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Using linear scaling theory, we study the behavior of response functions extrema in the vicinity of the
critical point. We investigate how the speed of convergence of the loci of response function extrema to
the Widom line depends on the parameters of the linear scaling theory. We find that when the slope of the
coexistence line is near zero, the line of specific heat maxima does not follow the Widom line but instead
follows the coexistence line. This has relevance for the detection of liquid-liquid critical points, which
can exhibit a near-horizontal coexistence line. Our theoretical predictions are confirmed by computer
simulations of a family of spherically symmetric potentials.
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A wide variety of physical systems exhibit critical
phenomena [1–4]. According to scaling theory, asymptoti-
cally near the critical point all response functions can be
expressed in terms of the correlation length [5–7]. The
response functions diverge at the critical point and display
maxima in the one-phase region either along constant-
pressure (P) paths or constant-temperature (T) paths
[8–11]. Near the critical point, the loci of response function
extrema converge into a single line, the Widom line, which
is defined as the line of zero ordering field [12–15]. Thus,
the Widom line can be used to locate the critical point.
In practice, the Widom line itself is difficult to find, and
therefore response function maxima are regularly used to
estimate its location. This raises two important questions
that are often ignored: (i) to what extent do the loci of
response function maxima deviate from the Widom line,
and (ii) do all maxima always follow the Widom line?
Theoretical studies and computer simulations predict

a liquid-liquid phase transition (LLPT) between a low
density liquid (LDL) and a high density liquid (HDL) in sev-
eral systems, such aswater, silicon, and germanium [16–21].
In all these systems the LLPTends in a liquid-liquid critical
point (LLCP) which is deeply buried in a metastable
supercooled region, making the traditional experimental
way of detecting the LLCP as the terminal point of the
coexistence line difficult. Thus, studies of the Widom line
in the supercritical region [10] give an alternative way of
locating LLCP. For instance, Liu et al. used the convergence
of the dynamic crossover line into the Widom line to
experimentally locate the LLCP in confined water [22].
Because the slope of the LLPT coexistence line in the PT

plane is different for each system (can be either positive or
negative), the behavior of the Widom line may also differ.
To get a complete picture of the critical phenomena near
LLCP we study, using linear scaling theory and molecular

dynamics simulations, the behavior of the Widom line
in terms of the response functions when the slope of the
coexistence line is positive, negative, and horizontal.
In the general scaling theory of critical phenomena [6],

the field-dependent thermodynamic potential ψ is consid-
ered a homogeneous function of two scaling fields: the
ordering field h1 and the thermal field h2. Near the critical
point, ψ can be written as ψ ≃ jh2j2−αfðh1=jh2jβþγÞ,
where f is an analytical scaling function, and α, β, and
γ ¼ 2 − α − 2β are the critical exponents. Following
Refs. [12–15] we assume that for a LLPT the critical
exponents have the values of the three-dimensional Ising
universality class: α ≈ 0.110, β ≈ 0.3265, and γ ≈ 1.237.
The scaling fields can be written as linear combinations of
the physical fields P and T [23]. A similar approach was
used by Anisimov et al. in order to explain the crossover
between vapor-liquid and liquid-liquid critical phenomena
in binary fluids [24]. Here we introduce the tuning
parameters φ (slope of the coexistence line) and φ0 (slope
of the ordering field axis), both defined via

h1 ¼ ΔP̂ cosφ − ΔT̂ sinφ;

h2 ¼ ΔT̂ cosφ0 þ ΔP̂ sinφ0; (1)

where ΔP̂≡ P̂− P̂c¼ðP−PcÞ=ðρcRTcÞ and ΔT̂≡ T̂−1¼
ðT−TcÞ=Tc, with ρ the number density, R the universal gas
constant, and subscript c indicating the values of P, T,
and ρ at the critical point. The dimensionless slope of the
coexistence line is dP̂=dT̂ ¼ tanφ. The first order deriv-
atives of the thermodynamic potential ψ are the “ordering
parameter” ϕ1 and “thermal density” ϕ2,

ϕ1 ≡ −
�∂ψ
∂h1

�
h2

; ϕ2 ≡ −
�∂ψ
∂h2

�
h1

: (2)

The second derivatives define three susceptibilities,

PRL 112, 135701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

0031-9007=14=112(13)=135701(5) 135701-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.135701
http://dx.doi.org/10.1103/PhysRevLett.112.135701
http://dx.doi.org/10.1103/PhysRevLett.112.135701
http://dx.doi.org/10.1103/PhysRevLett.112.135701


χ1 ≡
�∂ϕ1

∂h1
�

h2

; χ2 ≡
�∂ϕ2

∂h2
�

h1

χ12 ≡
�∂ϕ1

∂h2
�

h1

¼
�∂ϕ2

∂h1
�

h2

: (3)

If ψ is the scaled Gibbs free energy, then the scaled volume
and entropy are V̂ ¼ ð∂ψ=∂P̂ÞT and Ŝ ¼ −ð∂ψ=∂T̂ÞP,
respectively. The critical (fluctuation-induced) parts of the
dimensionless response functions, isothermal com-
pressibility K̂T ¼ −ð∂V̂=∂P̂ÞT=V̂, isobaric specific heat
ĈP ¼ T̂ð∂Ŝ=∂T̂ÞP, and isobaric thermal expansion
α̂P ¼ ð∂V̂=∂T̂ÞP=V̂, can be expressed as the scaling sus-
ceptibilities using Eqs. (1), (2), and (3),

K̂T ¼ ðχ1cos2φþ χ12 sin 2φþ χ2sin2φÞ=V̂;
ĈP ¼ T̂ðχ1sin2φ − χ12 sin 2φþ χ2cos2φÞ;
α̂P ¼ ððχ1 − χ2Þ sin 2φ − 2χ12 cos 2φÞ=ð2V̂Þ: (4)

For simplicity we assume here that φ0 ¼ φ.
Linear scaling theory, developedbySchofieldetal. [25,26],

presents the scaling fields and susceptibilities as functions
of “polar” variables r and θ ∈ ½−1; 1�. Near the critical point,
the thermodynamic potential is written as ψ ¼ r2−αpðθÞ,
where pðθÞ is an analytical function of θ, and the fields are

h1 ¼ arβþγθð1 − θ2Þ; h2 ¼ rð1 − b2θ2Þ; (5)

with b2 ¼ ðγ − 2βÞ=γð1 − 2βÞ ≈ 1.36. In coordinates r
and θ, the Widom line corresponds to θ ¼ 0, and the
coexistence line corresponds to θ ¼ �1. According to
Refs. [25,26], the ordering parameter for liquid-gas phase
transitions and magnetic systems can be approximated by
ϕ1 ¼ krβθ, i.e., a linear function of θ. Here, both a and k are

system-dependent fitting parameters. The susceptibilities
can then be written as

χ1 ¼
k
a
r−γc1ðθÞ; χ2 ¼ akr−αc2ðθÞ;

χ12 ¼ krβ−1c12ðθÞ; (6)

where c1ðθÞ, c12ðθÞ, c2ðθÞ are rational functions of θ
[12–15] which do not have singularities in the interval
[−1, 1]. Moreover, c1ðθÞ and c2ðθÞ are even functions of θ,
while c12ðθÞ is an odd function and negative for θ > 0.
Combining Eqs. (1) and Eqs. (5), we find the positions of

the maxima of the response functions as functions of ΔT̂ at
constant ΔP̂. Clearly these positions do not depend on k,
which is a proportionality coefficient of the χi. If φ ≠ 0
and ΔP̂ → 0, the leading term in rðΔP̂Þ becomes r ¼
ΔP̂=½ð1 − b2θ2Þ sinϕ� since β þ γ > 1. Thus, χ1 becomes
the dominant term in the response functions

K̂T ¼ cos2φðΔP̂Þ−γf1ðθ;ΔP̂Þ=V̂c;

ĈP ¼ T̂csin2φðΔP̂Þ−γf2ðθ;ΔP̂Þ;
α̂P ¼ sinφ cosφðΔP̂Þ−γf3ðθ;ΔP̂Þ=V̂c; (7)

where V̂c ≈ T̂c ≈ 1 near the LLCP, and

fiðθ;ΔP̂Þ ¼ ka−1c1ðθÞ½ð1 − b2θ2Þ sinφ�γ
× ½1þ adiðθÞðΔP̂Þβþγ−1 þ oðΔP̂βþγ−1Þ�; (8)

with diðθÞ as odd functions of θ satisfying dið0Þ ¼ 0
and 0 < d01ð0Þ < d03ð0Þ < d02ð0Þ. Since c1ðθÞ is an even
function of θ, the loci of the maxima of all response
functions coincide for ΔP̂ → 0 along the Widom line
(θ ¼ 0), which projects onto a PT plane as a line emanating
from the critical point with a slope tanφ (Fig. 1). The larger
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FIG. 1 (color online). The behavior of the Widom line in systems with different coexistence line slopes according to linear scaling
theory. (a) Positively sloped coexistence line; CP (upper triangle), αP (opened circle), and KT (square) maxima loci converge into the
Widom line close to the LLCP. (b) Negatively sloped coexistence line; similar to the mirror image of (a). (c) Horizontal coexistence line;
symmetric loci of CP, jαPj, and KT maxima above and below Pc, all approach the LLCP horizontally, with the CP maximum line from
T < Tc and the other two from T > Tc. Graphs are constructed from numerical solutions of linear scaling theory, taking φ0 ¼ φ for
simplicity, and with ϕ ¼ 30°, −30°, and 0, respectively. The spinodals are drawn as interpolation between the critical point and the
extrapolated crossing point of the TMD (αP ¼ 0) line and the KT maxima line beyond the coexistence line where the spinodal must be
horizontal. The Widom line is indicated with a thin brown line in (a) and (b), and overlaps with the TMD line in (c).

PRL 112, 135701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

135701-2



the value of a, the faster the deviation of these loci from the
Widom line asΔP̂ increases. Since d01ð0Þ < d03ð0Þ < d02ð0Þ,
the deviation of the locus for ĈP is greater than the
deviation for α̂P, which is greater than the deviation of
K̂T . The latter follows the Widom line for the longest
range (Fig. 1).
In contrast, if φ ¼ 0, then r ¼ ðΔP̂=½aθð1 − θ2Þ�Þ1=ðβþγÞ

and

K̂T ¼ k
a
1

V̂

�
aθð1 − θ2Þ

ΔP̂

�
γ=ðβþγÞ

c1ðθÞ;

ĈP ¼ T̂ka

�
aθð1 − θ2Þ

ΔP̂

�
α=ðβþγÞ

c2ðθÞ;

α̂P ¼ −k
1

V̂

�
aθð1 − θ2Þ

ΔP̂

�ð1−βÞ=ðβþγÞ
c12ðθÞ: (9)

The K̂T , α̂P, and ĈP given by Eq. (9) are functions of θ
that have maxima at θ1 ¼ �0.525638, θ12 ¼ �0.746766,
and θ2 ¼ �0.925073, respectively. Note that for φ ¼ 0,
ΔT̂ coincides with h2; thus,

ΔT̂ ¼
�

ΔP̂
aθið1 − θ2i Þ

�
1=ðβþγÞ

ð1 − b2θ2i Þ (10)

gives the equation of the loci of KT , CP, and αP, for
each θi [Fig. 1(c)]. These loci have two symmetric
branches for ΔP̂ > 0, θi > 0 and ΔP̂ < 0, θi < 0. Since
c12ðθÞ is an odd function, α̂P < 0 for ΔP̂ < 0; therefore,
the lower branch of the α̂P extrema is a line of α̂P minima,
which lies entirely in the density anomaly region. Since
1=ðβ þ γÞ < 1, all the loci are tangential to the Widom
or coexistence line at the LLCP. Since 0< jθ1j< jθ12j<
1=b < jθ2j< 1 and θ ¼ 1=b corresponds to the line
ΔT̂ ¼ 0, the loci of the K̂T and α̂P extrema emanate from
the critical point in the direction ΔT̂ > 0, but the α̂P
extrema line deviates from the Widom line much faster
than the K̂T maxima line. In contrast, the ĈP maxima
line emanates in the direction ΔT̂ < 0, i.e., along the
coexistence line. Therefore, the heat capacity maxi-
mum will be difficult to observe for small φ in the
supercritical region T > Tc, and for φ ¼ 0 it will be
buried below Tc.
Figure 1 shows the behavior of the loci of extrema

of response functions computed using Eqs. (4) and (6).
It is in perfect agreement with the asymptotic behavior
described by Eq. (7) for φ ≠ 0 and Eq. (9) for φ ¼ 0.
When the slope of the coexistence line is nonzero
[Figs. 1(a) and 1(b)], there is only one locus of CP
maxima, two loci of αP extrema (separated by a temper-
ature of maximal density (TMD) line where αP ¼ 0), and
two loci of KT maxima. When dP=dT > 0 [Fig. 1(a)], the
locus of CP maxima, αP maxima, and the locus corre-
sponding to the largest values of KT all originate from
the LLCP and extend into the one-phase region as a

continuation of the coexistence line. Close to the LLCP,
these response function maxima converge to a single
Widom line, but separate as the pressure is increased
above the critical value. This happens such that the locus
of CP maxima has the lowest temperature, the locus of KT
maxima has the highest temperature, and the locus of αP
maxima lies between the two.
When dP=dT < 0 [Fig. 1(b)], the situation mirrors

the case dP=dT > 0, but with the locus of αP maxima
replaced by the locus of αP minima. The other locus
of αP extrema and the KT maxima of smaller magnitude
both approach the limits of liquid stability (spinodals): the
LDL spinodal for dP=dT > 0 and the HDL spinodal
for dP=dT < 0.
When the coexistence line is horizontal [Fig. 1(c)], we

must zoom in to find the CP maxima. We see two
symmetric CP maxima lines emerge, but near the LLCP
they bend below the critical temperature Tc and approach
the LLCP horizontally from T < Tc. Both loci of αP
extrema and the two loci of KT maxima are symmetric
with respect to P ¼ Pc, have equal magnitude, correspond
to the critical fluctuations, and approach the LLCP hori-
zontally from T > Tc. Thus, in the case of a coexistence
line with zero slope, the three response function maxima do
not converge upon approaching the LLCP.
Using molecular dynamics simulations, we test our

results on a family of Jagla potentials with repulsive and
attractive ramps [27–31] that show a LLPT. In this model,
particles interact with a spherically symmetrical pair
potential given by

UðrÞ ¼

8>>><
>>>:

∞ r < a
b−r
b−a ðUR þ U0Þ − U0 a ≤ r < b

− c−r
c−bU0 b ≤ r < c

0 r ≥ c

; (11)

where a is the hard-core distance, b the soft-core distance,
and c the long-distance cutoff. The potential has a minimum
−U0 at r ¼ b. At the top of the repulsive ramp, at r ¼ a,
the potential is UR. By tuning the parameters of the model,
one can change the slope of the liquid-liquid coexistence
line [30]. The slope is positive for b ¼ 1.72a, c ¼ 3a,
UR ¼ 3.478U0, and zero for b ¼ 1.59a, c ¼ 2.59a,
UR ¼ 2.547U0. If b=a < 1.59 the LLCP disappears below
the line of homogeneous nucleation, and the slope of the
LLPT can no longer be measured [30].
When the slope of the coexistence line is positive, the

simulation results match the linear scaling theory (Fig. 2).
When the coexistence line is horizontal, both KT maxima
lines are observed and the αP extrema lines are approx-
imately vertical. CP increases until the system either
crystallizes or enters a glassy state, so no CP maximum
is observed in the liquid phase. Note that a third locus ofK0

T
maxima (KT as a function of P at constant T) becomes
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approximately horizontal, showing maxima near Pc for all
T > Tc [Fig. 2(f)]. In linear scaling theory, this third locus
K0

T corresponds to θ ¼ 0.
In summary, we find that linear scaling theory not only

predicts that the loci of response function extrema converge
into the Widom line, but it also quantifies how far these
extrema deviate from the trueWidom line as we move away
from the critical point. For a given class of universality,
there are only two system-dependent parameters in the
linear scaling theory: a and k. The k parameter does not
affect the location of the extrema, but the a parameter does.
The larger the value of a, the faster the deviation from the
Widom line as P̂ − P̂c increases [see Eq. (8)]. From the
three response functions considered, the compressibility
KT deviates the least and the isobaric specific heat CP
deviates the most. This deviant behavior of CP is exag-
gerated when the slope of the coexistence line is small and,
in the extreme case of φ ¼ 0, the locus of the CP maxima
leaves the Widom line altogether and follows the coexist-
ence line [Fig. 1(c)]. Thus when the coexistence line is
approximately horizontal we can no longer identify the
Widom line by tracing the CP maxima [32]. Studies of CP
maxima or αP extrema are best reserved for systems in
which the slope of the coexistence line is strongly positive
or negative. However, the response function maxima in
terms of volume fluctuations are still well defined; thus, the

loci of KT maxima can still be used to identify the Widom
line. We expect that these results remain valid in the limit
Tc → 0 known as the singularity free scenario. In this case,
the slope of the Widom line can be found by studying the
KT maxima as a function of pressure at constant temper-
ature, and we do not expect to find CP maxima above the
glass transition.
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