores in Fig. 4.2b are the closest

together in terms of pressure. It is quite likely that below 4000 K this maximum

increases further. If WAC has a LLCP then CP should also have a maximum in that

vicinity. However, Fig. 4.3b shows that this is not the case. There is clear global

CP maximum, but it is located near P ≈ 1 GPa and T ≈ 6000 K, which is far from

the global KT maximum. Therefore, based on the response functions, we conclude

that WAC does not have a LLCP.

The isobaric thermal expansivity αP (Fig. 4.3c) has a global minimum between

the global maxima of CP and KT (Figs. 4.3a,b). This should come as no surprise,

since CP ∝ 〈(∆S)2〉 arises from fluctuations in entropy and KT ∝ 〈(∆V )2〉 from

volume fluctuations, while the expansivity αP ∝ 〈∆S∆V 〉 arises from a combination
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Response functions of WAC model

a) b)

c) d)

Figure 4.3: Response functions of WAC, from Ref. [105]. (a) The isothermal com-
pressibility KT is consistent with a LLCP near 5 GPa, 4000 K because near that
point KT has a global maximum. (b) The isobaric heat capacity CP , however, has a
global maximum around 1 GPa and 6000 K, far away from where KT has its global
maximum. This is inconsistent with the LLCP hypothesis. (c) The isobaric thermal
expansivity αP has its global minimum in between the global maxima of KT and
CP . The contour line where αP = 0 corresponds to the location of the TMD. (d)
The isochoric heat capacity CV has its global maximum the furthest away from the
global KT maximum.
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of both. Even though the global maxima occur at different places, the slopes dP/dT

of the loci of local maxima are the same, so it seems likely they have a common origin.

Because the system is not quite critical, the enthalpy fluctuations that determine

the heat capacity can be statistically independent of the density fluctuations.

The variation of the heat capacity with temperature at constant pressure is

shown over the temperature range in which the system remains in equilibrium, in

Fig. 4.4. Figure 4.4b is basically a series of cross-sections of Fig. 4.3b. We note first

that at moderately high pressures, 8 GPa, there is no difference between the WAC

and BKS models. In each case the heat capacity reaches about 35 J/(K mol) before

the diffusion becomes too slow that we can no longer equilibrate. This is 1.4 times

the vibrational heat capacity of 3R ≈ 25 J/(K mol), as is typical of moderately

fragile inorganic liquids (e.g. anorthite, ZnCl2) right before ergodicity is broken

[6, 71]. However, at pressures between zero and 5 GPa, a major difference is seen

between the models.

Near the TMD we have CP ≈ CV (because the expansivity is very small) so we

can compare data with CV from Scheidler et al. [169] for the case of BKS at P = 0.

The agreement is quantitative, up to the point where the earlier study was cut off.

Our data confirms the existence of a peak in the equilibrium heat capacity—an

unusual behavior that was not presented in Ref. [169] but had been noted in the

earlier study of Saika-Voivod et al. [159] and was emphasized in Ref. [10].

Although BKS is far from having a critical point, the existence of this CV max-

imum reveals the tendency of this system—which accords well with many aspects

of experimental silica—to develop the same anomalous entropy fluctuations, and an

analog of the Widom line made famous by water models.

For the WAC model (which approaches criticality much more closely than BKS

does, as we have already seen in Fig. 4.2), this heat capacity peak becomes much
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Figure 4.4: Comparison of the heat capacities of BKS (panel a) and WAC (panel
b), obtained by calculating the smoothing spline of H(T ) at constant P , followed
by taking its derivative (a slightly different method than was used in Fig. 4.3b). At
8 GPa there is no significant difference between the WAC and BKS models, but
below 5 GPa WAC has a large maximum in the range 5000–8000 K (also clearly
visible in Fig. 4.3b). In panel b we have included CV data of Scheidler et al. [169]
(red diamonds), which shows a maximum around 4500 K. Near the TMD (around
5000 K for P = 0) the expansivity is small, which means that CV ≈ CP , in agreement
with our results. For BKS this maximum is less clear in CP , though still visible.
Because of small fluctuations in the data, it is difficult to obtain a fit of H(T )
that produces a perfect estimate of CP = dH/dT , leading to artificial oscillations
in CP . A larger data set would reduce this artifact. In addition, the smoothing
spline method assumes zero curvature at the end-points of the data, and this leads
to artifacts at very low T and very high T . For clarity, we have removed the parts
of the curves below the temperature at which CP starts to bend toward a constant
a CP value.

more prominent, reminiscent of the behavior of the Jagla model near its critical

point. CP reaches a value almost twice that of the vibrational component; behavior

unseen in any previous inorganic system except for BeF2 which is a WAC silica

analog [71].

4.5 Tetrahedrality and bond angle stiffness

We find no LLCP in either model within the accessible temperature range, although

it is closely approached in the case of the WAC potential near 4000 K and 5 GPa.
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The isochores of BKS, which are the most direct indicators of criticality in a physical

system, fail to converge into a critical point. In the case of WAC we cannot conclude

anything from the isochores, but an analysis of the global extrema of the response

functions indicates that there is no LLCP in WAC because the global CP maximum

and the global KT maximum are significantly separated in the PT -plane.

Liquid silica forms a tetrahedral network of bonds, and below we will show that

the lack of a LLCP is related to the openness of this network structure, which in

turn is related to the stiffness of the inter-tetrahedral bond angles. In addition we

will argue that criticality in WAC could be achieved with an adaptation of the pair

potential.

The occurrence of a LLCP requires two competing liquid structures that can be

in a (meta-stable) equilibrium with each other. In the case of a tetrahedral network-

forming liquid the two relevant structures are usually: (i) a high-density collapsed

structure that is highly diffusive, and (ii) a low-density open network structure that

is more rigid, i.e., one that is still a liquid but less diffusive and more structured.

Because the high-density structure occupies a smaller volume but has higher entropy

(more disorder), the competition between these two structures is accompanied by a

region with a density anomaly: αP ∝ 〈∆S∆V 〉 < 0.

The high-density structure is very stable and is the dominant structure at high

temperatures, but the low-density structure requires a more delicate balance of forces

in order to be stable. If the bonds in the liquid are too flexible, the liquid collapses

into the high-density structure. On the other hand, if the bonds are too rigid the

liquid can no longer flow and becomes a glass.

There are several studies that address this situation. The 2006 study of Mo-

linero et al. [132] shows how reducing the three-body repulsion parameter λ in the

Stillinger-Weber potential [196] (which controls the bond angle stiffness) causes the
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first order liquid-liquid phase transition of silicon (λ = 21) to disappear at P = 0

when λ < 20.25 (see Fig. 4.5). This transition occurs between a low-density liquid

and a high-density liquid, where both liquids are metastable with respect to the

diamond cubic (dc) crystal. Crystallization to the dc crystal always occurs from

the low-density liquid. When λ > 21.5 crystallization happens so fast that it is

no longer possible to accurately determine the temperature TLL at which the phase

transition occurs for P = 0.

Simulations of the Stillinger-Weber model indicate that the LLCP for λ = 21

is located at −0.60 GPa and 1120 K [208]. Since each value of λ defines a unique

system with a unique critical pressure, the vanishing of the liquid-liquid transition

at λ < 20.25 implies that this is the λ value for which the LLCP is at P = 0.

Isochore-crossing studies conducted elsewhere [89] show that this is indeed the case,

with Tc ≈ 700 K for Pc = 0. It is clear that decreasing λ means decreasing the

tetrahedrality and increasing density. When λ < 20.25 the LLCP shifts to positive

pressures, and therefore the phase transition line can no longer be seen in Fig. 4.5,

as it only considers P = 0. We thus lack the information to determine exactly for

which λ there is no LLCP at any pressure, but it is certain that this happens at

some value λ > 0, since in the most extreme case of λ = 0 we are left with a simple

Lennard-Jones-like model that has no LLCP.

That weakening the tetrahedrality (i.e., making the tetrahedral bonds more flex-

ible) leads to the removal of a LLCP, was also shown in 2012 by Tu and co-authors

using a different monatomic model [207]. The Hamiltonian of this model includes a

term that lowers the energy when particles are aligned along near-tetrahedral angles

and thus favors a diamond cubic ground state. The study of Ref. [207] considers two

versions: one that allows broad flexibility of the inter-tetrahedral bond angles (lead-

ing to weak tetrahedrality), and another in which the bond angle is more constrained
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Figure 4.5: Phase diagram of the modified Stillinger-Weber potential in terms of
the tetrahedral repulsion parameter λ and temperature T , at zero pressure (figure
adapted from [132]). The black triangles indicate the melting line of the diamond
cubic (dc) crystal, while the green squares denote the melting line of the bcc crys-
tal. The dashed line separates the dc and bcc regions. Yellow circles indicate the
transition temperature TLL at which the liquid-liquid phase transition line crosses
the P = 0 isobar for that particular value of λ. Silicon is represented by λ = 21
and has a liquid-liquid critical point at −0.60 GPa [208], and therefore all LLCPs
for λ > 20.25 lie at negative pressures (there is a LLCP for each value of λ). For
λ < 20.25 the LLCPs are at positive pressures and therefore the phase transition
line can no longer be seen in this diagram. When λ is large the system easily crys-
tallizes, and therefore the phase transition line at P = 0 can no longer be accurately
located when λ > 21.5.
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(giving rise to strong tetrahedrality).

The behavior for strong tetrahedrality is shown in Fig. 4.6, and we see that the

isochores converge into a critical point. If the tetrahedrality is weakened slightly,

then the isochores separate, the LLCP disappears, and the diagram starts to re-

semble that of Fig. 4.2b for WAC. It should be mentioned that a separation of the

global CP and KT maxima also occurs in the weak tetrahedrality version (as is the

case for WAC), while the CP and KT maxima are close together and near the LLCP

in the strong version of the model.

Figure 4.6: Isochores of the Tu model for the strong tetrahedrality version, which has
a LLCP (figure adapted from Ref. [207]). Gray area indicates the density anomaly
region. By reducing the tetrahedrality, the Tu model can be smoothly changed into
the weak tetrahedrality version, which does not have a LLCP. The isochores of WAC
(Fig. 4.2b) show no LLCP but closely resembles that of the strong Tu model. We
can interpret this as that WAC is close to having a LLCP, but not close enough. If
we were to enhance the tetrahedrality of WAC, it is likely a LLCP would appear.
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Finally we should consider the simulations done on “patchy” colloids by Sciortino

and coworkers. Using the Kern-Frenkel (KF) model [95] (which consists of particles

with tetrahedrally arranged sticky points), these authors demonstrated that the col-

loids developed tetrahedral network topologies, with each particle being surrounded

by four others—which is not itself surprising. More interesting was the finding that,

when the effective sizes of the patches were varied, conditions could be found in

which not only were the relaxation kinetics strictly Arrhenius in form, but also the

amorphous state became the free energy ground state of the system, over a wide

range of densities [178]. This corresponds to a more dramatic stabilization of the

amorphous state than the kinetic stability observed in our work. It signifies an ab-

solute stability against crystallization on any time scale, i.e., the system has become

an “ideal glassformer” [90].

Studies with the KF model have also demonstrated that highly directional bonds

are needed to observe spontaneous crystallization in tetrahedral interacting particles

[155], in agreement with the results found by Molinero et al. using the Stillinger-

Weber family of potentials. Since the KF colloids can be used to describe different

tetrahedral models, they promote our understanding of tetrahedral liquids such as

ST2 and mW water, Stilling-Weber silicon, and BKS silica. Surprisingly, there exists

a mapping from these models to the KF model, using only a single parameter: the

patch width [161]. The patch width is related to the flexibility of the bonds between

the particles, and it is therefore likely that spontaneous crystallization and the

existence of a LLCP are related to bond angle flexibility.

All of these studies show that the occurrence of a LLCP becomes less likely when

the parameters controlling tetrahedrality are weakened. Unfortunately, the BKS

and WAC models do not have an explicit parameter that controls tetrahedrality,

such as the parameter λ in the Stillinger-Weber model. In this model there is a
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direct relation between the value of λ and the tetrahedrality of the liquid measured

by the orientational order parameter q as defined by Errington and Debenedetti

[48]. This parameter is constructed such that its average value 〈q〉 will equal zero

if all atoms are randomly distributed within the liquid, while q = 1 for each atom

within a perfect tetrahedral network (such as in a cubic diamond lattice). For silica

the situation is more complicated. It is not immediately clear how to define the

tetrahedrality of a system that consists of two types of atoms. One way would be to

find for each Si atom its four nearest neighboring Si atoms and compute 〈q〉 for this

subset of atoms. However, this measure would completely ignore the positions of

the O atoms which form ionic bridges between the Si atoms. Since the O-Si-O bond

angle deviates very little from the perfect tetrahedral angle of 109◦ [212], it makes

sense to focus on the inter-tetrahedral Si-O-Si bond angle instead. It is commonly

agreed that structures such as diamond cubic have maximum tetrahedrality, and

for silica this corresponds to a system where all Si-O-Si bond angles are equal to

180◦ (such as β-cristobalite). How much the inter-tetrahedral Si-O-Si bond angles

differ from 180◦ can thus be employed as a measure of the tetrahedrality, and we

have therefore calculated this bond angle distribution for both BKS and WAC.

The location of the maximum in the Si-O-Si bond angle distribution (i.e., the most

probable angle) is a parameter that one could use to quantify the tetrahedrality.

If we denote the most probable angle at the lowest accessible temperature (Tg) as

θmax, then the tetrahedrality parameter t can be defined as t ≡ θmax/180◦, where

0 < t < 1. Since the “openness” of the structure will increase with the average

Si-O-Si angle, one could also define the tetrahedrality using the volume ratio, i.e.,

t ≡ V ∗/Vdc, which would require much less effort to calculate. Here Vdc is the volume

of the perfect diamond cubic and V ∗ is the system volume at some corresponding

state, for instance at the TMD (which is less arbitrary than Tg).
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Let us consider the angular relations and the mechanical forces that determine

them in more detail. In terms of the familiar ball-and-stick model, the Si-O-Si bond

could be represented by two sticks connected at the oxygen atom, with a spring in

between the sticks. This spring constrains the bond angle to some preferred bond

angle θ0, while the value of its spring constant k2 (the stiffness) dictates how flexible

the bond angle is. From the bond angle probability distribution P(θ), it is possible

to estimate the values of the preferred bond angle θ0 and the bond angle stiffness

k2.

To extract the Si-O-Si bond angles from the data, we consider each O ion together

with its two nearest Si neighbors and calculate the angle between the two Si-O bonds.

In Fig. 4.7 we show the resulting probability distributions P(θ) of the Si-O-Si angle

θ for BKS and WAC at zero pressure. These curves have been measured before

in previous studies [212, 72] but with less detail. As the temperature decreases,

the width of the distribution decreases and the maximum shifts toward 180◦. This

implies that the liquid becomes more structured and stiffer. This is to be expected,

since at a high temperatures there are more thermal fluctuations and therefore P(θ)

has a broader distribution.

Plotting P(θ) may not be the best way of presenting the bond angle distribution,

as this distribution is biased toward 90◦ angles. This is particularly clear from the

distribution of the vapor (the thin black line in Fig. 4.7a). The ions in the vapor

have no preferred position with respect to their neighbors, yet P(θ) is not uniform

but proportional to sin θ. This is related to the fact that the infinitesimal area

element of the unit sphere is dA = sin θ dθ dφ rather than dθ dφ. As θ → 180◦ the

area element dA approaches zero, and therefore P(θ) = 0 at θ = 180◦. Instead

of P(θ) it is better to consider the probability distribution P(cos θ) = P(θ)/ sin θ,

as is shown in the insets of Fig. 4.7. The P(cos θ) distribution of the vapor is a
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Figure 4.7: Probability distribution of the Si-O-Si bond angle P(θ) in liquid silica
for (a) the BKS model and (b) the WAC model. As T goes down, the most prob-
able angle moves closer to 180◦ while simultaneously the width of the distribution
decreases. The first phenomenon causes the liquid to expand upon cooling, while a
reduction in width means that the bonds become stiffer, which leads to a decrease
in diffusion. Both phenomena are related (see below) and are much stronger for
WAC than for BKS. Instead of P(θ) it is better to consider P(cos θ) = P(θ)/ sin θ,
since a completely random distribution such as in the vapor has P(θ) ∝ sin θ while
P(cos θ) is uniform (see inset of panel a). For both models and all temperatures
P(cos θ) resembles a normal distribution with mean 180◦. This indicates that the
preferred angle is in fact 180◦, and that the width of P(cos θ) determines both the
location of the peak in P(θ) as well as its width.
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uniform distribution (inset of Fig. 4.7a). For the liquid, the distribution P(cos θ) is

approximately a normal distribution with its mean at θ0 = 180◦. Evidently the most

probable inter-tetrahedral angle (the location of the P(θ)-peak) is purely an effect

of the width of this normal distribution combined with the fact that dA ∝ sin θ.

It is possible to interpret the bond angle distribution in terms of an effective

potential Ueff(θ), assuming that P(cos θ) ∝ exp[−Ueff(θ)/kBT ]. When the effective

potential is harmonic, i.e. Ueff = 1
2
k2(θ− θ0)2, the resulting probability distribution

is a normal distribution with mean θ0 and a width that depends on temperature

T and stiffness k2. In general the effective potential will not be perfectly harmonic

and includes anharmonic terms. Because cos θ is an even function about θ = 180◦,

it is required that P(cos θ) is as well, and therefore also Ueff(θ). Consequently, the

leading-order anharmonic term in Ueff(θ) is of the fourth order. The Si-O-Si bond

angle distribution can thus be described by

P(θ) = A sin θ exp[−Ueff(θ)/kBT ] (4.6)

with Ueff a Taylor series about the mean angle θ0 = 180◦,

Ueff(θ) =
1

2
k2(θ − θ0)2 +

1

4!
k4(θ − θ0)4 + . . . (4.7)

Here A is a temperature-dependent normalization constant that ensures that the

total probability
∫
P(θ) dθ =

∫
P(cos θ) dcos θ is equal to one, and kB is the Boltz-

mann constant.

The probability distributions of Fig. 4.7 can be fitted quite well with Eqs. 4.6 and

4.7, even when the sixth power and higher-order terms are ignored. The resulting

values for the stiffness k2 are shown in Fig. 4.8. It is immediately clear that WAC is
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Figure 4.8: Stiffness of the Si-O-Si bond angle for both WAC (solid lines, top)
and BKS (dashed lines, bottom). For both models the stiffness k2 goes down with
increasing pressure. It is clear that BKS has more flexible bonds (small k2), and
that WAC is more rigid (large k2) and therefore “more tetrahedral”. In addition
WAC shows a transition at low T for P ≤ 5 GPa to a state with an even higher
stiffness.

far more rigid than BKS. For BKS the stiffness does not vary much with temperature,

while increasing the pressure makes the bonds slightly less stiff. The same is true

for WAC at high T , but below 5 GPa the stiffness shows an increase when the liquid

is cooled. This increase is exactly where CP has its maximum in Fig. 4.3b, and thus

we may argue that the increase in CP is due to a structural change, namely the

stiffening of the tetrahedral network.

From the isochores in Fig. 4.2b it is clear that WAC is very close to having a

LLCP. If we compare the results of previous studies done on tetrahedral liquids [132,

207] with our results for BKS and WAC, then we see that the tetrahedrality of BKS is

far too small (i.e., the inter-tetrahedral bond angles are not sufficiently stiff) to have

a LLCP, and that WAC is close, but not close enough. However, it might be possible
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to make a small change to the WAC potential to enhance its tetrahedrality. One

simple way to achieve this would be to add a repulsive term similar to the three-body

interaction of the Stillinger-Weber model. This term should penalize any Si-O-Si

configuration with an angle less than 180◦ with a repulsive energy determined by

the intensity parameter λ and the size of the deviation. The λ value associated

with this interaction should be carefully chosen; if λ is too small no LLCP will

arise, while applying a λ that is too large will likely lead to crystallization into a

diamond (β-cristobalite) structure. It would be interesting to see at what value of

k2 this criticality is introduced, and if this value is the same across other tetrahedral

models as well, but this is beyond the scope of the present project.

The results presented here are also relevant to the possible existence of a LLCP

in different water models, and highlight the importance of a thorough analysis of

the O-H-O bond angle distribution. Such an analysis, possibly with the use of a

bond angle stiffness parameter such as k2, might be able to predict if a particular

water model will have a LLCP. Unfortunately, to the best of our knowledge, it is

currently not possible to measure these angles directly in experiments, as significant

help from computer simulations is required to obtain the angular structure of liquid

water [176, 180].

4.6 Conclusion

Although it has been suggested, based on a combination of simulation and theo-

retical considerations [160], that both BKS and WAC have LLCPs at temperatures

beyond the accessible simulation range, our study suggests that neither BKS nor

WAC can reach a critical point. We have compared our results to those of other

tetrahedral models [132, 207], analyzed the bond angle distributions, and conclude
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that the lack of a LLCP in both BKS and WAC is due to a lack of stiffness in the

inter-tetrahedral Si-O-Si bond angles. WAC is close to criticality, but BKS shows

little sign of a LLCP, and since the latter is considered to be the more realistic model

for experimental silica, we expect that no LLCP occurs in real silica either.

However, this does not mean that manifestations of criticality can never be

observed. As Chatterjee and Debenedetti [40] have shown theoretically, even a weak

tendency toward criticality (as in BKS) can be amplified into a liquid-liquid phase

separation in a binary system. Indeed this notion has been exploited elsewhere

[12] to interpret the (much-studied [37, 38, 39, 61, 47, 66, 133] but incompletely

understood) splitting out of an almost pure SiO2 phase from such simple systems

as the Na2O-SiO2 and Li2O-SiO2 binary glasses during supercooling.
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CHAPTER 5: Conclusions and outlook

In this thesis we have considered several liquid anomalies, the relationships between

them, as well as the phenomenon of liquid-liquid phase transitions that in some

cases ends in a liquid-liquid critical point. Of particular interest is liquid water, H2O.

Apart from being fundamentally important in many fields such as biology, chemistry,

and physics, this tiny molecule gives rise to a complex liquid with many properties

that are remarkably different from those of simple liquids. In the first chapter

we have presented a small subset of water-like anomalies which were subsequently

investigated in detail in the second chapter using simple models.

The density anomaly (a region where the liquid expands upon cooling, i.e. where

αP = 1
V

(∂V/∂T )P < 0) can be attributed to the existence of two competing length

scales. Sometimes these length scales are explicit, as in simple potentials such as the

hard-core linear ramp model (HCLR) or the Jagla potential. But in more realistic

atomic liquids these length scales are often more abstract, although the length scales

can still be observed in terms of the structure of the liquid, and can therefore be

studied with the radial distribution function g(r) or the structure factor S(k). For

these liquids the two competing length scales are expressed in the form of two

structures: an expanded structure characterized by large open spaces between the

particles, and a collapsed structure in which the particles are spaced more closely. In

the case of water these two competing structures are caused by hydrogen bonding.

When two water molecules form a hydrogen bond, their energy is reduced but at

the expense of an increase in volume. Alternatively, two molecules can choose to

be closer together, but this would require them to occupy a higher energy state.

The competition arises from the fact that the liquid tries to minimize the Gibbs

energy G = E + PV − TS, and thus (assuming the entropy is comparable for both
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structures), both states have approximately the same Gibbs energy.

The notion of two competing length scales also explains the diffusion anomaly

(i.e. an increase of pressure leads to an increase in diffusion). One way to look

at this is with the Maxwell relation ∂V/∂T = −∂S/∂P . When there is a density

anomaly (∂V/∂T < 0) then ∂S/∂P > 0 which means that an increase in pressure

leads to an increase of the entropy. An increase in entropy means more disorder,

and thus an increase in diffusion.

Using similar arguments, we explained in Chapters 1 and 2 how the melting

line can have a negative slope, as does the hexagonal ice melting line in water. In

particular, when it is known that the crystal has a lower density than the liquid,

then the Clapeyron relation dP/dT = ∆S/∆V (Eq. 1.8) demands that the melting

line will have a negative slope. The liquid is always more disordered than the crystal

(so ∆S ≡ Sliquid−Scrystal > 0 always), and therefore when ∆V ≡ Vliquid−Vcrystal < 0

we find that the slope of the melting line is negative: dP/dT < 0.

The existence of an expanded structure that can collapse is responsible for the

compressibility anomaly (KT goes down upon heating, i.e. the liquid becomes more

stiff). As the cut-ramp potential of Sec. 2.4.3 made clear, the two length scales do

not need to compete in order to have a compressibility anomaly, and in this regard

the compressibility anomaly is different from the other water-like anomalies.

When a liquid has two competing length scales (or equivalently, two competing

structures) then it is sometimes possible to have those structures form two separate

phases. The result is the emergence of a phase transition between two liquids, a low-

density liquid (LDL) and a high-density liquid (HDL), with possibly a liquid-liquid

critical point (LLCP). This is most evident in the Jagla potential (Sec. 2.3), which

displays both a LLCP and water-like anomalies. The potential has two competing

length scales (causing the anomalies), and an attractive tail which induces the criti-
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cal point. Without the attractive tail LDL droplets cannot coalesce with other LDL

droplets (and similarly for HDL with HDL), resulting in a mixture of locally-LDL

and locally-HDL, but without a phase transition. However, even if a liquid has a

LLCP, this does not necessarily mean there are anomalies. The existence of two

length scales is a necessity for the phase transition, but in order to have anomalies,

these are required to compete. One example of such a model is the square shoulder

potential (Sec. 2.5).

It can be quite difficult to prove the existence of a LLCP, as was made clear

in Chapter 3 for ST2 water. Several techniques, however, are available to confirm

the presence of a LLCP. First of all, it is important to identify and quantify the

difference in structure between LDL and HDL, using e.g. the radial distribution

function g(r) or the structure factor S(k). Secondly, one must show that the two

liquids are indeed metastable with respect to the stable crystalline state, as was

done in Sec. 3.7 where we considered the growth and subsequent melting of crystal

nuclei. Lastly, because liquid-liquid critical points belongs to the same universality

class as the 3D Ising model, it is possible to directly compare the order parameter

distribution function of the liquid with that of the 3D Ising model (Sec. 3.8). This,

together with finite size scaling of the Challa-Landau-Binder parameter, provides

a powerful technique to demonstrate the existence of a LLCP and allows for an

accurate estimate of its location.

As was made clear in Chapter 4, it is often easier to rule out the existence of a

LLCP than prove its existence. Since the isochores must cross at the critical point,

if they fail to do so, this is a clear indicator that no LLCP exists. With this method

a LLCP is immediately ruled out for BKS silica (considered to be an accurate model

for real SiO2). In addition to the isochores, also an analysis of response function

maxima can be employed. At a critical point all response functions diverge, which is
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visible as large maxima in finite systems. The compressibility KT acquires its largest

maximum exactly where the isochores come closest together, with a diverging KT

being equivalent to a crossing of the isochores. It is important to check that other

response functions, such as the isobaric heat capacity CP , acquire their maximum at

the same state point. In the WAC silica model, for example, both response functions

displayed large maxima, but at different pressures—indicating that WAC does not

have a LLCP although it comes closer to having one than BKS does.

Since BKS is very far from having a LLCP, and WAC very close, these two sys-

tems together provide insight to what dictates whether a liquid has a LLCP or not.

In Chapter 4 we compared both silica models with several other tetrahedral models,

and concluded that “tetrahedrality” is the dominant quantity to consider. Liquids

with weak tetrahedrality tend to behave like a normal liquid, but as one increases

the tetrahedral structure of the liquid a LLCP might arise. If the tetrahedrality is

increased too much, at low T the liquid becomes unstable with respect to the dia-

mond cubic lattice (the perfect tetrahedral structure) and crystallization will occur

before a liquid-liquid transition can be witnessed.

There exist several different parameters to quantify the amount of tetrahedrality,

depending on the liquid and the model. One promising parameter might be the

“bond angle stiffness” k2, introduced in Chapter 4 based on the O-Si-O bond angles.

More flexible bond angles seem to be correlated to the lack of a critical point, and

therefore this flexibility might be able to predict the existence of a LLCP, even at

temperatures far higher than the critical temperature Tc. Considering this, it makes

sense for liquid silica not to have a LLCP, as the tetrahedral bonds in silica are a

lot more flexible than for instance the hydrogen bonds in water.

Future work could focus on the development of new models with an adjustable

tetrahedrality, similar to the Stillinger-Weber family of models investigated by Mo-
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linero et al. [132] (see Sec. 4.5). This should make it possible to confirm that the

tetrahedrality is the main predictor for the existence of a LLCP, as well as determine

which tetrahedrality parameter is the most suitable to use for this prediction.
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