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We discuss the dynamic behavior of two silica models, the BKS model (by van Beest, Kramer, and van
Santen) and the WAC model (by Woodcock, Angell, and Cheeseman). Although BKS is considered
the more realistic model for liquid silica, the WAC model has the unique property that it is very close
to having a liquid-liquid critical point (LLCP), and this makes it particularly useful in studying the
dynamics of models that do have a LLCP. We find that the diffusivity is a good indicator of how
close a liquid is to criticality—the Si diffusivity shows a jump of 3–4 orders of magnitude when
the pressure is reduced, which may be interpreted as an abrupt (though not first-order) transition
from a high-density liquid state to a low-density liquid state. We show that this transition is captured
by the Adam-Gibbs relation, which also allows us to estimate the configurational entropy of the
system. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913747]

I. INTRODUCTION

Tetrahedral network-forming liquids such as water, liquid
silica, liquid silicon, and liquid germanium display a range of
anomalies not found in other liquids. One of the most familiar
is the density maximum: water becomes less dense when
cooled below the temperature of maximum density (TMD) of
4 ◦C at atmospheric pressure. This anomaly is also found in
silicon1 and silica.2 In some of these liquids, e.g., water, silicon,
gallium, and germanium, the density anomaly is related to the
surprising but well-known fact that the crystal phase has a
lower density than the liquid phase. A diffusion anomaly (an
increase in pressure leading to an increase in diffusivity) is also
found in these liquids.

Studies of simple models3–9 have indicated that these
anomalies could be explained by the existence of a compe-
tition between two liquid structures of different density. In
tetrahedral liquids, these two liquid structures are a collapsed
high-density liquid (HDL) and an expanded low-density liquid
(LDL). In some cases, these liquids are able to phase segregate,
resulting in a liquid-liquid coexistence that may terminate in a
liquid-liquid critical point (LLCP). A LLCP has been predicted
for several of these tetrahedral liquids based on simulations,
although as of yet few LLCPs have been experimentally veri-
fied. This is mainly because the LLCP occurs in an area
of the phase diagram that is experimentally hard to reach,
i.e., the low-temperature supercooled region. One notable
experimental observation of a LLCP in a one-component
liquid is that of liquid phosphorous,10–12 first predicted by ab
initio simulations that indicate that the transition is between a
polymeric network-forming liquid and a molecular liquid of
P4 molecules.13

The existence of a LLCP in water has been heavily de-
bated. Some models do not confirm its existence,14,15 but others
do.16–27 Although a LLCP in silica was predicted28–31 based on
simulations using the BKS (van Beest, Kramer, and van Santen)

silica model32 and the WAC (Woodcock, Angell, and Cheese-
man) silica model,33 recent simulations reaching temperatures
lower than previously possible have indicated that this is most
likely not the case.34 The BKS model is far from having a LLCP,
but the WAC model does come close. The fact that the WAC
model lies so close to the threshold of having a LLCP makes
it an interesting model for studying the phenomenon of LLCPs
in one-component liquids. In our previous paper,34 we focused
on the thermodynamical aspects of silica, and in this paper we
will investigate the dynamical aspects.

II. METHODS

We run simulations of two different silica models: the BKS
model of van Beest et al.,32 and the WAC model of Woodcock
et al.33,35 In both models, the SiO2 liquid is represented by a
1:2 mixture of Si ions and O ions, without any explicit bonds.
For the details of both models and our implementation, see
Appendix A of Ref. 34.

We use Gromacs 4.6.1,36 with the Ewald sum (PME) for
electrostatics. In all cases we use the v-rescale thermostat37

to keep the temperature constant. Many of our runs are done
in the constant-volume/constant-temperature (NVT) ensemble,
but for those in the constant-pressure (NPT) ensemble we
use an additional Parrinello-Rahman barostat.38 Diffusivities
are calculated with Gromacs’ g_msd utility. All results are
obtained with N = 1500 ions, unless specified otherwise. The
typical time step is 1 fs, but at very low T we increase this to
4 fs and carefully check that these results match those of the
1 fs time step.

We use the root mean square displacement of the oxygen
ions to estimate the equilibration time; we define τ as the time
at which



rO(t)2� = 0.56 nm, i.e., the average time required

by an O ion to move twice its diameter of 0.28 nm. We measure
τ at each state point (T,P) and verify that each simulation runs

0021-9606/2015/142(10)/104506/8/$30.00 142, 104506-1 © 2015 AIP Publishing LLC
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FIG. 1. Diffusivity of the Si atom vs. pressure for several temperatures, in (a) BKS silica and (b) WAC silica. For comparison, panel (c) shows the Si diffusivity
in the Stillinger-Weber (SW) model for silicon which is known to have a LLCP at P =−0.60 GPa, T ≈ 1120 K41 and panel (d) shows the diffusivity for ST2
water,18 which also has a LLCP. All four panels display a diffusion anomaly, i.e., the diffusivity increases with increasing pressure. This increase is gradual for
the BKS model (panel (a)), but abrupt in the case of the WAC model (panel (b)) which shows a jump in diffusivity of 3–4 orders of magnitude. The same jump
is visible in SW silicon (panel (c)) and ST2 (panel (d)), but here the jump is discontinuous because of the LLCP. In all four models, the low-density liquid state
has a much lower diffusivity (and is therefore more “glassy”) than the high-density liquid state, which explains the jump in SW, ST2, and WAC.

for approximately 10 τ, well beyond the time necessary for the
system to reach equilibrium.

III. DIFFUSIVITY

In most liquids self-diffusion decreases when pressure is
increased, but this is not true in all liquids. When a liquid
becomes more diffusive as the pressure is increased, we label
it a diffusion anomaly. Figure 1 shows diffusivity as a function
of pressure for different temperatures. Figure 1(a) shows the Si
diffusivity in the BKS model, and Fig. 1(b) the Si diffusivity
in the WAC model. As a comparison, Fig. 1(c) shows the same
plot for the Stillinger-Weber (SW) model of silicon,39 and in
Fig. 1(d) the diffusivity of H2O molecules in the ST2 water
model.40 Note that all four models exhibit a diffusion anomaly
because they all show an increase in diffusivity when P is
increased.

How much the diffusivity increases with pressure differs
in each model, however. In the case of SW silicon [Fig. 1(c)],
there is a discontinuous jump forT < 1133 K at pressures above
−0.60 GPa. This is caused by the existence of a LLCP at Tc ≈
1120 K, Pc ≈ −0.60 GPa, which was demonstrated by Vasisht
etal.41 Atpressuresabove Pc, the liquidcrosses the liquid-liquid

phase transition (LLPT) line, and this is where the jump occurs.
At low P the silicon is in a LDL state, which has a very low
diffusivity of around 10−8 cm2/s. At high P (as well as at high
T), liquid silicon is in a HDL state and is much more diffusive
(DSi ∼ 10−5 cm2/s). The same behavior is also found in ST2
water [Fig. 1(d)], which has a LLCP near 240 K and 200 MPa.18

Figure 1(b) shows how close WAC is to having a LLCP.
The jump in diffusivity is as large as in the Stillinger-Weber
silicon model, but the isotherms in WAC remain continuous
at all pressures. In addition, we see that BKS shows little sign
of criticality, although it does show a smooth transition from a
high-density liquid to a lower density state at low temperatures.

The BKS model is a better model than WAC for real (exper-
imental) silica42 and, since BKS is further away from criticality
than WAC, we may conclude that it is unlikely that there is
a LLCP in real silica. This conclusion is also indicated by a
thermodynamic analysis.34

The diffusivity of the Si ions in liquid silica indicates how
well BKS matches experimental results.42 Figure 2 shows an
Arrhenius plot of our simulation results, combined with results
from experiments on amorphous silica. Amorphous silica is
a supercooled liquid that moves so slowly that it effectively
behaves as a solid. Molecular dynamics simulations are limited
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FIG. 2. Arrhenius plot of the Si diffusivity in (a) BKS silica and (b) WAC
silica, for several pressures. An extrapolation of experimental results by
Brebec et al.43 (thick black line) seems to match exactly with the diffusivity
of BKS at P = 0 (dashed black line). On the other hand, the extrapolation
does not match with WAC at P = 0, although it does match approximately
at the far higher pressure of 8 GPa. At high T , the liquid is fragile for both
models, and shows a transition to a strong liquid upon cooling. The smooth
fragile-to-strong transition occurs at roughly the same location as where CP

has its maximum (see Fig. 3). The 5 GPa isobar seems to display an inflection
point, after which the curve might continue at a similar slope as the low-T
extrapolation in BKS. We shall investigate this hypothesis in more detail at
the end of this section.

to runs of several microseconds, and this means the observable
diffusivity must be on the order of 10−9 cm2/s and higher. On
the other hand, in experiments it is difficult to perform mea-
surements at very short time scales, and the results are therefore
limited to diffusivities on the order of 10−12 cm2/s and lower.

Figure 2(a) shows that the diffusivity of BKS simula-
tions at 0 GPa matches the experimental Arrhenius fit D(T)
= (238 cm2/s) exp[−(6 eV)/kT] as found by Brebec et al.,43

which is a fit that has been experimentally confirmed up to
the melting temperature (2007 K) by Wagstaff.44–46 A typical
explanation for this Arrhenius behavior is that the Si ion needs
to overcome a potential barrier Ea to move from one loca-
tion in the liquid to another, and for a liquid in equilibrium,
the probability of acquiring that level of energy is typically
exp[−Ea/kT]. Evidently, for BKS at 0 GPa and T < 4000 K,
the activation energy Ea is about 6 eV, or 579 kJ/mol.

The simulation results of WAC in Fig. 2(b) do not quan-
titatively match the experimental results, but the qualitative
behavior is similar to that of BKS. At high pressures the low-T

slope of WAC is similar to that of BKS (Ea ≈ 6 eV), but for
low pressures the slope of D(1/T) in WAC is much larger, and
the activation energy lies around 15 eV (1450 kJ/mol).

Above approximately DSi = 10−5 cm2/s, the slope of the
curves in Fig. 2 is much smaller, and this is known as the “frag-
ile” regime of the liquid (compared to the “strong” regime at
low T and DSi ≪ 10−6). Thus, upon lowering the temperature,
there is a clear fragile-to-strong transition (e.g., around 4000 K
for the P = 0 curve in BKS). That liquid silica shows a signifi-
cant deviation from the Arrhenius law at high T has previously
been shown in BKS47,48 and other models of silica,49 and a
related deviation has been experimentally witnessed in vis-
cosity data.50,51 The strong-to-fragile transition has also been
found in simulations of BeF2,52 silicon,53,54 and water.55–57 The
origin of this transition is still not fully understood, but it is
known57 that this transition occurs together with a maximum
in the heat capacity CP (see Fig. 3). Note that the larger and

FIG. 3. Heat capacity of (a) BKS and (b) WAC at constant pressure, obtained
via repeatedly cooling and heating the liquid at a constant rate (1000 K/ns for
BKS, 100 K/ns for WAC). No crystallization occurs during this process; the
liquid becomes an amorphous solid at low T instead. The system is no longer
ergodic below the temperature where the cooling and heating curves separate,
and here the values of CP are only approximate. Note the occurrence of a
second peak in WAC for P =−1 GPa, T ≈ 5800 K observed in the heating
part of the cycle (also shown in upper inset), which is caused by the glass
transition. At 100 K/ns, the peak is sharp for P =−1 GPa, while at P = 0 it
is reduced to a shoulder (see lower inset). At higher pressures, the ergodic
peak disappears as the anomalous domain is exited, and the normal fragile
liquid form is recovered. The change in form of heat capacity between ergodic
rounded at low pressure and triangular at 10 GPa was also observed in Ref. 31
and used to affirm the onset of a fragile liquid character.
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sharper the CP maximum, the sharper the fragile-to-strong
transition.

Figure 3 shows the heat capacity CP calculated by per-
forming 10 cooling/heating cycles at a rate of 1000 K/ns
(100 K/ns for WAC). At a certain temperature the heating and
cooling curves separate, and below this temperature the liquid
is no longer ergodic. A lower cooling/heating rate causes this
separation to occur at a lower temperature. The heat capacity
of BKS [Fig. 3(a)] shows a large drop upon cooling, which
resembles the drop in CP that fragile liquids display (note that
at these high temperatures silica is fragile rather than strong).
This CP drop is caused by the glass transition,58,59 and can be
understood as the “freezing in” of the configurational entropy,
which means that at low T only the vibrational part of the
entropy changes with temperature, and this produces a CP of
about 3R ≈ 25 J/(K mol).

The glass transition is also present in WAC [Fig. 3(b)],
with all curves falling to CP ≈ 25 J/(K mol) upon cooling.
The 8 GPa curve, for example, has a similar shape as the
curves in BKS. However, at pressures below 5 GPa, there is
a second phenomenon in WAC: as T is decreased, the heat
capacity first climbs to a large maximum and then experiences
the glass transition drop. At a rate of 100 K/ns, these events
cannot be witnessed separately above 0 GPa; the glass tran-
sition drop seems to be part of the CP maximum, and so far
these characteristics are as in Ref. 31. That these are in fact
two distinct phenomena is clear however, for the−1 GPa curve.
At this pressure two peaks are visible, one near 7000 K (the
CP maximum related to the strong-to-fragile crossover) and
another tiny peak near 5800 K in the heating curve (related
to the glass transition). Exactly the same phenomenon occurs8

also in the Jagla model, which has a stable liquid-liquid critical
point.

The configurational entropy Sc strongly influences the
diffusivity D and the characteristic relaxation time τ. The
Adam-Gibbs relation60 states that τ ∝ exp[A/T Sc], with A a
constant independent of temperature. Typically, D ∝ 1/τ, but
previous work61 indicates that for the Si ions in silica, DSi/T ∝
1/τ is a better approximation. Hence, the Adam-Gibbs relation
predicts for silica that

DSi

T
= µ0 exp


− A

T Sc


, (1)

where µ0 is another temperature-independent constant. This
leaves the question of how to obtain the configurational entropy
Sc(T). It is possible to calculate Sc directly from the inherent
structure energy eIS using61,62

Sc(T) = Sc(T0) +
 T

T0

1
T ′

∂eIS

∂T ′
dT ′ (2)

with T0 as an arbitrary reference temperature. This equation
is valid under the assumption that the vibrational free energy
does not change substantially from one inherent structure to
another, which has been shown to be the case for BKS.61 The
calculation of eIS(T) is straightforward: we take a configuration
of the equilibrated liquid and then minimize the energy using a
method such as the conjugate gradient minimization (e.g., the
“cg” integrator of Gromacs). We follow this procedure using
approximately 2000 configurations for each state point, and

take the average minimized energy as the inherent structure
energy eIS.

The calculation of Sc(T0) is cumbersome, because it re-
quires the calculation of the total liquid entropy S(T) and
the vibrational part of the entropy Svib(T). One way the total
entropy can be obtained is via thermodynamic integration of a
dilute binary LJ system, combined with the analytical expres-
sion of an ideal gas composed of two species of particles. The
Svib(T) can be found using a harmonic approximation of the
inherent structures plus an anharmonic correction.61

We can significantly reduce the effort required to obtain
Sc(T0) if we replace it with a fitting parameter. The Adam-
Gibbs relation can then be written as

ln
(

DSi

T

)
= ln µ0 −

A
T

(
S0 +

 T

T0

1
T ′

∂eIS

∂T ′
dT ′

)−1

, (3)

where µ0, A,S0 are fitting parameters and S0 ≡ Sc(T0). Using
this relation between DSi and eIS, we obtain a reasonable agree-
ment with Ref. 61 for BKS, as shown in Fig. 4. Our calculation
of Sc(T) matches that of Ref. 61 when S0 ≈ 3.64 J/mol K [see
Fig. 4(a)]. In addition, if we set S0 = 3.64 and fit DSi(T) and
eIS(T) to Eq. (3) using only µ0 and A as the fitting parameters,
we find µ0 ≈ 1.64 × 10−7 cm2/s K and A ≈ 100 kJ/mol, and
both agree with the results shown in Fig. 15 of Ref. 61.

If we treat S0 as a fitting parameter, we find similar
values for the parameters: µ0 ≈ 2.87 × 10−7 cm2/s K, A ≈ 147
kJ/mol, and S0 ≈ 5.13 J/mol K, which are all comparable in
value to those presented in Ref. 61. The differences occur in
part because we do not know the exact relationship between τ
and D (which we assumed to be 1/τ ∝ D/T). In addition, we
have imperfect data, i.e., small errors in D and eIS lead to small
errors in µ0, A, and S0. Figure 4(b) shows, however, that both

FIG. 4. Fitting the diffusivity DSi to the Adam-Gibbs equation without ex-
plicitly calculating the total configurational entropy, for BKS at 2.30 g/cm3.
(a) After calculating the average inherent structure energies eIS(T ), we use
Eq. (2) to calculate the configurational entropy Sc(T ), up to an unknown
constant S0≡ Sc(T0). Comparing our results (black squares) with those of
Ref. 61 (red curve), we obtain an estimate of S0≈ 3.64 J/(mol K). (b) Fitting
our DSi data (black squares) using Eq. (3) results in a best fit (green curve)
with S0≈ 5.13 J/(mol K), not too far from the estimated value of 3.64. As a
comparison, the fit based on parameters of Ref. 61 are shown as the red curve.
Considering that both methods produce similar estimates for S0 and good fits
for D(T ), we conclude that treating Sc(T0) as a fitting parameter (rather than
calculating it explicitly) can be done with reasonable accuracy.
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FIG. 5. In WAC at 5 GPa and low temperatures, a kink is visible in both the
configurational entropy (panel (a)) as well as in the Si diffusivity (panel (b)).
In both panels the black dots indicate data from the simulations, while the
red squares in panel (b) are obtained via the Adam-Gibbs relation. Since the
black dots and red squares overlap, we find that the kink is also described by
the Adam-Gibbs relation. Below 3700 K the configurational entropy changes
slope abruptly, and it is unclear what happens in the low-T limit. If we assume
the Si diffusivity to be Arrhenius, then the entropy must smoothly saturate to
a constant nonzero value (blue dashed curves). However, it is also possible
to have a non-degenerate ground state; we find our data to be consistent with
a linear decrease in configurational entropy that goes through zero at T = 0
(orange dotted-dashed curves).

our parameters and those of Ref. 61 lead to an excellent fit of
D vs. T .

Figure 2 indicates that for WAC there might be an inflec-
tion point in the DSi(1/T) of 5 GPa, around 4000 K. We
investigate this possibility further in Fig. 5, where we show the
configurational entropy calculated via the inherent structure
energy, with S0 = 3.9 J/(mol K). This value for S0 is found
by fitting the DSi obtained from simulations [black dots in
Fig. 5(b)] to the calculated DSi obtained from Eq. (2) and
the inherent structure energies [red squares in Fig. 5(b)]. In
addition to S0 = 3.9 J/(mol K), our best fit gives µ0 = 1.165
× 10−3 cm2/s and A = 81.21 kJ/mol.

Figure 5(a) shows a clear kink in the configurational en-
tropy at approximately 3700 K. This kink provides a conve-
nient escape from the Kauzmann paradox: without the kink,
the configurational entropy would extrapolate to zero at some
finite temperature TK , below which the entropy would attain
a non-physical negative value. That the kink in Sc(T) happens

around 3700 K is no coincidence, since near this temperature
the Si coordination number becomes exactly 4. This indicates
that the number of “defects” has been reduced to zero, such
that below this temperature all Si ions are bonded with exactly
four Si neighbors.63 At finite temperatures, the configurational
entropy remains nonzero however, because the Si ions in the
liquid can still form rings of different shapes and sizes that
all consist of 4-bonded Si ions. As the temperature is lowered
further, the ring statistics are reduced to a smaller and smaller
set of microstates, which leads to a reduction of the configura-
tional entropy Sc.

Nevertheless, it is unclear how much Sc is reduced as
we approach T = 0. If we assume that the Adam-Gibbs equa-
tion remains valid at low T and that the diffusivity is truly
Arrhenius—as seems to be the case for experimental silica—
then the configurational entropy needs to smoothly saturate
to a constant nonzero value [blue dashed curve in Fig. 5(a)].
However, it is also possible that WAC has a non-degenerate
ground state and that Sc = 0 at T = 0. A physical interpretation
of this would be that the glass gradually relaxes upon lowering
T until at T = 0 it has become a perfect glass.64–66 Our data do
not refute this scenario. In fact, if we extrapolate the data in
Fig. 5(a), we find that Sc(T) drops in a way that is consistent
with a linear function that has Sc = 0 at T = 0, i.e., consistent
with the simplest extrapolation [the orange dotted-dashed line
in Fig. 5(a)]. Using the Adam-Gibbs equation, we convert this
low-T estimate for Sc into a low-T estimate for D(1/T), which
is the orange dotted-dashed curve in Fig. 5(b). We see that in
this scenario, the behavior of D(1/T) below the kink is not far
from an Arrhenius behavior [blue dashed line in Fig. 5(b)].

IV. SHORT-TIME DYNAMICS

Closely related to the diffusivity is the mean square dis-
placement (MSD). In fact, in three dimensions the diffusivity D
follows from ⟨|r(t) − r0|2⟩ = 6Dt, in the limit t → ∞. At very
short time scales (on the order of femtoseconds and less) the
movement is ballistic, as the atom has not yet felt the forces
of its neighbors: r(t) ≈ r0 + v0t and thus ⟨|r(t) − r0|2⟩ ≈ v2

rmst
2,

with vrms =
√

3kT/m. At high temperatures the transition from
the ballistic regime to the diffusive regime is smooth, but at
low temperatures the so-called “cage effect” produces a third
regime. In this cage regime the MSD is nearly flat, as the atoms
are unable to move past their nearest neighbors for a significant
amount of time. Eventually, after a characteristic time known
as the α relaxation time, the atoms are able to escape and the
MSD increases and becomes diffusive. As the temperature is
lowered and the diffusivity decreases, the cage regime spans
a longer and longer period of time until the liquid reaches
the glass transition and diffusion can no longer be detected.
Clearly, the plateau value of the MSD is a good estimate for
the cage size.

At low densities, the transition from the ballistic regime
to the cage regime is not monotonic, but instead the MSD
shows an overshoot around approximately 0.2 ps [Fig. 6(a)].
This overshoot is closely related to the so-called Boson peak
in the dynamic structure factor S(q, t), which is the Fourier
transform of the MSD. This suggests that the MSD overshoot
may be caused by the elasticity of the cage. One can imagine
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FIG. 6. Mean squared displacement (MSD) of the Si ions in the WAC model,
for different system sizes N . Each system consists of 1

3 N Si ions and 2
3 N O

ions. For clarity, each curve above N = 1500 has been shifted by a factor of
1.1 with respect to the curve below it; e.g., N = 4500 has been multiplied by
1.12 to prevent overlap with N = 1500 and N = 3000. In panel (a), the MSD
at 5000 K and 2.0 g/cm3 (approx. 1.9 GPa) shows a large MSD overshoot
near 0.2 ps, which is independent of the system size. Finite-size effects,
however, do lead to the “ringing” effect that can be observed at larger times.
The time difference between two consecutive peaks in the ringing regime is
approximately given by ∆t ≈ L/c ≈ (0.053 ps)N 1/3, where L is the size of
the box (of total volume L3) and c the approximate speed of sound.67,68 In
panel (b), the MSD at 3000 K and 3.2 g/cm3 (approx. 12.4 GPa) is shown,
and at these pressures the MSD overshoot and the ringing can no longer be
witnessed.

an atom trying to escape its cage by moving in between two of
its neighbors, causing these neighbors to move apart slightly.
But because these neighbors are also constricted, they cannot
open up a space large enough for the atom to move past them.
The result is that the atom is bounced back into its cage.

Fig. 6(a) shows that the MSD overshoot is not a finite-size
effect, as it is independent of the number of atoms N (to make
the individual curves easier to see in Fig. 6, we have shifted
each curve up slightly). In addition to the overshoot, there is
also a distinct ringing visible at later times, which clearly does
depend on the size of the simulation box. At high densities
and pressures the MSD overshoot disappears, and with that
also the ringing [see Fig. 6(b)]. The ringing is caused by the
periodic boundary conditions employed in our simulations, as
has also been pointed out by Lewis and Wahnström.67,68 Any
disturbance that is able to propagate undamped through the

system will leave one side of the box and reenter from the
other side. Therefore, each peak in the ringing is a copy of the
previous peak that has traveled an additional time of L/c where
L is the size of the box and c the approximate speed of the
sound wave.

From Fig. 6(a), we estimate that for WAC at 5000 K
and 2.0 g/cm3, the time between two consecutive peaks is ∆t
≈ L/c ≈ (0.053 ps)N1/3, which corresponds to c ≈ 5 nm/ps.
The speed of sound can also be estimated via the adiabatic
compressibility, KS = 1/ρc2, which can be calculated from
the isothermal compressibility and the heat capacities: KS

= KTCV/CP. We find these numbers to be in agreement.
Previous studies have argued68 that the ringing may disap-

pear when N is made large enough but, as Fig. 6(a) indicates for
WAC at low T and low ρ, the ringing remains, even in systems
as large as N = 9000 ions. A more important factor than the
box size is the anharmonicity of the liquid. A liquid that is
completely harmonic allows waves to travel through the entire
system with little dissipation, while in an anharmonic liquid
the frequency of the wave breaks up into many components,
which reduces the wave’s amplitude. Thus, the LDL system in
Fig. 6(a) is strongly harmonic, which explains why a large box
with 9000 ions does not provide sufficient damping. Compar-
ing Figures 6(a) and 6(b), we are therefore able to associate
the crossover from strong to fragile liquid thermodynamics of
Fig. 3, with a change of harmonic to anharmonic character in
the dynamics.

V. DISCUSSION

In Secs. I–IV, we have provided the time-dependent as-
pects of two distinctly different models of the technically
important and academically fascinating substance, SiO2, for
which the equilibrium thermodynamic characteristics were
described in an earlier paper.34 The two models have different
virtues. For the first model, BKS, our results discussed in
Fig. 2(a) provide further evidence that it accurately reproduces
the properties of laboratory silica. For the second, WAC, the
original SiO2 simulation model,33 we have further demon-
strated how useful it may be as a model liquid system. While
clearly related to the laboratory SiO2 system, its dramatic vari-
ations of dynamic properties with pressure show how closely it
approaches actual criticality (and first order polyamorphism).
Most interesting in this respect is the clear path that can be seen
to the generation of a model ionic system with unambiguous
liquid-liquid phase equilibria free from interference by facile
crystallization.

Using temperature scanning, the WAC model simulations
have revealed that at low pressures there is a clear separation
of an anomalous maximum in the equilibrium heat capacity
from the kinetic glass transition, something that was formerly
only evident in frequency-dependent heat capacity simulations
(on the BKS model69). In the WAC model, this feature is not
only much more prominent, but also sharpens (∂2CP/d2T)P
with increasing pressure, reaching a maximum in sharpness at
4 GPa. The increasing sharpness in heat capacity is correlated
with an increasingly sharp deviation from the high temperature
diffusivity in the Arrhenius plot, as predicted by the Adam-
Gibbs equation.60 In principle, this should be accompanied by
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a reversion to a low temperature Arrhenius domain such as that
calculated, but not yet observed, in the case of supercooled
water.70 In the case of WAC at 4 GPa, this reversion occurs
at too low a diffusivity to be observed within our simulation
window, but at the higher pressure of 5 GPa the reversion
is seen at the limit of simulation error. The existence of this
“fragile-to-strong” liquid transition has been supported by our
Adam-Gibbs prediction of the course of the diffusivity at lower
temperatures, as was demonstrated in Fig. 5.

In the case of a first order liquid-liquid transition, the
decrease in diffusivity is seen as a major discontinuity (which
can be attributed to the significant discontinuity in configura-
tional entropy), as seen in Fig. 1 for the two established cases:
liquid silicon in the SW model, and ST2 water. The sharp
diffusivity plunge in WAC in Fig. 1(b) as pressure changes in
the range 2–6 GPa can be regarded as a sort of “critical slowing
down” in the vicinity of a critical point. This critical point does
not exist in the usual PT-plane but only exists in an additional
dimension in parameter space, i.e., we envision that a small
change in the parameters of WAC may introduce a LLCP.

Thus, we need to determine how to alter the interaction
potential of the WAC model in order to change the system to
one with an effective critical point and a liquid-liquid coexis-
tence line. In view of the controversies surrounding the subject
of polyamorphism, it would clearly be very desirable to have
such an example for study. We therefore return briefly to the
subject of how to produce the condition for criticality (and then
liquid-liquid coexistence), in a SiO2-like model.

In our previous paper we suggested that criticality could
be engineered by imposing an energy penalty on any Si–O–Si
angle that deviates from 180◦, in the same way that Stillinger
and Weber39 devised their successful potential for liquid sili-
con. It has been shown previously how the weakening of this
tetrahedral bias can also weaken the tendency to crystallize in
the SW model and produce a strongly glassforming monatomic
liquid.71 Separately,72 using the isochore crossing diagnostic,
it has been shown how the glassforming domain in such a
modified SW model is reached via a critical point at which the
first order transition strength disappears and the glassforming
domain begins. An analogous continuous path to criticality can
be generated by reversing the above path and going from the
present WAC model to a critical model by continuous changes
in the tetrahedral reinforcement parameter. A practical moti-
vation for actively pursuing such phenomenology would be
the possibility of generating nanoporous amorphous versions
of aluminum-free zeolitic structures (currently under study as
fuel cell membrane materials).

Unexpectedly, however, we find that there are even simpler
ways of inducing criticality in a modified WAC model. In a
paper currently in preparation,73 we will describe a modifi-
cation which produces not only the unambiguous isochore-
crossing analogs of Figure 1(b) of our previous paper, but also
shows how the progressive perturbation of the WAC potential
can result in (i) a systematic shift of the LLCP to negative
pressures and (ii) the generation of a PT phase diagram that
is remarkably similar to that predicted for real water.74

Changing the parameters of a model to suppress or en-
hance a LLCP is not a new concept. A study done by Mo-
linero et al.71 shows that reducing the three-body repulsion

parameter λ in the Stillinger-Weber potential39 causes the first
order liquid-liquid phase transition in the original model (λ
= 21) to disappear. This parameter is related to the flexibility
of the tetrahedral bond angles, and making these more flex-
ible appears to suppress the LLCP. The connection between
bond angle flexibility and the occurrence of a LLCP has also
been shown by Tu et al. using a different monatomic model,75

and more recently by Sciortino and coworkers using models
of tetra-functional patchy colloids.76–78 The colloidal studies
are of particular interest, as it has been shown that with the
right choice of parameters it is possible to witness a “crystal
clear” liquid-liquid phase transition, as opposed to a transition
that occurs between two liquids that are both metastable with
respect to the crystal (as has been predicted, e.g., for the case
of water for which it had previously been predicted3,16,79–81).
Furthermore, it might be possible to construct these colloids in
laboratory, thus providing a means to experimentally investi-
gate the phenomenon of liquid-liquid phase transitions in one-
component tetrahedral systems.

VI. CONCLUSIONS

Both the analysis of the diffusivity and the analysis of
the MSD overshoot indicate a large difference between the
low-density region (LDL) of WAC at low T and low P, and
the high-density region (HDL). The difference between these
two liquid states can be clearly seen in a large number of
quantities. LDL is more tetrahedral, has relatively stiffSi–O–Si
bond angles, has a more open structure (making it less dense),
acts as a strong liquid, and has a MSD that is harmonic. On
the other hand, HDL is far less tetrahedral, has flexible bond
angles, is a compact liquid, shows fragile behavior, and is
anharmonic.

Note that although we can identify two clearly distinct
liquid structures in WAC, this does not confirm that WAC
displays a liquid-liquid phase transition or has a liquid-liquid
critical point. The LDL structure is not sufficiently stable
with respect to the HDL at any temperature or pressure and
is therefore unable to remain in a (meta) stable equilibrium
with HDL. Instead, there is a smooth transition between the
two liquid regions, most clearly demonstrated by the smooth
jump in diffusivity [Fig. 1(b)]. This change in structure is
accompanied by a large but finite CP maximum [Fig. 3(b)].
The locus of CP maxima is therefore a good indicator of
where the HDL region ends and the LDL region begins,
especially since the CP maximum coincides with the strong-
to-fragile transition. The behavior of BKS silica is in many
ways similar to that of WAC, but with a smoother LDL-HDL
transition.
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