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Symmetry and physics

1.1 Exercises

1.1 Write down and solve the equations of motion for the system of masses
and springs shown in Fig. 1.5. Assume both masses to be equal and
all springs to have the same force constant. Show that the eigenvalues
for the energy are given by ω2m = k, 3k, from which the eigenvectors
can be found to be in agreement with the results obtained purely by
symmetry arguments. Must all three force constants be equal for this
result to be obtained? Can you decide based on symmetry arguments
alone?

1.2 Write the equations of motion for exercise 1.1 in the form Mu =
−ω2mu, where M is a matrix. Use the two eigenvectors found in the
text,

u1 =
(

1
1

)
and u2 =

(
1
−1

)

to construct the matrix

S =
(

1 1
1 −1

)
,

where the first column of the matrix is given by u1 and the second
column by u2. Find S−1 and then diagonalize M according to

S−1MS = λI,

where I is the unit matrix, to find the eigenvalues λ.
1.3 Find the function generated by C4 acting on the function xf(r).
1.4 Show that the operation Sn/2

n = I for n/2 odd. Show that for even n,
Sn implies the existence of Cn/2.

3
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1.5 Consider the case of an n-fold principal axis. Show that the intro-
duction of a 2-fold symmetry axis perpendicular to it implies the co-
existence of n equivalent axes for n odd, and the coexistence of n/2
equivalent axes for n even.

1.6 Introduce diagonal reflection planes, σd, in the previous problem and
show, using the 3-dimensional defining matrices for a σd plane and a
neighboring 2-fold axis U , that the product Uσd = Sn.

1.7 Show that the determinant of an improper rotation is −1.

1.8 Obtain the 3-dimensional rotation

matrix for the C2 axis joining two
opposite edges of a tetrahedron,
shown in figure 1.1. Note that the
origin of the coordinate system is
the centroid of the tetrahedron.
(Hint: Start with a 2-fold rota-
tion about the z-axis, then use a
counterclockwise rotation about
the x-axis to transform the axis
to its final position, as shown in
the figure.)

Fig. 1.1. A C2 rotation about an
axis bisecting opposite edges of a
tetrahedron.

1.9 Using the results of the previous problem, find the new function gen-
erated by the function operator Ĉ2 acting on zf(r).

1.10 Obtain the 3-dimensional rotation
matrix for the operation C3[111]
shown in figure 1.2. (Hint: Start
with a 3-fold rotation axis along
the z-direction, followed by rotat-
ing the axis counterclockwise, by
45◦ about the y-axis; and, finally,
rotate the axis counterclockwise
by 45◦ about the z-axis.)

Fig. 1.2. A C3 rotation about
a [111] body-diagonal axis of a
cube.
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1.2 Solutions

1.1 The equation of motion are

m
d2x1

dt2
= κ

(
x2 − 2x1

)

m
d2x2

dt2
= κ

(
x1 − 2x2

)





⇒




2κ
m
− ω2 −κ

m
−κ
m

2κ
m
− ω2






x1

x2


 = 0

(1.1)
where we assumed a harmonic time-dependence. The characteristic
equation is

(
2κ
m
− ω2

)2

=
( κ
m

)2

⇒ ω2 =
κ

m
,

3κ
m

Eigenvectors

ω2 =
κ

m
:

1√
2

[
1
1

]
; ω2 =

3κ
m

:
1√
2

[
1
−1

]

The resulting eigenvectors obtain as long as the system is symmetric
about the center. This can be achieved by keeping the outer spring
constants at κ and setting the middle one to κ′; the eigenvalues will
become ω2 = κ/m, (κ + 2κ′)/m.

1.2 S−1 = S, and normalizing

S =
1√
2

(
1 1
1 −1

)

we obtain

1
2

(
1 1
1 −1

)(
2κ −κ
−κ 2κ

)(
1 1
1 −1

)
=
(
κ 0
0 3κ

)

1.3 The operation C4 is given by

C4 =
[
0 −1
1 0

]

and we have

Ĉ4

(
xf(r)

)
=
(
C−1

4 x f(C−1
4 r)

)
= yf(r)

1.4 The operation Sn = Cnσh, hence, for n/2 odd we have

Sn/2
n = Cn/2

n σ
n/2
h = C2σh = I
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1.5 The existence of a 2-fold axis U perpendicular to Cn implies the exis-
tence of equivalent 2-fold axes U (m) = C−m

n UCm
n , m = 0, . . . , n− 1.

For n odd there n distinct axes U (m), while for n even the values
m and n − m define the same axis; hence there only n/2 2-fold axes
perpenducular to Cn.

1.6 If we take the 2-fold axis to be along the x-axis, then its matrix is

U (x) =




1 0 0
0 −1 0
0 0 −1




An adjacent diagonal reflection plane can be generated by rotating a
σy plane by π/n about the z-axis, namely,

σd =




cos(π/n) − sin(π/n) 0
sin(π/n) cos(π/n) 0

0 0 1






1 0 0
0 −1 0
0 0 1






cos(π/n) sin(π/n) 0
− sin(π/n) cos(π/n) 0

0 0 1




=




cos(2π/n) sin(2π/n) 0
sin(2π/n) − cos(2π/n) 0

0 0 1




The product

U (x) · σd =




1 0 0
0 −1 0
0 0 −1






cos(2π/n) sin(2π/n) 0
sin(2π/n) − cos(2π/n) 0

0 0 1




=




cos(2π/n) sin(2π/n) 0
− sin(2π/n) cos(2π/n) 0

0 0 1


 = Cn σh = Sn

1.7 The determinant of an improper rotation Sn = Cnσh is given by

det(Sn) = det
(
Cn · σh

)
= det(Cn) · det(σh) = 1× (−1) = −1
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1.8 The rotation C2 is obtained as

C2 = C
(x)
3 C

(z)
2 C

(x)
3

=




1 0 0

0 −1
2
−
√

3
2

0
√

3
2

−
1
2






−1 0 0
0 −1 0
0 0 1







1 0 0

0 −1
2

√
3

2

0 −
√

3
2

−
1
2




=




−1 0 0

0
1
2

−
√

3
2

0 −
√

3
2

−1
2




1.9 Applying Ĉ2 to the function ψ = zf(r) yields

Ĉ2ψ =
(
C2 z

)
f(C2r) =




−1 0 0

0
1
2

−
√

3
2

0 −
√

3
2

−1
2







0
0
z


 f(r) =

(
−
√

3
2
y − 1

2
z

)
f(r)

1.10
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Symmetry and group theory

2.1 Exercises

Note on the problems: Problems 1 through 15 range from those
which help in developing an understanding of the theory of groups to
those which are in the nature of finger exercises and help in develop-
ing familiarity with group theory and some dexterity in performing the
mathematical manipulations of group theory. Problems 17 and 18 are
crucial. The solution to problem 16 provides the basis for the remain-
ing computational methods that follow in later chapters. Problem 19
provides a check on the program developed in problem 18. Problems
20 through 25 provide an introduction to crystallographic point-groups.
They should all be read and thought about, and at least a few of them
carried to completion. Geometric figures are provided to elucidate the
properties of these point-groups. The vertices of the figures are num-
bered sequentially, to facilitate the construction of permutation opera-
tions associated with the groups. In addition to the particular questions
posed in each problem, apply the program developed in problem 18 to
each of problems 20 through 25.

2.1 Convert the following permutation from bracket notation to cycle no-
tation. (

1 2 3 4 5 6 7
6 5 2 3 4 1 7

)

2.2 Convert (163275) to bracket notation.
2.3 Given permutation operators p and q defined by

p =

(
1 2 3 4 5 6 7
1 7 4 5 3 2 6

)
q =

(
1 2 3 4 5 6 7
5 1 2 4 3 7 6

)
,

(a) Find the product pq in bracket notation.
(b) Use the Permute function defined in Mathematica, or any other

8
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computer language code you develop, to carry out the permutation
product.

2.4 Repeat problem 2.3 for the following pairs of permutation operators
(a) p = (567), q = (2673),
(b) p = (246)(37), q = (143)(56).

Write the products pq in cycle notation. Try to do this by sight
without writing out the implicit cycles in p or q.

2.5 Find the inverse and degree of each of the following permutation opera-
tions, by long-hand, using the Mathematicalfunction InversePermutation,
or developing your own code in C or FORTRAN:

p =

(
1 2 3
1 3 2

)
q =

(
1 2 3
3 2 1

)
r =

(
1 2 3 4
4 3 1 2

)

s =

(
1 2 3 4
2 1 4 3

)
t =

(
1 2 3 4 5
5 4 1 2 3

)

u =

(
1 2 3 4 5 6 7
1 4 7 6 3 2 5

)
v =

(
1 2 3 4 5 6 7
6 5 2 3 4 7 1

)

w = (12)(34657)

2.6 Show that the permutations of n objects, which form the symmetric
group Sn is of order n!.

2.7 Show for the symmetric group S3 that elements with the same form
of decomposition into cycles belong to the same class. In generating
the classes augment the above computer functions, or codes, with the
Mathematicalfunction ToCycle[p], or an equivalent.

2.8 Determine the classes of the symmetric group S4.
2.9 Show that the number of element nci of a class Ci of a finite group G,

divides its order, i.e. g/nci is an integer.
2.10 Show that the set comprised of all inverses of the elements of a class

Ci of a group G is also a class of G, which we may denote by Cj = C−1
i .

Such classes are called mutually reciprocal classes. If a class contains
its own inverse elements it is called a self-inverse class.

2.11 Consider the isomorphic realizations C4v and D4 of the square. These
realization groups contain 8 elements:

E,C4, C
−1
4 , C2, σ1(C

′1
2 ), σ2(C

′2
2 ), σ′

1(C
′′2
2 ), σ′

2(C
′′2
2 ).

In addition to the identity operation we find in each realization 4-
fold rotations and reflections (or 2-fold rotations). However, if we ex-
amine the class structure of these realization groups we find: C1 =
{E}, C2 = {C4, C

−1
4 }, C3 = C2, C4 = {σ1(C′1

2 ), σ2(C′2
2 )}, C5 =
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{σ′
1(C

′′2
2 ), σ′

2(C
′′2
2 )}. A close examination of the nature of the opera-

tions in these groups reveals that the reflections (or 2-fold rotations)
in different classes are not mutually reachable by any of the group
elements.

2.12 Prove that if class Cj contains the inverse of element R in class Ci, then
Cj must be comprised of all the inverse elements of Ci, and nc(j) =
nc(i), where nc(i) is the number of elements in class Ci. An ambivalent
class is a class that is its own inverse.

2.13 Find the class multiplication coefficients hijk for the groups C3v and
C4v.

2.14 Show that the following general relations are satisfied by the class
multiplication coefficients.

(i) hijk = hjik (This is equivalent to proving that CiX = XCi for
all elements X. Let X range over all elements in Cj.)

(ii)
∑ncl

k=1 hijk hklm =
∑ncl

k=1 hjlk hikm

(iii) nc(i) nc(j) =
∑ncl

k=1 hijk nc(k).
(iv) hijk = hīj̄k̄

(v) nc(k) hijk = nc(i) hkj̄i = nc(i) hjk̄̄i = nc(j) hik̄j̄

(vi) hij1 = nc(i) δij̄ where nc(i) is the number of elements in
class Ci and where bars denote the inverse class. That is, Cī
is a class that contains the inverses of the elements of class Ci.
Note, that the third subscript on h, here, is the number 1, not
the letter l.

(vii) Show that a mapping of one group onto another can be com-
pletely specified by the action of the mapping on the generators
of the larger group.

2.15 Prove the group rearrangement theorem.
2.16 Prove the class rearrangement theorem.
2.17 Prove that the set of integers 1, 2, 3, . . ., (k− 1) form a group of order

(k-1) under ordinary multiplication modulo k. Note: Two integers m
and n are equal, modulo k, if m = n+ jk, where j is an integer.

Multiplication, modulo a prime number, plays an important role in
Dixon’s method for determining the characters of irreducible repre-
sentations.

2.18 Write a a general computer program, guided by the outlines in the
text, which makes use of the minimal set of group generators to

(i) generate the group elements in permutation form,

(ii) construct the corresponding Cayley tables,
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(iii) generate the inverse elements,

(iv) generate the classes and class arrays, specified in Section 3.1,

(v) generate the class multiplication matrices

2.19 Use the program from the previous problem to obtain the group mul-
tiplication tables for the point-groups C3v, C4v, C5v.

Fig. 2.1. Clockwise from top left:
Symmetries of the point-groups C2v,
C4v, C6v, and C3v, respectively.

The surface nets of fig-
ure 2.5 can be modified by
replacing the n reflection
planes σv with n 2-fold ro-
tation axes C2 that are per-
pendicular to the princi-
pal Cn axis, and by replac-
ing the n reflection planes
σd with n 2-fold C′

2 axes,
giving rise to the dihe-
dral symmetry groups Dn

shown in figure 2.6, which
are isomorphic to the Cnv

groups.Dn shown in figure
2.6, which are isomorphic
to the Cnv groups.

2.20 Figure 2.5 shows the primitive meshes corresponding to allowed two-
dimensional surface lattices (nets). The vertices are sequentially num-
bered, clockwise. Also shown, are the allowed types of reflection
planes, designated by σv and σd.

Fig. 2.2. Symmetries
of the dihedral groups
D2, D4, D3, and D6.

(a) Find all the physically realizable point-symmetry operations for
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the four meshes of figure 2.5. Write out these symmetry operations as
permutations of the vertex numbering, in cycle notation. ( Note that
there are 4, 8, 6, and 12 operations for these meshes, respectively; and
that the identity operation and the rotations maintain the clockwise
ordering of the labeling. The mirror reflections change the labeling to
counterclockwise.)

b) Why aren’t the remaining permutations, like (1324) for C4v,
symmetry operations?

2.21 Figure 2.7 shows the primitive (Wigner-Seitz) cells for lattices with
symmetry involving a major axis of rotation and a horizontal reflection
plane σh, that is, a reflection plane perpendicular to the major axis.
These improper point symmetry groups are designated Cnh, where n
= 2, 3, 4, 6.

Fig. 2.3. Primi-
tive cells with Cnh

symmetries.

Show that these groups have the following properties:

(i) Since groups with even n include the 2-fold rotation C2=Cn/2
n ,

by taking the major axis along the z-direction, and defining the
C2 and σh by the 3-dimensional rotation matrices, show that

C2σh = σhC2 =



−1 0 0
0 −1 0
0 0 −1


 = I,

which is just the matrix that defines the inversion symmetry
operation r→ −r. Thus, Cnh symmetries with even n contain
the inversion operation, i.e., the corresponding primitive cell
have a center of inversion. Groups with odd n do not contain
the inversion.

(ii) For n=1, the group C1h is comprised of the identity E and σ,
and is usually denoted by Cs. Thus, show that we can express
the Cnh groups as the outer products

Cnh = Cn ⊗ Cs ,

containing 2n elements.
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(iii) Each has 2n classes.

Fig. 2.4. Prim-
itive cells with
Dnh symmetries

2.22 When the dihedral groups Dn are augmented by a σh reflection plane,
perpendicular to the major axis, as shown in Fig. 2.8, we obtain
the improper point-groups Dnh. Again, I is an element of the group,
only if n is even. Show that the Dn point-groups have the following
properties:

(i) The group order is 4n.
(ii) They contain n σv reflection planes, in addition to the n C2

rotations.
(iii) σh commutes with all the elements of the group. Hence we can

express these groups as

Dnh = Dn ⊗ Cs .

2.23 In Figure 2.9, we show the case of augmenting Dn by a vertical σd

reflection plane that bisects the angle between two neighboring C2

axes. The ensuing groups are designated Dnd.
Show that

( i) the operation

C2σd = S2n ,

where C2 is one of the neighboring 2-fold axes.
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Fig. 2.5. Prim-
itive cells with
Dnd symmetries.

( ii) for n odd, there is one σd plane perpendicular to one of
2-fold axes, and that, in this case, the group can be expressed as

Dnd = Dn ⊗ Ci .

2.24 Figure 2.10 shows two regular tetrahedra with symmetries T and Td.
(a) For the tetrahedron shown with point-group symmetry T, write

out the symmetry operations in cycle notation for the various rotations
about the axes that pass through an apex of the tetrahedron and the
center of the opposite face. These consist of rotations denoted by
C3 and C2

3 . Do the same for symmetry operations that consist of
rotations about a 2-fold axis that passes through the midpoint of one
edge, the center of the tetrahedron, and the midpoint of the opposite
edge. Show that these 11 operations together with the identity form
a group, the T group.

Fig. 2.6. Prim-
itive cells with
tetrahedral sym-
metries T and
Td.

(b) In addition to the operation of part (a), the tetrahedron with
point-group symmetry Td shows reflection planes that pass through
one edge of the tetrahedron and bisect the opposite edge. Each of these
reflection planes contains one 2-fold and two 3-fold axes, and bisects
the angle between the remaining two 2-fold axes, thus designated σd.
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Show that each σd plane converts the 2-fold axis it contains into a
4-fold rotary reflection axes S4.

Write out the symmetry operations corresponding to the reflections
σd in cycle form. Expand the group of part (a) by including these
symmetry operations in the group. Note that this requires the inclu-
sion of other symmetry operations to complete the group, an example
being (1234) = (14)(123), which corresponds to a rotation followed by
a reflection. This group is designated Td.

Fig. 2.7. Prim-
itive cell with
Th tetrahedral
symmetries.

(c) Figure 2.11 shows the primitive cell with Th symmetry. In this
figure the 3-fold axes are rotated to coincide with the body diagonals
of a cube. One of the 2-fold axes is now along the z-axis. The σh

reflection planes are perpendicular to the 2-fold axes and bisect the
angles between the 3-fold axes. Carry out all the steps stated in parts
(a) and (b).

Fig. 2.8. The oc-
tahedral primitive
cell with O and
Oh symmetries.
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2.25 Figure 2.12 shows the primitive cell with O and Oh symmetry. O
is comprised of allowed rotation and reflection operation except σh,
it has 24 operations. Obviously, Oh contains σh. Carry out all the
steps stated in parts (a) and (c) of the previous problem for these two
octahedral groups.

2.2 Solutions

2.1 (16)(2543)

2.2
(

1 2 3 4 5 6 7
6 7 2 4 1 3 5

)

2.3 a) q̃ =
(

2 3 5 4 1 7 6
1 2 3 4 5 6 7

)

pq =
(

2 3 5 4 1 7 6
1 7 4 5 3 2 6

)
=
(

1 2 3 4 5 6 7
3 1 7 5 4 6 2

)

b) Permute
[
{1, 7, 4, 5, 3, 2, 6},{5, 1, 2, 4, 3, 7, 6}

]

={3, 1, 7, 5, 4, 6, 2}

2.4 a) q̃ =
(

1 2 3 4 6 7 5
1 2 3 4 5 6 7

)

pq =
(

1 6 2 4 5 7 3
1 2 3 4 7 5 6

)
=
(

1 2 3 4 5 6 7
1 3 6 4 7 2 5

)

Cycles: (236)(57)

b) q̃ =
(

4 2 1 3 6 5 7
1 2 3 4 5 6 7

)

pq =
(

4 2 1 3 6 5 7
1 6 7 2 5 4 3

)
=
(

1 2 3 4 5 6 7
7 6 2 1 4 5 3

)

Cycles: (1732654)
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2.5 p−1 = p; q−1 = q; r−1 =
(

1 2 3 4
3 4 2 1

)
; s−1 = s;

t−1 =
(

1 2 3 4 5
3 4 5 2 1

)
; u−1 =

(
1 2 3 4 5 6 7
1 6 5 2 7 4 3

)
;

v−1 =
(

1 2 3 4 5 6 7
7 3 4 5 2 1 6

)
; w−1 = (12)(43756)

2.6 S3 :




E = (1)(2)(3), C3 = (123), C−1

3 = (132),

σ1 = (12), σ2 = (23), σ3 = (31)

2.7
2.8 {E},
{(12), (13), (14), (23), (24), (34)},

{(12)(34), (13)(24), (14)(23)},
{(123), (124), (132), (134), (142), (143), (234), (243)}

{(1234), (1243), (1324), (1342), (1423), (1432)}.
2.9 In the conjugation operation SUS−1 = V , where S, U, V ∈ G, either

V ≡ U , and U is in a class by itself, or V 6≡ U i.e. distinct from U .
Accordingly, if we define the class sum for Ci

∑

U∈Ci

U

containing nc(i) distinct elements, then we find that

S

(∑

U∈C

U

)
S−1 =

(∑

U∈C

U

)

We consider any two elements U, V of some class C of a group G,
related by the conjugation V = SUS−1, S ∈ G, then
∑

R∈G
RV R−1 =

∑

R∈G
RSUS−1R−1 =

∑

R∈G
(RS)U (RS)−1 =

∑

R∈G
RUR−1

by the group rearrangement theorem. Moreover,

S
∑

R∈G

RV R−1 =
∑

R∈G

SRUR−1S−1S =
∑

R∈G

(SR)U (SR)−1S =
∑

R∈G

RUR−1S
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or

S

(∑

R∈G

RV R−1

)
S−1 =

∑

R∈G

RUR−1

i.e. it contains the same
Thus,

2.10 Consider the mutually inverse elements UU−1 = E, and the conju-
gation RUR−1 = V , where U and V belong to the same class Ci,
then

V −1 =
(
RUR−1

)−1
= RU−1R−1

thus, U−1 and V −1 belong to the same class Cj. If V −1 ∈ Ci, then
U−1 ∈ Ci and Ci is a self-inverse class.

2.11 There is no conjugation operation in the group that would take one
set of reflections (U rotations) into the other, since there is no π/4
rotation about the z-axis.

2.12 See Exercise 2.10.
2.13 For C3v, see example 2.7. C4v has five classes

C1 = {E}, C2 = {C2}, C3 = {C4, C
−1
4 }, C4 = {σ1, σ2}, C5 = {σd

1 , σ
d
2}

The class multiplications are

C1 Ci = Ci C1 = Ci,

C2
2 = C1, C2 C3 = C3, C2 C4 = C4, C2 C5 = C5,

C2
3 = 2C1 + 2C2, C3 C2 = C3, C3 C4 = 2C5, C3 C5 = 2C4,

C2
4 = 2C1 + 2C2, C4C2 = C4, C4C3 = 2C5, C4 C5 = 2C3,

C2
5 = 2C1 + 2C2, C5 C2 = C5, C5 C3 = 2C4, C5 C4 = 2C3

2.14

(i) Using X Ci = CiX, ∀X ∈ G then
∑

Xj∈Cj

Xj Ci = Cj Ci = Ci

∑

Xj∈Cj

Xj = Ci Cj

hence hijk = hjik

(ii)
(iii)
(iv)
(v)
(vi)
(vii)
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2.15 Since each element of the group appears only once in any row or
column, then multiplying any row by one element of the group should
not introduce any redundancies, but only rearanges the elements as
they appear in the row.

2.16 We define the class sum for Ci
∑

Ui∈Ci

U

containing nc(i) distinct elements, then we find that

S

( ∑

Ui∈Ci

Ui

)
S−1 =

∑

Ui∈Ci

SUiS
−1 =

∑

Vi∈Ci

Vi

where Vi = SUiS
−1 ∈ Ci, and twe obtain a set of nc(i) distinct ele-

ments of Ci.
2.17 Denote the set of number 1, 2, 3 . . ., (k − 1) by S, then

(i ∗ j) mod k = l ∈ S, ∀ i, j ∈ S, Closure

(i ∗ j) mod k = 1 ⇒ i ∗ j = mk + 1, or j =
mk + 1

i
< k

2.18 Mathematica program:

<< "Combinatorica‘"

Print["GROUP T"];

g = 12;

Print["GROUP ORDER: ", g];

(* GENERATE THE GROUP ELEMENTS IN PERMUTATION FORM *)

i = 1;

lgen = 3;

L = {Range[4], {4, 3, 2, 1}, {1, 4, 2, 3}};
Print["GROUP GENERATORS: ", L];

(* L is the list of group elements in permutation form. *)

f := Permute[L[[i]], L[[j]]]

While[TrueQ[Length[L] < g],
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For[i = 1, i < g, i++,

For[j = 1, j < (Length[L] + 1), j++,

Switch[FreeQ[L, f], True,

AppendTo[L, f]

]

]

]

];

Print["GROUP ELEMENTS: ", L];

(* GENERATE INVERSE ELEMENTS *)

(* LI is list of inverse elements of L in permutation form.*)

Print["MULTIPLICATION TABLE"];

(* m is the multiplication table.*)

m = TableForm[MultiplicationTable[L, Permute]];

(* LI1 is list of the inverse elements of L in number form.*)

LI1 = {1};
For[i = 2, i < g + 1, i++,

For[j = 1, j < g + 1, j++,

Switch[TrueQ[m[[1, i, j]] == 1], True,

AppendTo[LI1, j]

]

]

];

Print["INVERSE ELEMENTS; ", LI1]

(* GENERATE THE GROUP CLASSES . *)

(* LC is the list of classes where
LC[i,j] is the jth element of class i,
nc is the number of classes. *)
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LC = {{1}};
i = 1;

nc = 1;

f := m[[1, m[[1, j, i]], LI1[[j]]]];

Block[{p = Range[g], C1 = {}}, p[[1]] = 0;

While[Apply[Plus, p]!= 0, i = i + 1;

Switch[TrueQ[p[[i]]!= 0], True,

C1 = {i}; p[[i]] = 0;

For[j = 2, j < g + 1, j++,

Switch[FreeQ[C1, f], True,

AppendTo[C1, f];

p[[f]] = 0]];

AppendTo[LC, C1];

nc = nc + 1;

C1 = {}
]

]

];

Print["NUMBER OF CLASSES: ", nc]

Print["CLASSES: ", LC];

(* indc[i] is the class to which element i belongs. *)

Do[j = 1;

While[j <= nc,

Switch[MemberQ[LC[[j]], i], True,

indc[i] = j; j = nc + 1,

False,

j = j + 1

]
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], {i, 1, g}
];

Print["CLASS OF ELEMENT I: ",

MatrixForm[indexc = Array[indc, {g}]]]

(* GENERATE THE CLASS MULTIPLICATION MATRICES *)

(* a[i,j,k] is the class multiplication matrix.*)

Print["CLASS MULTIPLICATION MATRICES"];

Do[a[i, j, k] = 0, {i, 1, nc}, {j, 1, nc}, {k, 1, nc}];
Do[a[1, i, i] = 1; a[i, 1, i] = 1, {i, 1, nc}];
s := m[[1, LC[[i, l]], LC[[j, k]]]];

Do[

For[l = 1, l < Length[LC[[i]]] + 1, l++,

For[k = 1, k < Length[LC[[j]]] + 1, k++,

For[m1 = 1, m1 < nc + 1, m1++,

Switch[MemberQ[LC[[m1]], s], True,

a[i, j, m1] = a[i, j, m1] + 1

]

]

]

];

Do[a[i, j, m1] = a[i, j, m1]/Length[LC[[m1]]],

{m1, 1, nc}
],

{i, 2, nc}, {j, 2, nc}
]

Print["CLASS MULTIPLICATION MATRICES: ",

MatrixForm[h = Array[a, {nc, nc, nc}]]]
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2.19 C3v

GROUP ORDER: 6

GROUP ELEMENTS:
{
E = 1 = {1, 2, 3}, C3 = 2 = {2, 3, 1}, C−1

3 = 3 = {2, 1, 3},

σ1 = 4 = {3, 1, 2}, σ2 = 5 = {3, 2, 1}, σ3 = 6 = {1, 3, 2}
}

MULTIPLICATION TABLE:

1 2 3 4 5 6
2 4 5 1 6 3
3 6 1 5 4 2
4 1 6 2 3 5
5 3 2 6 1 4
6 5 4 3 2 1

INVERSE ELEMENTS:
{
1, 4, 3, 2, 5, 6

}

NUMBER OF CLASSES: 3

CLASSES:
{
{1}, {2, 4}, {3, 6, 5}

}

CLASS OF ELEMENT I:
1 2 3 4 5 6
1 2 3 2 3 3

CLASS MULTIPLICATION MATRICES:

H(1) =




1 0 0
0 1 0
0 0 1


 , H(2) =




0 2 0
1 1 0
0 0 2


 , H(3) =




0 0 3
0 0 3
1 2 0




C4v

GROUP ORDER: 8

GROUP GENERATORS:
{
E = 1 = {1, 2, 3, 4}, C4 = 2 = {4, 1, 2, 3}, σd1 = 3 = {3, 2, 1, 4}

}

GROUP ELEMENTS:
{
E = 1 = {1, 2, 3, 4}, C4 = 2 = {4, 1, 2, 3}, σd1 = 3 = {3, 2, 1, 4},

C2 = 4 = {3, 4, 1, 2}, σx = 5 = {2, 1, 4, 3}, C−1
4 = 6 = {2, 3, 4, 1},

σd2 = 7 = {1, 4, 3, 2}, σy = 8 = {4, 3, 2, 1}
}

MULTIPLICATION TABLE
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1 2 3 4 5 6 7 8
2 4 5 6 7 1 8 3
3 8 1 7 6 5 4 2
4 6 7 1 8 2 3 5
5 3 2 8 1 7 6 4
6 1 8 2 3 4 5 7
7 5 4 3 2 8 1 6
8 7 6 5 4 3 2 1

INVERSE ELEMENTS:
{
1, 6, 3, 4, 5, 2,7,8

}

NUMBER OF CLASSES: 5

CLASSES:
{
{1}, {2, 6}, {3, 7}, {4}, {5, 8}

}

CLASS OF ELEMENT I:
1 2 3 4 5 6 7 8
1 2 3 4 5 2 3 5

CLASS MULTIPLICATION MATRICES:

H(1) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, H(2) =




0 2 0 0 0
1 0 0 1 0
0 0 0 0 2
0 2 0 0 0
0 0 2 0 0



, H(3) =




0 0 2 0 0
0 0 0 0 2
1 0 0 1 0
0 0 2 0 0
0 2 0 0 0



,

H(4) =




0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1



, H(5) =




0 0 0 0 2
0 0 2 0 0
0 2 0 0 0
0 0 0 0 2
1 0 0 1 0




C5v

GROUP ORDER: 10

GROUP GENERATORS:
{
E = 1 = {1, 2, 3, 4,5}, C5 = 2 = {5, 1, 2, 3, 4}, σ2 =

3 = {3, 2, 1, 5,4}
}

GROUP ELEMENTS:
{
E = 1 = {1, 2, 3, 4,5}, C5 = 2 = {5, 1, 2, 3,4},
σ2 = 3 = {3, 2, 1, 5,4}, C2

5 = 4 = {4, 5, 1, 2, 3},
σ4 = 5 = {2, 1, 5, 4,3}, C3

5 = 6 = {3, 4, 5, 1, 2},
σ1 = 7 = {1, 5, 4, 3,2}, C4

5 = 8 = {2, 3, 4, 5, 1},
σ3 = 9 = {5, 4, 3, 2,1}, σ5 = 10 = {4, 3, 2, 1,5}

}
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MULTIPLICATION TABLE:

1 2 3 4 5 6 7 8 9 10
2 4 5 6 7 8 9 1 10 3
3 10 1 9 8 7 6 5 4 2
4 6 7 8 9 1 10 2 3 5
5 3 2 10 1 9 8 7 6 4
6 8 9 1 10 2 3 4 5 7
7 5 4 3 2 10 1 9 8 6
8 1 10 2 3 4 5 6 7 9
9 7 6 5 4 3 2 10 1 8
10 9 8 7 6 5 4 3 2 1

INVERSE ELEMENTS:
{
1, 8, 3, 6, 5, 4,7,2,9, 10

}

NUMBER OF CLASSES: 4

CLASSES:
{
{1}, {2, 8}, {3, 7, 10, 5,9}, {4, 6}

}

CLASS OF ELEMENT I:
1 2 3 4 5 6 7 8 9 10
1 2 3 4 3 4 3 2 3 3

CLASS MULTIPLICATION MATRICES:

H(1) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , H(2) =




0 2 0 0
1 0 0 1
0 0 2 0
0 1 0 1


 , H(3) =




0 0 5 0
0 0 5 0
1 2 0 2
0 0 5 0


 , H(4) =




0 0 0 2
0 1 0 1
0 0 2 0
1 1 0 0




2.20

C2v : E = (1)(2)(3)(4), C2 = (24)(13), σx = (12)(34), σy = (14)(23)

C4v : E = (1)(2)(3)(4), C4 = (1234), C−1
4 = (1432), C2 = (24)(13),

σx = (12)(34), σy = (14)23), σd1 = (13), σd2 = (24)

C3v : E = (1)(2)(3), C3 = (123), C−1
3 = (132), σ1 = (23), σ2 = (34), σ3 = (12),

C6v : E = (1)(2)(3)(4)(5)(6), C6 = (123456), C−1
6 = (165432),

C3 = (135)(246), C−1
3 = (153)(264), C2 = (14)(25)(36),

σv1 = (12)(36)(45), σv2 = (14)(23)(56), σv3 = (16)(25)(34),
σd1 = (26)(35), σd2 = (13)(46), σd3 = (15)(24)
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2.21 (i) Since both σh =




1 0 0
0 1 0
0 0 −1


 and C2 =



−1 0 0
0 −1 0
0 0 1


 are di-

agonal matrices, they commute; and

σhC2 =




1 0 0
0 1 0
0 0 −1





−1 0 0
0 −1 0
0 0 1


 =



−1 0 0
0 −1 0
0 0 −1




(ii) Cn is a cyclic group of order n. Taking σ ≡ σh, the outer product
is comprised of the elements E×Ci

n and σh×Ci
n, i = 0, . . .n− 1. Cnh

contains 2n elements.
(iii) Cn is abelian, and σh × Ci

n = Ci
n × σh, hence the group Cnh is

abelian and contains 2n classes.

2.22 (i) For n even, Dn contains the n elements of the point-group Cn, two
inequvalent sets of two-fold rotations Uk and U ′

k, each containing n/2
elements.

Dnh = E ×Dn + σh ×Dn

and, thus, contains 4n elements.

(ii) We consider the representative two-fold rotationU =



−1 0 0
0 1 0
0 0 −1


,

then

σhU =




1 0 0
0 1 0
0 0 −1





−1 0 0
0 1 0
0 0 −1


 =



−1 0 0
0 1 0
0 0 1




which is a σv type reflection.
(iii) σh is diagonal, hence, it commutes with all the elements of Dn,
and we write

Dnh = Dn ⊗ Cs.

2.23 (i) We consider D4, and take U =




1 0 0
0 −1 0
0 0 −1


 and σd =




0 1 0
1 0 0
0 0 1




Uσd =




1 0 0
0 −1 0
0 0 −1






0 1 0
1 0 0
0 0 1


 =




0 1 0
−1 0 0
0 0 −1


 = σhC4 = S8
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(ii) A reflection plane that bisects the angle between two U -axes of
Dn overlaps passes through another U -axis, in which case, we obtain
a Dnh group. Thus, a σd plane can only be perpendicular to a U -axis.
Taking the U -axis to be along the y-axis, we get

U σd =



−1 0 0
0 1 0
0 0 −1






1 0 0
0 −1 0
0 0 1


 =



−1 0 0
0 −1 0
0 0 −1


 = I

and since I commutes with all elements of Dn, we write

Dnd = Dn ⊗ Ci

2.24 (a) The group elements in cycle notation are

(234), (243), (134), (143), (124), (142), (123), (132)

(14)(32), (12)(34), (13)(24)

GROUP: T
GROUP ORDER: 12

GROUP GENERATORS:
{
E = 1 = {1, 2, 3, 4}, U1 = 2 = {4, 3, 2, 1},

C
(1)
3 = 3 = {1, 4, 2, 3}

}

GROUP ELEMENTS:
{{
E = 1 = {1, 2, 3, 4}, U1 = 2 = {4, 3, 2, 1},
C

(1)
3 = 3 = {1, 4, 2, 3}, C(3)

3 = 4 = {4, 1, 3, 2},
C

(2)
3 = 5 = {3, 2, 4, 1}, C2(1)

3 = 6 = {1, 3, 4, 2},
C

2(4)
3 = 7 = {3, 1, 2, 4}, C(3)

3 = 8 = {2, 4, 3, 1},
U2 = 9 = {2, 1, 4, 3}, C(4)

3 = 10 = {2, 3, 1, 4},
C

(2)
3 = 11 = {4, 2, 1, 3}, U3 = 12 = {3, 4, 1, 2}}
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MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 10 11 12
2 1 4 3 10 11 8 7 12 5 6 9
3 5 6 7 8 1 9 2 4 11 12 10
4 10 11 8 7 2 12 1 3 6 9 5
5 3 7 6 11 12 2 9 10 8 1 4
6 8 1 9 2 3 4 5 7 12 10 11
7 11 12 2 9 5 10 3 6 1 4 8
8 6 9 1 12 10 5 4 11 2 3 7
9 12 10 5 4 8 11 6 1 3 7 2
10 4 8 11 6 9 1 12 5 7 2 3
11 7 2 12 1 4 3 10 8 9 5 6
12 9 5 10 3 7 6 11 2 4 8 1

INVERSE ELEMENTS: {1, 2, 6, 8,11,3,10,4,9, 7, 5,12}
NUMBER OF CLASSES: 4

CLASSES: {{1}, {2, 12, 9}, {3, 10, 4, 5}, {6, 7, 8, 11}}

CLASS OF ELEMENT I:
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 3 3 4 4 4 2 3 4 2

CLASS MULTIPLICATION MATRICES:

H(1) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , H(2) =




0 3 0 0
1 2 0 0
0 0 3 0
0 0 0 3


 , H(3) =




0 0 0 4
0 0 0 4
1 3 0 0
0 0 4 0


 , H(4) =




0 0 4 0
0 0 4 0
0 0 0 4
1 3 0 0




(b) We take the U -axis along the z-direction, and σ in the yz-plane,
we then get

U σ =



−1 0 0
0 −1 0
0 0 1






0 1 0
1 0 0
0 0 1




(12), (13), (14), (23), (24), (34)

(c)

2.25
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Group representations: Concepts

3.1 Exercises

3.1 Replace the dots in figure 3.2 with ones, and fill the blank squares
with zeroes; show that the resultant matrices satisfy the group multi-
plication rules of Table 2.1.

3.2 Consider an equilateral triangle with sides of unit length. The triangle
is in the xy-plane with its center of gravity at the origin and the
coordinates of its apices being

(0,
√

3/3), (1/2,−
√

3/6), (−1/2,−
√

3/6).

Show that the first apex is taken into the second apex by a clockwise
rotation of 120 deg. Let C3 be the operator which rotates the triangle
clockwise by 120 deg. Show that the transpose of C3 is the operator
Ĉ3 which, operating on the function represented by the vector di-
rected from the origin to the second apex, generates a new function
represented by the vector from the origin to the first apex.

3.3 Show that the set of matrices analogous to the one in (3.16) do not
satisfy the group multiplication table give in Table 2.3.

3.4 Show that the set of function operator matrices as illustrated by (3.16)
for Ĉ3 do not satisfy the group multiplication table.

3.5 Consider x2− y2 and xy as two possible basis functions for the group
C3v. Writing x = r cos φ, y = r sinφ, show that one must use 2xy
rather than xy as a basis function in order that x2− y2 and 2xy have
the same normalization and thus lead to a unitary matrix representa-
tion of C3v.

3.6 The ammonia molecule, NH3, belongs to the point-group C3v. Con-
sider three functions {fA, fB , fC} that describe the three valence
bonds connecting the N atom with the three H atoms. The operation

29
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of Ĉ3 on the valence bond functions can be described by

Ĉ3(fA fB fC) = (fA fB fC)




0 0 1
1 0 0
0 1 0


 .

Find the remaining matrices that provide a matrix representation
based on the three valence bond functions. Check that the matri-
ces actually obey the group multiplication table.

We assume the original basis set to be normalized as well as being
orthogonal. Now consider three new (orthonormal) basis functions
(vectors) that are linear combinations of the original set:

φ1 =
1√
3
(fA + fB + fC)

φ2 =
1√
6
(fA + fB − 2fC)

φ3 =
1√
2
(fA − fB)

Construct a matrix S whose columns (corresponding to {φ1, φ2, φ3})
are the coefficients of the original basis functions {fA, fB , fC}. Per-
form the similarity transformation S−1M̂S for each matrix representa-
tive of C3v based on the original basis set to find the new transformed
representation relative to the transformed basis set. What can be said
about the new-found representation?

3.2 Solutions

3.1
3.2
3.3
3.4
3.5 In polar coordinates, we have

x2 − y2 = r2
(
cos2 φ− sin2 φ

)
= r2 cos(2φ)

xy = r2 sinφ cosφ =
r2

2
sin(2φ)

It is then obvious that in order to have the same normalization with
respect to φ the second function must be 2xy.
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3.6 The representation Γ engendered by the basis function set {fA, fB , fc}
is

Γ(E) =




1 0 0
0 1 0
0 0 1


 Γ(C3) =




0 0 1
1 0 0
0 1 0


 Γ(C2

3) =




0 1 0
0 0 1
1 0 0




Γ(σ1) =




1 0 0
0 0 1
0 1 0


 Γ(σ2) =




0 0 1
0 1 0
1 0 0


 Γ(σ3) =




0 1 0
1 0 0
0 0 1




The transfromation is

S =
1√
6

=



√

2 1
√

3√
2 1 −

√
3√

2 −2 0




S−1MS blockdiagonalizes the Γ representation

Γ(E) =




1 0 0
0 1 0
0 0 1


 Γ(C3) =




1 0 0
0 −0.5

√
3/2

0 −
√

3/2 −0.5


 Γ(C2

3 ) =




1 0 0
0 −0.5 −

√
3/2

0
√

3/2 −0.5




Γ(σ1) =




1 0 0
0 −0.5

√
3/2

0
√

3/2 0.5


 Γ(σ2) =




1 0 0
0 −0.5 −

√
3/2

0 −
√

3/2 0.5


 Γ(σ3) =




1 0 0
0 1 0
0 0 −1
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Group representations: Formalism and
methodology

4.1 Exercises

4.1 Show that a similarity transformation relating two equivalent unitary
Irreps, must be unitary, if its determinant is 1, i.e. if it is unimodular.

4.2 Use Schur’s lemma to demonstrate that all the Irreps of an abelian
group are one dimensional. Hence the number of Reps equals the
order of the group.

4.3 Show that the character is invariant under a similarity transformation.
4.4 Prove the character orthogonality relationship

∑

α

(α)χ(Ci) (α)χ∗(Cj) =
g

nc(j)
δij ,

for the complete set of unitary Irreps of a group G. This is useful for
checking the orthonormality of columns in a character table such as in
Table 3.2. Hint: Use the first orthogonality relation to demonstrate
the unitarity of the matrix

Uαi =
(
nc(i)
g

)1/2
(α)χ(Ci), UU∗ = E ,

hence, show that simple commutation of this product yields the second
orthogonality relation.

4.5 Show that ∑

R∈G

(µ)χ(R) = 0,

for any Irrep (µ) of G except the identity Irrep.
4.6 Since the characters form an orthogonal set of vectors, as described

by (4.33) and (4.34), multiply (4.37) on both sides by (α′)χ(R̂−1), sum
over group elements R̂, collect elements into classes and obtain (4.40).

32
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4.7 Use Burnside’s method to determine the Irreps and characters of the
point-group C3. Do not use a computer program, rather work it out
by hand.

4.8 Construct the character table for the group C4v following the steps of
example 4.2.

4.9 Construct the character table for the tetrahedral point-group T .
4.10 Construct the class matrices for the 2-dimensional Irrep of the group

C4v:

E =

(
1 0
0 1

)
, C4 =

(
0 −1
1 0

)
, C−1

4 =

(
0 1
−1 0

)
, C2 =

(
−1 0
0 −1

)
,

σx =

(
1 0
0 −1

)
, σy =

(
−1 0
0 1

)
, σ′

1 =

(
0 1
1 0

)
, σ′

2 =

(
0 −1
−1 0

)
.

Show that they commute with all the corresponding matrix operators
of the group. Hence, according to Schur’s lemma they should have the
form of a constant (the Dirac character) times the 2-dimensional unit
matrix. Diagonalize these class matrices and obtain the corresponding
Dirac characters.

4.11 Show that a necessary and sufficient condition for the irreducibility of
a Rep (α) of a finite group G is

1
g

∑

R∈G

∣∣∣(α)χ(R)
∣∣∣
2

= 1 .

4.12 Transform the permutations obtained in problem 2.16 for the point-
group C4v into matrix form, and show that it forms a matrix Rep of
C4v of dimension 4. Show that this Rep is reducible. Determine the
multiplicities of the Irreps of C4v in this Rep.

4.13 Determine the multiplicities of the three Irrep of C3v in its regular
Rep.

4.2 Computational Projects

(i) Write a program to generate the regular Rep. Check that the
matrix representatives for C3v are given correctly by 3.49).

(ii) (a) Augment the class multiplication matrices program, devel-
oped in chapter 2, with matrix diagonalization capabilities (ei-
ther by using diagonalization subroutines, or using Mathemat-
ical functions such as Eigenvalues[m], Eigenvectors[m], or

Eigensystem[m]).
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(b) Use this new program to calculate the Dirac characters of
the groups: C6v, D3h, Td.

(c) Determine the dimensionality of the respective Irreps.
(d) Use (4.47) to construct the corresponding irreducible char-

acter tables.

4.3 Solutions

4.1 Consider two equivalent Irreps Γ and Γ′, related by a similarity trans-
formation S, such that

Γ′(R) = S−1 Γ(R)S

and

χ′(R) = χ(R)

This is established by the trace identity

Tr
(
ABC

)
= Tr

(
BCA

)

Thus,

Tr
(
S−1 Γ(R)S

)
= Tr

(
Γ(R)S S−1

)

∑

k

Γ′
kk(R) =

∑

klj

(S−1)kl Γlj (R)Sjk =
∑

k

Γkk(R)

4.2
4.3 This is again established by the trace identity

Tr
(
ABC

)
= Tr

(
BCA

)

Thus,

Tr
(
S−1 Γ(R)S

)
= Tr

(
Γ(R)S S−1

)
= Tr

(
Γ(R)

)

4.4
4.5 We use the character orthogonality theorem, and choose the identity

Irrep and the Irrep (µ), we obtain
∑

R∈G

(µ)χ(R) = 0,

4.6
4.7
4.8
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4.9 We choose the class multiplication matrices

H(2) =




0 3 0 0
1 2 0 0
0 0 3 0
0 0 0 3


 , H(3) =




0 0 0 4
0 0 0 4
1 3 0 0
0 0 4 0




derived in problem 2.24. H(2) has only one nondegenerate eigenvalue
with corresponding eigenvector

(
−3, 1, 0, 0

)
H(3) has 4 nondegenerate

eigenvalues

(1)Γ : λ = 4 ⇒ Eigenvector [1, 1, 1, 1] ⇒ Normalized Eigenvector [1, 1, 1, 1]
(2)Γ : λ = 4eiπ/3 ⇒ Eigenvector [e−iπ/3, e−iπ/3, eiπ/3, 1] ⇒ Normalized Eigenvector [1, 1, e−iπ/3, eiπ/3]

(3)Γ : λ = 4e−iπ/3 ⇒ Eigenvector [eiπ/3, eiπ/3, e−iπ/3, 1] ⇒ Normalized Eigenvector [1, 1, eiπ/3, e−iπ/3]
(4)Γ : λ = 0 ⇒ Eigenvector [1,−1/3, 0, 0]

It is straightforward to see that d1 = d2 = d3 = 1;

d2
4 =

12
1 + (3/9)

= 9

and

(4)χ(1) = 3, (4)χ(2) = −1, (4)χ(3) = 0, (4)χ(4) = 0.

The character table of T is

Table 4.1. Character table of the point-group T

E 3U 4C3 4C−1
3

(1)Γ 1 1 1 1
(2)Γ 1 1 ei2π/3 e−i2π/3

(3)Γ 1 1 e−i2π/3 ei2π/3

(4)Γ 3 -1 0 0

4.10 The class matrices are

C1 =
(

1 0
0 1

)
, C2(C4) = C4(σ) = C5(σ′) =

(
0 0
0 0

)
, C3 =

(
−1 0
0 −1

)
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(

1 0
0 1

)
= 1 × I,

(
0 0
0 0

)
= 0 × I,

(
−1 0
0 −1

)
= −1 × I

hence all class matrices commute with all (5)Γ matrices. The corre-
sponding Dirac characters are

λ1 = 1, λ2 = λ4 = λ5 = 0, λ3 = −1

4.11 From the character orthogonality theorem two Irreps, (α) and (β), of
a finite group G, have to satisfy the relation

∑

R∈G

(α)χ(R) (β)χ∗(R) = g δαβ ,

hence, for a Rep (α)
∑

R∈G

∣∣∣ (α)χ(R)
∣∣∣
2

= g

is a necessary and sufficient condition for (α) to be an Irrep of G.
4.12
4.13
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Dixon’s Method for Computing Group
Characters

5.1 Solutions

4.1
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Group action and symmetry projection
operators

6.1 Exercises

6.1 Determine the orbits, stabilizers and strata of the action of

G :=
{(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
1− 0
0 1

)
,

(
−1 0
0 −1

)
,

}
,

on the xy-plane.
6.2 With reference to example 6.3, to which rows of (3)Γ do the functions
{yz, xy} belong, if any?

6.3 The valence electron orbitals of a water molecule consist of one 1s-
orbitals on each H atom, and the 3-fold degenerate 2p orbital manifold
centered on the O atom. Under the C2v symmetry group operations
the permutations among the atoms are the same as those considered
in example 6.. However the function-space is now different it consists
of electron wavefunctions.

(i) Determine the Rep engendered by C2v on the set of electron
states.

(ii) Derive the symmetry-adapted states of the water molecule.

6.4 The ammonia molecule NH3 has C3v symmetry. Determine:

(i) Its symmetry-adapted vibrational modes.
(ii) Its symmetry-adapted molecular orbitals. (Again, consider s-

orbitals centered on the H atoms, and a p-manifold on the N
atom.

In the following problems we consider molecules which contain carbon
atoms. The 4 valence electrons of a carbon atom occupy both the 2s
and 2p states, which have to be included in each set of orbitals of
these molecules.

38
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6.5 Repeat problem 4 for the case of a planar molecule of the form AB3,
such as CO3

2−, which has D3h symmetry.
6.6 In the methane molecule CH4, the C atom is located at the center of

a tetrahedron, while the H atoms are at its apices.
6.7 Repeat problem 4 for the benzene molecule. It consists of 6 carbon

atoms forming the apices of a hexagon and 6 hydrogen atoms bound
radially, thus having D6h symmetry.

6.2 Solutions

6.1
6.2
6.3 The engendered representation is

E =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




C2 =




0 1 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 −1
0 0 0 0 1




σx =




1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1




σy =




0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1




Table 6.1. Character Table for C2v

E C2 σx σy

(1)Γ 1 1 1 1
(2)Γ 1 1 -1 -1
(3)Γ 1 -1 1 -1
(4)Γ 1 -1 -1 1

Next, we construct the Irrep projection matrices using the following
simple program:
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P1 = (E + C2 + Sigmax + Sigmay)/4;P1 = (E + C2 + Sigmax + Sigmay)/4;P1 = (E + C2 + Sigmax + Sigmay)/4;

P2 = (E + C2 - Sigmax - Sigmay)/4;P2 = (E + C2 - Sigmax - Sigmay)/4;P2 = (E + C2 - Sigmax - Sigmay)/4;

P3 = (E -C2 + Sigmax - Sigmay)/4;P3 = (E -C2 + Sigmax - Sigmay)/4;P3 = (E -C2 + Sigmax - Sigmay)/4;

P4 = (E -C2 - Sigmax + Sigmay)/4;P4 = (E -C2 - Sigmax + Sigmay)/4;P4 = (E -C2 - Sigmax + Sigmay)/4;

Eigensystem[P1]Eigensystem[P1]Eigensystem[P1]

Eigensystem[P2]Eigensystem[P2]Eigensystem[P2]

Eigensystem[P3]Eigensystem[P3]Eigensystem[P3]

Eigensystem[P4]Eigensystem[P4]Eigensystem[P4]

The resulting eigenvalues and eigenvectors are:

(1)P =




1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1








Eigenvalues : 1, 1, 0, 0, 0

Eigenvectors : {0, 0, 0, 0, 1}, {1, 1,0,0, 0},
{0, 0, 0, 1, 0},{0,0, 1, 0,0},{−1,1,0, 0, 0}

(2)P =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0








Eigenvalues : 0, 0, 0, 0, 0

Eigenvectors : {0, 0, 0, 0,1},{0,0, 0, 1,0},
{0, 0, 1, 0, 0},{0, 1,0,0, 0},{1,0, 0, 0,0}

(3)P =




1
2 −1

2 0 0 0
−1

2
1
2 0 0 0

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0








Eigenvalues : 1, 1, 0, 0,0

Eigenvectors : {{0, 0, 0, 1,0},{−1, 1, 0, 0,0},
{0, 0, 0, 0, 1}, {0,0, 1, 0,0},{1,1,0,0, 0}

(4)P =




0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0








Eigenvalues : 1, 0, 0, 0, 0

Eigenvectors : {0, 0, 1, 0,0},{0,0, 0, 0,1},
{0, 0, 0, 1,0},{0,1, 0, 0,0},{1, 0,0,0, 0}

Selecting the eigenvectors corresponding to eigenvalue of unity, we
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obtain the following symmetry-adapted vectors:

(1)Γ :
[
0 0 0 0 1
1 1 0 0 0

]

(2)Γ : None

(3)Γ :
[

0 0 1 0 0
−1 1 0 0 0

]

(4)Γ :
[
0 0 1 0 0

]

6.4(i) The symmetry-adapted vibrational modes of NH3 are derived in
Chapter 15.

(ii) The representation of C3v engendered by the atomic orbitals is

E =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0




C3 =




0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 −1/2

√
3/2 0

0 0 0 −
√

3/2 −1/2 0
0 0 0 0 0 1




C3 =




0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 −1/2 −

√
3/2 0

0 0 0
√

3/2 −1/2 0
0 0 0 0 0 1




σ1 =




1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1




σ2 =




0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1/2

√
3/2 0

0 0 0
√

3/2 1/2 0
0 0 0 0 0 1




σ3 =




1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 −1/2 −

√
3/2 0

0 0 0 −
√

3/2 1/2 0
0 0 0 0 0 1




where we ordered the atomic orbital basis set as s(H1), s(H2), s(H3), px(N ), py(N ), pz(N ).
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Table 6.2. Character Table for C3v

E C3, C2
3 σ1, σ2, σ3

(1)Γ 1 1 1
(2)Γ 1 1 -1
(3)Γ 2 -1 0

Next, we construct the class matrices and the Irrep projection ma-
trices using the following simple program:

c2=c3x+c32xc2=c3x+c32xc2=c3x+c32x

c3=s1x+s2x+s3xc3=s1x+s2x+s3xc3=s1x+s2x+s3x

p1=(ex+c2+c3)/6p1=(ex+c2+c3)/6p1=(ex+c2+c3)/6

p2=(ex+c2-c3)/6p2=(ex+c2-c3)/6p2=(ex+c2-c3)/6

p3=(2ex-c2)/6p3=(2ex-c2)/6p3=(2ex-c2)/6

Eigensystem[p1]Eigensystem[p1]Eigensystem[p1]

Eigensystem[p2]Eigensystem[p2]Eigensystem[p2]

Eigensystem[p3]Eigensystem[p3]Eigensystem[p3]

The class matrices are

C2 =




0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 2




C3 =




1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 3
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(1)P =




1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1








Eigenvalues : 1, 1, 0, 0, 0,0

Eigenvectors : {0, 0, 0, 0, 0, 1}, {1, 1, 1,0,0,0},{0,0, 0, 0,1,0},
{0, 0, 0, 1, 0, 0}, {−1, 0,1,0, 0, 0}, {−1, 1,0,0, 0, 0}

(2)P =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0








Eigenvalues : 0, 0, 0, 0, 0,0

Eigenvectors : {0, 0, 0, 0,0,1},{0,0, 0, 0,1,0},{0,0,0, 1, 0, 0},
{0, 0, 1, 0,0,0},{0,1, 0, 0,0,0},{1,0,0, 0, 0, 0}

(3)P =




2
3 −1

3 −1
3 0 0 0

−1
3

2
3 −1

3 0 0 0
−1

3 −1
3

2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0








Eigenvalues : 1, 1, 1, 1, 0,0

Eigenvectors : {0, 0, 0, 1,0, 0}, {0,0, 0, 0,1,0},
{ 1√

2
,− 1√

2
, 0, 0, 0, 0},

{− 1√
6
,− 1√

6
,
√

2
3 , 0, 0, 0},

{− 1√
3
,− 1√

3
,− 1√

3
, 0, 0, 0},{0,0, 0, 0,0,1}

Selecting the eigenvectors corresponding to eigenvalue of unity, we
obtain the following symmetry-adapted vectors:

(1)Γ :
[
1 1 1 0 0 0
0 0 0 0 0 1

]

(2)Γ : None

(3)Γ :




1√
2
− 1√

2
0 0 0 0

− 1√
6
− 1√

6

√
2
3

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




6.5 The point group D3h has elements:

E, C3, C
2
3 , U1, U2, U3, σh, σ1, σ2, σ3, S3, S

−1
3

If we consider the CO3
2− as an example of a AB3 molecule, we will

simplify the problem by treating the four pz-orbitals on the C and
O atoms separately, since they do not interact with the remaining
orbitals. That leaves us with a Hilbert space of dimension 9. The Rep
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engendered on this space is:

E

σh

=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




,
C3

S−1
3

=




1 0 0 0 0 0 0 0 0

0 − 1
2

√
3

2 0 0 0 0 0 0

0 −
√

3
2

− 1
2

0 0 0 0 0 0

0 0 0 0 0 − 1
2

√
3

2
0 0

0 0 0 0 0 −
√

3
2

− 1
2

0 0

0 0 0 0 0 0 0 − 1
2

√
3

2

0 0 0 0 0 0 0 −
√

3
2

− 1
2

0 0 0 − 1
2

√
3

2
0 0 0 0

0 0 0 −
√

3
2 − 1

2 0 0 0 0




,

C−1
3

S3

=




1 0 0 0 0 0 0 0 0

0 − 1
2

−
√

3
2

0 0 0 0 0 0

0
√

3
2 − 1

2 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
2

−
√

3
2

0 0 0 0 0 0 0
√

3
2 − 1

2

0 0 0 − 1
2 −

√
3

2 0 0 0 0

0 0 0
√

3
2

− 1
2

0 0 0 0

0 0 0 0 0 − 1
2

−
√

3
2

0 0

0 0 0 0 0
√

3
2

− 1
2

0 0




,
U1

σ1

=




1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0




,

U2

σ2

=




1 0 0 0 0 0 0 0 0

0 1
2

−
√

3
2

0 0 0 0 0 0

0 −
√

3
2 − 1

2 0 0 0 0 0 0

0 0 0 0 0 1
2 −

√
3

2 0 0

0 0 0 0 0 −
√

3
2

− 1
2

0 0

0 0 0 1
2

−
√

3
2

0 0 0 0

0 0 0 −
√

3
2

− 1
2

0 0 0 0

0 0 0 0 0 0 0 1
2

−
√

3
2

0 0 0 0 0 0 0 −
√

3
2 − 1

2




,
U3

σ3

=




1 0 0 0 0 0 0 0 0

0 1
2

√
3

2
0 0 0 0 0 0

0
√

3
2 − 1

2 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2

√
3

2

0 0 0 0 0 0 0
√

3
2

− 1
2

0 0 0 0 0 1
2

√
3

2
0 0

0 0 0 0 0
√

3
2

− 1
2

0 0

0 0 0 1
2

√
3

2
0 0 0 0

0 0 0
√

3
2 − 1

2 0 0 0 0
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Table 6.3. Character Table for D3h

E σh 2C3 2S3 3U 3σv

(1)Γ 1 1 1 1 1 1
(2)Γ 1 1 1 1 -1 -1
(3)Γ 1 -1 1 -1 1 -1
(4)Γ 1 -1 1 -1 -1 1
(5)Γ 2 -2 -1 1 0 0
(6)Γ 2 2 -1 -1 0 0

The class matrices are

C3 =




2 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1

2

√
3

2
−1

2
−

√
3

2

0 0 0 0 0 −
√

3
2 −1

2

√
3

2 −1
2

0 0 0 −1
2 −

√
3

2 0 0 −1
2

√
3

2

0 0 0
√

3
2 −1

2 0 0 −
√

3
2 −1

2

0 0 0 −1
2

√
3

2 −1
2 −

√
3

2 0 0
0 0 0 −

√
3

2 −1
2

√
3

2 −1
2 0 0




U =




3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 0 1

2 −
√

3
2

1
2

√
3

2

0 0 0 0 1 −
√

3
2 −1

2

√
3

2 −1
2

0 0 0 1
2

−
√

3
2

1
2

√
3

2
−1 0

0 0 0 −
√

3
2 −1

2

√
3

2 −1
2 0 1

0 0 0 1
2

√
3

2
−1 0 1

2
−

√
3

2

0 0 0
√

3
2 −1

2 0 1 −
√

3
2 −1

2
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(1)P =




1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1

3 − 1
2
√

3
−1

6
1

2
√

3
−1

6

0 0 0 0 − 1
2
√

3
1
4

1
4
√

3
−1

4
1

4
√

3

0 0 0 0 −1
6

1
4
√

3
1
12 − 1

4
√

3
1
12

0 0 0 0 1
2
√

3
−1

4 − 1
4
√

3
1
4 − 1

4
√

3

0 0 0 0 −1
6

1
4
√

3
1
12

− 1
4
√

3
1
12








Eigenvalues : 1, 1, 0, 0,0, 0, 0,0,0

Eigenvectors :
{
0, 0, 0, 0,−2,

√
3, 1,−

√
3, 1
}
, {1, 0, 0,0, 0, 0,0,0,0},

{
0, 0, 0, 0, 12 , 0, 0, 0, 1

}
,{

0, 0, 0, 0,−
√

3
2 , 0, 0, 1, 0

}
,
{
0, 0, 0, 0, 1

2 , 0, 1, 0, 0
}
,
{
0, 0, 0, 0,

√
3

2 , 1, 0, 0, 0
}
,

{0, 0, 0, 1, 0, 0,0,0, 0},{0,0, 1, 0,0,0,0, 0, 0}, {0, 1,0,0,0, 0, 0,0,0}

(2)P =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1

3
0 −1

6
1

2
√

3
−1

6
− 1

2
√

3

0 0 0 0 0 0 0 0 0
0 0 0 −1

6 0 1
12 − 1

4
√

3
1
12

1
4
√

3

0 0 0 1
2
√

3
0 − 1

4
√

3
1
4 − 1

4
√

3
−1

4

0 0 0 −1
6

0 1
12

− 1
4
√

3
1
12

1
4
√

3

0 0 0 − 1
2
√

3
0 1

4
√

3
−1

4
1

4
√

3
1
4








Eigenvalues : 1, 0, 0, 0,0, 0, 0,0,0

Eigenvectors :
{

0, 0, 0,− 2√
3
, 0, 1√

3
,−1, 1√

3
, 1
}
,
{

0, 0, 0,
√

3
2 , 0, 0, 0, 0,1

}
,
{
0, 0, 0, 1

2 , 0, 0, 0, 1, 0
}
,{

0, 0, 0,−
√

3
2
, 0, 0, 1, 0, 0

}
,
{
0, 0, 0, 1

2
, 0, 1, 0, 0,0

}
, {0, 0, 0, 0,1,0,0, 0, 0},

{0, 0, 1, 0, 0, 0,0,0, 0},{0,1, 0, 0,0,0,0, 0, 0}, {1, 0,0,0,0, 0, 0,0,0}

(6)P =




0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 2

3 0 1
6 − 1

2
√

3
1
6

1
2
√

3

0 0 0 0 2
3

1
2
√

3
1
6

− 1
2
√

3
1
6

0 0 0 1
6

1
2
√

3
2
3 0 1

6 − 1
2
√

3

0 0 0 − 1
2
√

3
1
6 0 2

3
1

2
√

3
1
6

0 0 0 1
6

− 1
2
√

3
1
6

1
2
√

3
2
3

0
0 0 0 1

2
√

3
1
6 − 1

2
√

3
1
6 0 2

3








Eigenvalues : 1, 1, 1, 1,1, 1, 0,0,0

Eigenvectors :
{

0, 0, 0,
√

3
2
, 1

2
, 0, 0, 0, 1

}
,
{
0, 0, 0, 1

2
,−

√
3

2
, 0, 0, 1, 0

}
,
{
0, 0, 0,−

√
3

2
, 1

2
, 0, 1, 0, 0

}
,{

0, 0, 0, 1
2 ,

√
3

2 , 1, 0, 0, 0
}
, {0, 0, 1,0, 0, 0,0,0,0},{0,1, 0, 0,0,0,0, 0, 0},{

0, 0, 0,−
√

3
2 ,−

1
2 ,

√
3

2 ,−
1
2 , 0, 1

}
,
{
0, 0, 0,−1

2 ,
√

3
2 ,−

1
2 ,−

√
3

2 , 1, 0
}
, {1, 0, 0, 0, 0,0,0,0, 0}
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Symmetry-adapted vectors

C C C O1 O1 O2 O2 O3 O3

s px py px py px py px py

(1)Γ :

[
1 0 0 0 0 0 0 0 0

0 0 0 0 −2
√

3 1 −
√

3 1

]

(2)Γ :
[
0 0 0 − 2√

3
0 1√

3
−1 1√

3
1
]

(6)Γ :




0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0
√

3
2

1
2

0 0 0 1

0 0 0 1
2

−
√

3
2

0 0 1 0

0 0 0 −
√

3
2

1
2

0 1 0 0

0 0 0 1
2

√
3

2
1 0 0 0




6.6 The carbon atom does not permute with any of the hydrogens under
the operations of Td. Thus, we find that the carbon s-state engenders
the identity Irrep (1)Γ, while the p-state manifold engenders the vector
Irrep (5)Γ, given in table 6.4.

The Rep engendered by the 1s-states of the four hydrogen atoms
is just the permutations generated by the operations of Td on the
these atoms. We start by generating the permutations among the
four tetrahedral apecies where the hydrogen atoms reside. For the
sake of completeness we will also generate the vector Rep of Td.

ProgramProgramProgram

Generators : C2z, C2x, σxy, C
xyz
3Generators : C2z, C2x, σxy, C
xyz
3Generators : C2z, C2x, σxy, C
xyz
3

<<Combinatoricà<<Combinatoricà<<Combinatoricà

g = 24;NG= 5;g = 24;NG= 5;g = 24;NG= 5;

L = { Range [4],{2,1,4,3},{3,4,1,2},{1,2,4,3},{2,3,1,4}};L = { Range [4],{2,1,4,3},{3,4,1,2},{1,2,4,3},{2,3,1,4}};L = { Range [4],{2,1,4,3},{3,4,1,2},{1,2,4,3},{2,3,1,4}};
R = {{{1,0,0},{0,1,0},{0,0,1}},{{-1,0,0},{0,-1,0},{0,0,1}},{{1,0,0},{0,-1,0},{0,0,-1}},R = {{{1,0,0},{0,1,0},{0,0,1}},{{-1,0,0},{0,-1,0},{0,0,1}},{{1,0,0},{0,-1,0},{0,0,-1}},R = {{{1,0,0},{0,1,0},{0,0,1}},{{-1,0,0},{0,-1,0},{0,0,1}},{{1,0,0},{0,-1,0},{0,0,-1}},
{{0,-1,0},{-1,0,0},{0,0,1}},{{0,0,1},{1,0,0},{0,1,0}}};{{0,-1,0},{-1,0,0},{0,0,1}},{{0,0,1},{1,0,0},{0,1,0}}};{{0,-1,0},{-1,0,0},{0,0,1}},{{0,0,1},{1,0,0},{0,1,0}}};

Array [ Rot ,{3,3}];Array [ Rot ,{3,3}];Array [ Rot ,{3,3}];
Do [B = R[[i]]; Rot [i]= B, {i,1, NG }];Do [B = R[[i]]; Rot [i]= B, {i,1, NG }];Do [B = R[[i]]; Rot [i]= B, {i,1, NG }];
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f: = Permute [L[[i]],L[[j]]]; nel = NG ;f: = Permute [L[[i]],L[[j]]]; nel = NG ;f: = Permute [L[[i]],L[[j]]]; nel = NG ;

While [ TrueQ [ Length [L]< g],While [ TrueQ [ Length [L]< g],While [ TrueQ [ Length [L]< g],

For [i=2,i< g,i++,For [i=2,i< g,i++,For [i=2,i< g,i++,

For [j=2,j< ( Length [L]+1),j++,For [j=2,j< ( Length [L]+1),j++,For [j=2,j< ( Length [L]+1),j++,

Switch [ FreeQ [L,f], True ,Switch [ FreeQ [L,f], True ,Switch [ FreeQ [L,f], True ,

AppendTo [L,f]; nel ++; Rot [ nel ]= Rot [i]. Rot [j]AppendTo [L,f]; nel ++; Rot [ nel ]= Rot [i]. Rot [j]AppendTo [L,f]; nel ++; Rot [ nel ]= Rot [i]. Rot [j]

]]]]; Print [L];]]]]; Print [L];]]]]; Print [L];

Print ["Rotation Matrices of Group Elements: "]Print ["Rotation Matrices of Group Elements: "]Print ["Rotation Matrices of Group Elements: "]

Do [Do [Do [

Print ["R(",i,") = ",MatrixForm[Rot[i]],",",Print ["R(",i,") = ",MatrixForm[Rot[i]],",",Print ["R(",i,") = ",MatrixForm[Rot[i]],",",

" R(",i+1,") = ",MatrixForm[Rot[i+1]],","," R(",i+1,") = ",MatrixForm[Rot[i+1]],","," R(",i+1,") = ",MatrixForm[Rot[i+1]],",",

" R(",i+2,") = ", MatrixForm [ Rot [i+2]],","," R(",i+2,") = ", MatrixForm [ Rot [i+2]],","," R(",i+2,") = ", MatrixForm [ Rot [i+2]],",",

" R( ", i+3,") = ", MatrixForm [ Rot [i+3]]" R( ", i+3,") = ", MatrixForm [ Rot [i+3]]" R( ", i+3,") = ", MatrixForm [ Rot [i+3]]

],],],

{i,1,g-3,4}{i,1,g-3,4}{i,1,g-3,4}
];];];

X = 0* IdentityMatrix [4]; Perm = {};X = 0* IdentityMatrix [4]; Perm = {};X = 0* IdentityMatrix [4]; Perm = {};
Do[ AppendTo [ Perm , X ],{i,1,g}];Do[ AppendTo [ Perm , X ],{i,1,g}];Do[ AppendTo [ Perm , X ],{i,1,g}];
Do [ B = X ;Do [ B = X ;Do [ B = X ;

Do [Do [Do [

B [[j,L[[i,j]]]]= 1,{j,1,4}B [[j,L[[i,j]]]]= 1,{j,1,4}B [[j,L[[i,j]]]]= 1,{j,1,4}

]; Perm [[i]]+ = B, {i,1,g}]; Perm [[i]]+ = B,{i,1,g}]; Perm [[i]]+ = B,{i,1,g}
];];];

Do [Do [Do [

Print [Print [Print [

"P(",i,") = ",MatrixForm[Perm[[i]]],",","P(",i,") = ",MatrixForm[Perm[[i]]],",","P(",i,") = ",MatrixForm[Perm[[i]]],",",

" P(",i+1,") = ",MatrixForm[Perm[[i+1]]],","," P(",i+1,") = ",MatrixForm[Perm[[i+1]]],","," P(",i+1,") = ",MatrixForm[Perm[[i+1]]],",",

" P(",i+2,") = ", MatrixForm[Perm[[i+2]]],","," P(",i+2,") = ", MatrixForm[Perm[[i+2]]],","," P(",i+2,") = ", MatrixForm[Perm[[i+2]]],",",

" P(",i+3,") = ",MatrixForm[Perm[[i+3]]]" P(",i+3,") = ",MatrixForm[Perm[[i+3]]]" P(",i+3,") = ",MatrixForm[Perm[[i+3]]]

], {i,1,g-3,4}], {i,1,g-3,4}], {i,1,g-3,4}
]]]
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NM = {{1},{5,8,10,12,18,20,22,24},{2,3,6},{9,11,13,15,17,23},{4,7,14,16,19,21}};NM = {{1},{5,8,10,12,18,20,22,24},{2,3,6},{9,11,13,15,17,23},{4,7,14,16,19,21}};NM = {{1},{5,8,10,12,18,20,22,24},{2,3,6},{9,11,13,15,17,23},{4,7,14,16,19,21}};
xi = {{1,1,1,-1,-1},{2,-1,2,0,0},{3,0,-1,1,-1},{3,0,-1,-1,1}};xi = {{1,1,1,-1,-1},{2,-1,2,0,0},{3,0,-1,1,-1},{3,0,-1,-1,1}};xi = {{1,1,1,-1,-1},{2,-1,2,0,0},{3,0,-1,1,-1},{3,0,-1,-1,1}};
Class = {};Class = {};Class = {};

Do [Do [Do [

Cls =X;Cls =X;Cls =X;

Do [Do [Do [

Cls+ = Perm[[NM[[i,j]]]],{j,1, Length [NM[[i]]]}Cls+ = Perm[[NM[[i,j]]]],{j,1, Length [NM[[i]]]}Cls+ = Perm[[NM[[i,j]]]],{j,1, Length [NM[[i]]]}
] ; AppendTo [ Class , Cls ],{i,1,5}] ; AppendTo [ Class , Cls ],{i,1,5}] ; AppendTo [ Class , Cls ],{i,1,5}

];];];

Do [ Print [ MatrixForm [ Class [[i]]]],{i,1,5}];Do [ Print [ MatrixForm [ Class [[i]]]],{i,1,5}];Do [ Print [ MatrixForm [ Class [[i]]]],{i,1,5}];
Pr = Class[[1]];Pr = Class[[1]];Pr = Class[[1]];

Do [ Pr+ = Class[[i]],{i,2,5}];Pr =Pr/24;Do [ Pr+ = Class[[i]],{i,2,5}];Pr =Pr/24;Do [ Pr+ = Class[[i]],{i,2,5}];Pr =Pr/24;

Print[ MatrixForm[ Pr ]]; Eigensystem[ Pr ]Print[ MatrixForm[ Pr ]]; Eigensystem[ Pr ]Print[ MatrixForm[ Pr ]]; Eigensystem[ Pr ]

Pr2 = xi[[1,1]]* Class[[1]];Pr2 = xi[[1,1]]* Class[[1]];Pr2 = xi[[1,1]]* Class[[1]];

Do [ Pr2+ = xi [[1,i]]* Class [[i]],{i,2,5}]; Pr2 = Pr2/24;Do [ Pr2+ = xi [[1,i]]* Class [[i]],{i,2,5}]; Pr2 = Pr2/24;Do [ Pr2+ = xi [[1,i]]* Class [[i]],{i,2,5}]; Pr2 = Pr2/24;

Print [ MatrixForm [ Pr2 ]]; Eigensystem [ Pr2 ]Print [ MatrixForm [ Pr2 ]]; Eigensystem [ Pr2 ]Print [ MatrixForm [ Pr2 ]]; Eigensystem [ Pr2 ]

Pr3 = xi [[2,1]]* Class [[1]];Pr3 = xi [[2,1]]* Class [[1]];Pr3 = xi [[2,1]]* Class [[1]];

Do [ Pr3+ = xi[[2,i]]* Class [[i]],{i,2,5}]; Pr3 = Pr3/12;Do [ Pr3+ = xi[[2,i]]* Class [[i]],{i,2,5}]; Pr3 = Pr3/12;Do [ Pr3+ = xi[[2,i]]* Class [[i]],{i,2,5}]; Pr3 = Pr3/12;

Print [ MatrixForm [ Pr3 ]]; Eigensystem [ Pr3 ]Print [ MatrixForm [ Pr3 ]]; Eigensystem [ Pr3 ]Print [ MatrixForm [ Pr3 ]]; Eigensystem [ Pr3 ]

Pr4 = xi [[3,1]]* Class [[1]];Pr4 = xi [[3,1]]* Class [[1]];Pr4 = xi [[3,1]]* Class [[1]];

Do [Pr4+ = xi [[3,i]]* Class [[i]],{i,2,5}]; Pr4 = Pr4/8;Do [Pr4+ = xi [[3,i]]* Class [[i]],{i,2,5}]; Pr4 = Pr4/8;Do [Pr4+ = xi [[3,i]]* Class [[i]],{i,2,5}]; Pr4 = Pr4/8;

Print [ MatrixForm [ Pr4 ]]; Eigensystem [ Pr4 ]Print [ MatrixForm [ Pr4 ]]; Eigensystem [ Pr4 ]Print [ MatrixForm [ Pr4 ]]; Eigensystem [ Pr4 ]

Pr5 = xi [[4,1]]* Class [[1]];Pr5 = xi [[4,1]]* Class [[1]];Pr5 = xi [[4,1]]* Class [[1]];

Do [Pr5+ = xi [[4,i]]* Class [[i]],{i,2,5}]; Pr5 = Pr5/8;Do [Pr5+ = xi [[4,i]]* Class [[i]],{i,2,5}]; Pr5 = Pr5/8;Do [Pr5+ = xi [[4,i]]* Class [[i]],{i,2,5}]; Pr5 = Pr5/8;

Print [ MatrixForm [ Pr5 ]]; Eigensystem [ Pr5 ]Print [ MatrixForm [ Pr5 ]]; Eigensystem [ Pr5 ]Print [ MatrixForm [ Pr5 ]]; Eigensystem [ Pr5 ]

Group Permutations:

{{1, 2, 3, 4}, {2, 1,4,3},{3,4,1, 2}, {1,2, 4, 3}, {2, 3,1,4},{4,3,2, 1}, {2,1, 3, 4}, {1, 4,2,3},
{3, 4, 2, 1},{4,1,3,2},{4,3, 1, 2}, {3, 2, 4,1},{2,4,1,3},{1,3, 2, 4}, {3, 1, 4,2},{4,2,3,1},
{2, 3, 4, 1},{3,1,2,4},{3,2, 1, 4}, {2, 4, 3,1},{1,4,3,2},{4,2, 1, 3}, {4, 1, 2,3},{1,3,4,2}}
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Rotation Matrices of Group Elements:

R(1)
E

=




1 0 0
0 1 0
0 0 1


 ,

R(2)
Uz

=



−1 0 0
0 −1 0
0 0 1


 ,

R(3)
Ux

=




1 0 0
0 −1 0
0 0 −1


 ,

R(4)
σxy

=




0 −1 0
−1 0 0
0 0 1




R(5)
Cxyz

3

=




0 0 1
1 0 0
0 1 0


 ,

R(6)
Uy

=



−1 0 0
0 1 0
0 0 −1


 ,

R(7)
σxȳ

=




0 1 0
1 0 0
0 0 1


 ,

R(8)
C x̄yz

3

=




0 0 −1
−1 0 0
0 1 0


 ,

R(9)
Sz

4

=




0 −1 0
1 0 0
0 0 −1


 ,

R(10)
C2xȳz

3

=




0 0 1
−1 0 0
0 −1 0


 ,

R(11)
S3z

4

=




0 1 0
−1 0 0
0 0 −1


 ,

R(12)
C2xyz̄

3

=




0 0 −1
1 0 0
0 −1 0




R(13)
S3x

4

=



−1 0 0
0 0 −1
0 1 0


 ,

R(14)
σyz̄

=




1 0 0
0 0 1
0 1 0


 ,

R(15)
σyz

=




1 0 0
0 0 −1
0 −1 0


 , R(16)Sx

4 =



−1 0 0
0 0 1
0 −1 0




R(17)
S3y

4

=




0 0 1
0 −1 0
−1 0 0


 ,

R(18)
C2xyz

3

=




0 1 0
0 0 1
1 0 0


 ,

R(19)
σx̄z

=




0 0 1
0 1 0
1 0 0


 ,

R(20)
Cxyz̄

3

=




0 1 0
0 0 −1
−1 0 0




R(21)
Sy

4

=




0 0 −1
0 −1 0
1 0 0


 ,

R(22)
Cxȳz

3

=




0 −1 0
0 0 1
−1 0 0


 ,

R(23)
σxz

=




0 0 −1
0 1 0
−1 0 0


 ,

R(24)
Cxȳz

3

=




0 −1 0
0 0 −1
1 0 0




Permutation Matrices for the Hydrogen Atoms:

P(1) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , P(2) =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , P(3) =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , P(4) =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




P(5) =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 , P(6) =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , P(7) =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 , P(8) =




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


 ,
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P(9) =




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


 , P(10) =




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


 , P(11) =




0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


 , P(12) =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 ,

P(13) =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 , P(14) =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , P(15) =




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


 , P(16) =




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




P(17) =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 , P(18) =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 , P(19) =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 , P(20) =




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0




P(21) =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , P(22) =




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


 , P(23) =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 , P(24) =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




Table 6.4. Character Table for Td

E 8C3 3U 6S4 6σd

(1)Γ 1 1 1 1 1
(2)Γ 1 1 1 -1 -1
(3)Γ 2 -1 2 0 0
(4)Γ 3 0 -1 1 -1
(5)Γ 3 0 -1 -1 1
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Classmatrix(1) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Classmatrix(2) =




2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2


 ,

Classmatrix(3) =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 , Classmatrix(4) =




0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0




Classmatrix(5) =




3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3




(1)P =




1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4




{
Eigenvalues : 1, 0, 0, 0

Eigenvectors : {1, 1, 1, 1},{−1,0,0, 1}, {−1, 0,1,0},{−1,1, 0, 0}

(2)P =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




{
Eigenvalues : 0, 0, 0, 0

Eigenvectors : {0, 0, 0, 1},{0,0,1,0},{0,1, 0, 0}, {1, 0, 0,0}

(3)P =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




{
Eigenvalues : 0, 0, 0, 0

Eigenvectors : {0, 0, 0, 1},{0,0,1,0},{0,1, 0, 0}, {1, 0, 0,0}
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(4)P =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




{
Eigenvalues : 0, 0, 0, 0

Eigenvectors : {{0, 0, 0, 1}, {0, 0, 1,0},{0,1,0,0},{1,0, 0, 0}

(5)P =




3
4 −1

4 −1
4 −1

4

−1
4

3
4 −1

4 −1
4

−1
4 −1

4
3
4 −1

4

−1
4
−1

4
−1

4
3
4




{
Eigenvalues : 1, 1, 1, 0

Eigenvectors : {−1, 0, 0, 1},{−1, 0, 1,0}, {−1,1,0, 0}, {1,1, 1, 1}

Symmetry-adapted vectors

(1)Γ :
[
1 1 1 1

]

(5)Γ :



−1 0 0 1
−1 0 1 0
−1 1 0 0




6.7 (* C6, C2x, I *)(* C6, C2x, I *)(* C6, C2x, I *)

<<Combinatoricà<<Combinatoricà<<Combinatoricà

g = 24; NG = 4;g = 24; NG = 4;g = 24; NG = 4;

L = { Range [12],{6,1,2,3,4,5,12,7,8,9,10,11},{7,12,11,10,9,8,1,6,5,4,3,2},{10,11,12,7,8,9,4,5,6,1,2,3}};L = { Range [12],{6,1,2,3,4,5,12,7,8,9,10,11},{7,12,11,10,9,8,1,6,5,4,3,2},{10,11,12,7,8,9,4,5,6,1,2,3}};L = { Range [12],{6,1,2,3,4,5,12,7,8,9,10,11},{7,12,11,10,9,8,1,6,5,4,3,2},{10,11,12,7,8,9,4,5,6,1,2,3}};

R = {{{1,0,0},{0,1,0},{0,0,1}},{{1/2,Sqrt[3]/2,0},{-Sqrt[3]/2,1/2,0},{0,0,1}},R = {{{1,0,0},{0,1,0},{0,0,1}},{{1/2,Sqrt[3]/2,0},{-Sqrt[3]/2,1/2,0},{0,0,1}},R = {{{1,0,0},{0,1,0},{0,0,1}},{{1/2,Sqrt[3]/2,0},{-Sqrt[3]/2,1/2,0},{0,0,1}},

{{1,0,0},{0,-1,0},{0,0,-1}},{{-1,0,0},{0,-1,0},{0,0,-1}}};Array[Rot,{3,3}];{{1,0,0},{0,-1,0},{0,0,-1}},{{-1,0,0},{0,-1,0},{0,0,-1}}};Array[Rot,{3,3}];{{1,0,0},{0,-1,0},{0,0,-1}},{{-1,0,0},{0,-1,0},{0,0,-1}}};Array[Rot,{3,3}];
Do [B = R[[i]]; Rot [i] = B,{i,1, NG }];Do [B = R[[i]]; Rot [i] = B,{i,1, NG }];Do [B = R[[i]]; Rot [i] = B,{i,1, NG }];

f:= Permute [L[[i]],L[[j]]]; nel = NG ;f:= Permute [L[[i]],L[[j]]]; nel = NG ;f:= Permute [L[[i]],L[[j]]]; nel = NG ;

While [ TrueQ [ Length [L]<g],While [ TrueQ [ Length [L]<g],While [ TrueQ [ Length [L]<g],

For [i=2,i<g,i++,For [i=2,i<g,i++,For [i=2,i<g,i++,

For [j=2,j<( Length [L]+1),j++,For [j=2,j<( Length [L]+1),j++,For [j=2,j<( Length [L]+1),j++,

Switch [ FreeQ [L,f], True , AppendTo [L,f];Switch [ FreeQ [L,f], True , AppendTo [L,f];Switch [ FreeQ [L,f], True , AppendTo [L,f];
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nel ++; Rot [ nel ] = Rot[i]. Rot [j];bc=R[[i]].R[[j]];nel ++; Rot [ nel ] = Rot[i]. Rot [j];bc=R[[i]].R[[j]];nel ++; Rot [ nel ] = Rot[i]. Rot [j];bc=R[[i]].R[[j]];

AppendTo[R,bc]]]]];AppendTo[R,bc]]]]];AppendTo[R,bc]]]]];

Print [L];Print [L];Print [L];

Print ["Rotation Matrices of Group Elements: "]Print ["Rotation Matrices of Group Elements: "]Print ["Rotation Matrices of Group Elements: "]

Do[Do[Do[

Print["R(",i,") = ",MatrixForm[Rot[i]],",",Print["R(",i,") = ",MatrixForm[Rot[i]],",",Print["R(",i,") = ",MatrixForm[Rot[i]],",",

" R(",i+1,") = ",MatrixForm[Rot[i+1]],","," R(",i+1,") = ",MatrixForm[Rot[i+1]],","," R(",i+1,") = ",MatrixForm[Rot[i+1]],",",

" R(",i+2,") = ", MatrixForm[Rot[i+2]],","," R(",i+2,") = ", MatrixForm[Rot[i+2]],","," R(",i+2,") = ", MatrixForm[Rot[i+2]],",",

" R(",i+3,") = ",MatrixForm[Rot[i+3]]" R(",i+3,") = ",MatrixForm[Rot[i+3]]" R(",i+3,") = ",MatrixForm[Rot[i+3]]

],],],

{i,1,g-3,4}{i,1,g-3,4}{i,1,g-3,4}
]; X=0* IdentityMatrix [6]; Perm = {}; Do[ AppendTo [ Perm ,X],{i,1,g}];]; X=0* IdentityMatrix [6]; Perm = {}; Do[ AppendTo [ Perm ,X],{i,1,g}];]; X=0* IdentityMatrix [6]; Perm = {}; Do[ AppendTo [ Perm ,X],{i,1,g}];

Do [B = X;Do [B = X;Do [B = X;

Do [Do [Do [

Switch [L[[i,j]]¡7, True ,B[[j,L[[i,j]]]]=1, False , cb =L[[i,j]]-6;B[[j, cb ]]=1],{j,1,6}Switch [L[[i,j]]¡7, True ,B[[j,L[[i,j]]]]=1, False , cb =L[[i,j]]-6;B[[j, cb ]]=1],{j,1,6}Switch [L[[i,j]]¡7, True ,B[[j,L[[i,j]]]]=1, False , cb =L[[i,j]]-6;B[[j, cb ]]=1],{j,1,6}
]; Perm [[i]]+=B,{i,1,g}]; Perm [[i]]+=B,{i,1,g}]; Perm [[i]]+=B,{i,1,g}

];];];

(* Transformation of s-orbitals *)(* Transformation of s-orbitals *)(* Transformation of s-orbitals *)

Do [Do [Do [

Print ["P(",i,") = ",MatrixForm[Perm[[i]]],",",Print ["P(",i,") = ",MatrixForm[Perm[[i]]],",",Print ["P(",i,") = ",MatrixForm[Perm[[i]]],",",

" P(",i+1,") = ",MatrixForm[Perm[[i+1]]],","," P(",i+1,") = ",MatrixForm[Perm[[i+1]]],","," P(",i+1,") = ",MatrixForm[Perm[[i+1]]],",",

" P(",i+2,") = ", MatrixForm[Perm[[i+2]]],","," P(",i+2,") = ", MatrixForm[Perm[[i+2]]],","," P(",i+2,") = ", MatrixForm[Perm[[i+2]]],",",

" P(",i+3,") = ",MatrixForm[Perm[[i+3]]]" P(",i+3,") = ",MatrixForm[Perm[[i+3]]]" P(",i+3,") = ",MatrixForm[Perm[[i+3]]]

], {i,1,g-3,4}], {i,1,g-3,4}], {i,1,g-3,4}
] ;] ;] ;

] ; pz={};] ; pz={};] ; pz={};
(* Transformation of pz-orbitals *)(* Transformation of pz-orbitals *)(* Transformation of pz-orbitals *)

Do[pp=Perm[[i]]*R[[i,3,3]];AppendTo[pz,pp],{i,1,g}];Do[pp=Perm[[i]]*R[[i,3,3]];AppendTo[pz,pp],{i,1,g}];Do[pp=Perm[[i]]*R[[i,3,3]];AppendTo[pz,pp],{i,1,g}];
Do[Do[Do[

Print["Ppz(",i,") = ",MatrixForm[pz[[i]]],",",Print["Ppz(",i,") = ",MatrixForm[pz[[i]]],",",Print["Ppz(",i,") = ",MatrixForm[pz[[i]]],",",

" Ppz(",i+1,") = ",MatrixForm[pz[[i+1]]],","," Ppz(",i+1,") = ",MatrixForm[pz[[i+1]]],","," Ppz(",i+1,") = ",MatrixForm[pz[[i+1]]],",",



6.2 Solutions 55

" Ppz(",i+2,") = ", MatrixForm[pz[[i+2]]],","," Ppz(",i+2,") = ", MatrixForm[pz[[i+2]]],","," Ppz(",i+2,") = ", MatrixForm[pz[[i+2]]],",",

" Ppz(",i+3,") = ",MatrixForm[pz[[i+3]]]" Ppz(",i+3,") = ",MatrixForm[pz[[i+3]]]" Ppz(",i+3,") = ",MatrixForm[pz[[i+3]]]

], {i,1,g-3,4}], {i,1,g-3,4}], {i,1,g-3,4}
] ;] ;] ;

NM ={{1},{2,14},{5,11},{8},{3,9,15},{6,12,17},{4},{7,18},{10,16},{13},{19,21,23},{20,22,24}};NM ={{1},{2,14},{5,11},{8},{3,9,15},{6,12,17},{4},{7,18},{10,16},{13},{19,21,23},{20,22,24}};NM ={{1},{2,14},{5,11},{8},{3,9,15},{6,12,17},{4},{7,18},{10,16},{13},{19,21,23},{20,22,24}};
xi = {{1,1,1,1,-1,-1,1,1,1,1,-1,-1},{1,-1,1,-1,1,-1,1,-1,1,-1,1,-1},{1,-1,1,-1,-1,1,1,-1,1,-1,-1,1},xi = {{1,1,1,1,-1,-1,1,1,1,1,-1,-1},{1,-1,1,-1,1,-1,1,-1,1,-1,1,-1},{1,-1,1,-1,-1,1,1,-1,1,-1,-1,1},xi = {{1,1,1,1,-1,-1,1,1,1,1,-1,-1},{1,-1,1,-1,1,-1,1,-1,1,-1,1,-1},{1,-1,1,-1,-1,1,1,-1,1,-1,-1,1},
{2,1,-1,-2,0,0,2,1,-1,-2,0,0},{2,-1,-1,2,0,0,2,-1,-1,2,0,0},{1,1,1,1,1,1,-1,-1,-1,-1,-1,-1},{2,1,-1,-2,0,0,2,1,-1,-2,0,0},{2,-1,-1,2,0,0,2,-1,-1,2,0,0},{1,1,1,1,1,1,-1,-1,-1,-1,-1,-1},{2,1,-1,-2,0,0,2,1,-1,-2,0,0},{2,-1,-1,2,0,0,2,-1,-1,2,0,0},{1,1,1,1,1,1,-1,-1,-1,-1,-1,-1},
{1,1,1,1,-1,-1,-1,-1,-1,-1,1,1},{1,-1,1,-1,1,-1,-1,1,-1,1,-1,1},{1,-1,1,-1,-1,1,-1,1,-1,1,1,-1},{1,1,1,1,-1,-1,-1,-1,-1,-1,1,1},{1,-1,1,-1,1,-1,-1,1,-1,1,-1,1},{1,-1,1,-1,-1,1,-1,1,-1,1,1,-1},{1,1,1,1,-1,-1,-1,-1,-1,-1,1,1},{1,-1,1,-1,1,-1,-1,1,-1,1,-1,1},{1,-1,1,-1,-1,1,-1,1,-1,1,1,-1},

{2,1,-1,-2,0,0,-2,-1,1,2,0,0},{2,-1,-1,2,0,0,-2,1,1,-2,0,0}};{2,1,-1,-2,0,0,-2,-1,1,2,0,0},{2,-1,-1,2,0,0,-2,1,1,-2,0,0}};{2,1,-1,-2,0,0,-2,-1,1,2,0,0},{2,-1,-1,2,0,0,-2,1,1,-2,0,0}};
Class = {};Class = {};Class = {};

Do [Do [Do [

Cls = X;Cls = X;Cls = X;

Do [ Cls+ = Perm [[ NM [[i,j]]]],{j,1, Length [ NM [[i]]]}Do [ Cls+ = Perm [[ NM [[i,j]]]],{j,1, Length [ NM [[i]]]}Do [ Cls+ = Perm [[ NM [[i,j]]]],{j,1, Length [ NM [[i]]]}
] ; AppendTo [ Class , Cls ],{i,1,12}] ; AppendTo [ Class , Cls ],{i,1,12}] ; AppendTo [ Class , Cls ],{i,1,12}

];];];

Do[ Print [ MatrixForm [ Class [[i]]]],{i,1,12}];Do[ Print [ MatrixForm [ Class [[i]]]],{i,1,12}];Do[ Print [ MatrixForm [ Class [[i]]]],{i,1,12}];
Pr = Class [[1]];Pr = Class [[1]];Pr = Class [[1]];

Do [Pr + = Class [[i]],{i,2,12}];Pr = Pr/24; Print [ MatrixForm [Pr ]]; Eigensystem [Pr ]Do [Pr + = Class [[i]],{i,2,12}];Pr = Pr/24; Print [ MatrixForm [Pr ]]; Eigensystem [Pr ]Do [Pr + = Class [[i]],{i,2,12}];Pr = Pr/24; Print [ MatrixForm [Pr ]]; Eigensystem [Pr ]

Do [Do [Do [

Pr2 = xi [[i,1]]* Class [[1]];Pr2 = xi [[i,1]]* Class [[1]];Pr2 = xi [[i,1]]* Class [[1]];

Do [ Pr2 + = xi [[i,j]]* Class [[j]],{j,2,12}]; Pr2 = xi [[i,1]]* Pr2 ;Do [ Pr2 + = xi [[i,j]]* Class [[j]],{j,2,12}]; Pr2 = xi [[i,1]]* Pr2 ;Do [ Pr2 + = xi [[i,j]]* Class [[j]],{j,2,12}]; Pr2 = xi [[i,1]]* Pr2 ;

Pr2 = Pr2/24; Print [ MatrixForm [ Pr2 ]]; Print [ Eigensystem [ Pr2 ]],{i,1,11}Pr2 = Pr2/24; Print [ MatrixForm [ Pr2 ]]; Print [ Eigensystem [ Pr2 ]],{i,1,11}Pr2 = Pr2/24; Print [ MatrixForm [ Pr2 ]]; Print [ Eigensystem [ Pr2 ]],{i,1,11}
]]]

Claspz={};Claspz={};Claspz={};
Do[Do[Do[

Clpz=X;Clpz=X;Clpz=X;

Do[Clpz+=pz[[NM[[i,j]]]],{j,1,Length[NM[[i]]]}Do[Clpz+=pz[[NM[[i,j]]]],{j,1,Length[NM[[i]]]}Do[Clpz+=pz[[NM[[i,j]]]],{j,1,Length[NM[[i]]]}

] ;AppendTo[Claspz,Clpz],{i,1,12}] ;AppendTo[Claspz,Clpz],{i,1,12}] ;AppendTo[Claspz,Clpz],{i,1,12}
];];];

Do[Do[Do[

Print["Clpz(",i,") = ",MatrixForm[Claspz[[i]]],",",Print["Clpz(",i,") = ",MatrixForm[Claspz[[i]]],",",Print["Clpz(",i,") = ",MatrixForm[Claspz[[i]]],",",
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" Clpz(",i+1,") = ",MatrixForm[Claspz[[i+1]]],","," Clpz(",i+1,") = ",MatrixForm[Claspz[[i+1]]],","," Clpz(",i+1,") = ",MatrixForm[Claspz[[i+1]]],",",

" Clpz(",i+2,") = ", MatrixForm[Claspz[[i+2]]],","," Clpz(",i+2,") = ", MatrixForm[Claspz[[i+2]]],","," Clpz(",i+2,") = ", MatrixForm[Claspz[[i+2]]],",",

" Clpz(",i+3,") = ",MatrixForm[Claspz[[i+3]]]" Clpz(",i+3,") = ",MatrixForm[Claspz[[i+3]]]" Clpz(",i+3,") = ",MatrixForm[Claspz[[i+3]]]

], {i,1,9,4}], {i,1,9,4}], {i,1,9,4}

] ;] ;] ;

Pr =Claspz[[1]];Pr =Claspz[[1]];Pr =Claspz[[1]];

Do[Pr +=Claspz[[i]],{i,2,12}];Pr =Pr /24;Print[MatrixForm[Pr ]];Eigensystem[Pr ]Do[Pr +=Claspz[[i]],{i,2,12}];Pr =Pr /24;Print[MatrixForm[Pr ]];Eigensystem[Pr ]Do[Pr +=Claspz[[i]],{i,2,12}];Pr =Pr /24;Print[MatrixForm[Pr ]];Eigensystem[Pr ]
Do[Do[Do[

Pr2=xi[[i,1]]*Claspz[[1]];Pr2=xi[[i,1]]*Claspz[[1]];Pr2=xi[[i,1]]*Claspz[[1]];
Do[Do[Do[

Pr2+=xi[[i,j]]*Claspz[[j]],{j,2,12}Pr2+=xi[[i,j]]*Claspz[[j]],{j,2,12}Pr2+=xi[[i,j]]*Claspz[[j]],{j,2,12}

];Pr2=Pr2*xi[[i,1]];Pr2=Pr2/24;Print[MatrixForm[Pr2]];Print[Eigensystem[Pr2]],{i,1,11}]];Pr2=Pr2*xi[[i,1]];Pr2=Pr2/24;Print[MatrixForm[Pr2]];Print[Eigensystem[Pr2]],{i,1,11}]];Pr2=Pr2*xi[[i,1]];Pr2=Pr2/24;Print[MatrixForm[Pr2]];Print[Eigensystem[Pr2]],{i,1,11}]

Group Permutations:

{{1,2,3,4,5,6,7,8,9,10,11,12},{6,1,2,3,4,5,12,7,8,9,10,11},{7,12,11,10,9,8,1,6,5,4,3,2},

{10,11,12,7,8,9,4,5,6,1,2,3},{5,6,1,2,3,4,11,12,7,8,9,10},{8,7,12,11,10,9,2,1,6,5,4,3},

{9,10,11,12,7,8,3,4,5,6,1,2},{4,5,6,1,2,3,10,11,12,7,8,9},{9,8,7,12,11,10,3,2,1,6,5,4},

{8,9,10,11,12,7,2,3,4,5,6,1},{3,4,5,6,1,2,9,10,11,12,7,8},{10,9,8,7,12,11,4,3,2,1,6,5},

{7,8,9,10,11,12,1,2,3,4,5,6},{2,3,4,5,6,1,8,9,10,11,12,7},{11,10,9,8,7,12,5,4,3,2,1,6},

{12,7,8,9,10,11,6,1,2,3,4,5},{12,11,10,9,8,7,6,5,4,3,2,1},{11,12,7,8,9,10,5,6,1,2,3,4},

{4,3,2,1,6,5,10,9,8,7,12,11},{3,2,1,6,5,4,9,8,7,12,11,10},{2,1,6,5,4,3,8,7,12,11,10,9},

{1,6,5,4,3,2,7,12,11,10,9,8},{6,5,4,3,2,1,12,11,10,9,8,7},{5,4,3,2,1,6,11,10,9,8,7,12}}

Rotation Matrices of Group Elements:

R (1)
E

=




1 0 0
0 1 0
0 0 1


 ,

R (2)
C6

=




1
2

√
3

2
0

−
√

3
2

1
2 0

0 0 1


 ,

R (3)
U1

=




1 0 0
0 −1 0
0 0 −1


 ,
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R (4)
I

=



−1 0 0
0 −1 0
0 0 −1


 ,

R (5)
C3

=



−1

2

√
3

2 0
−

√
3

2
−1

2
0

0 0 1


 ,

R (6)
Ud1

=




1
2 −

√
3

2 0
−

√
3

2
−1

2
0

0 0 −1


 ,

R (7)
S3

=



−1

2
−

√
3

2
0√

3
2 −1

2 0
0 0 −1


 ,

R (8)
C2

=



−1 0 0
0 −1 0
0 0 1


 ,

R (9)
U2

=



−1

2
−

√
3

2
0

−
√

3
2

1
2 0

0 0 −1


 ,

R (10)
S6

=




1
2 −

√
3

2 0√
3

2
1
2

0
0 0 −1


 ,

R (11)
C2

3

=



−1

2 −
√

3
2 0√

3
2

−1
2

0
0 0 1


 ,

R (12)
Ud2

=



−1 0 0
0 1 0
0 0 −1




R (13)
σh

=




1 0 0
0 1 0
0 0 −1


 ,

R (14)
C−1

6

=




1
2 −

√
3

2 0√
3

2
1
2 0

0 0 1


 ,

R (15)
U3

=



−1

2

√
3

2 0√
3

2
1
2 0

0 0 −1


 ,

R (16)
S2

6

=




1
2

√
3

2 0
−

√
3

2
1
2 0

0 0 −1


 ,

R (17)
Ud3

=




1
2

√
3

2 0√
3

2 −1
2 0

0 0 −1


 ,

R (18)
S2

3

=



−1

2

√
3

2 0
−

√
3

2 −1
2 0

0 0 −1


 ,

R (19)
σd1

=



−1 0 0
0 1 0
0 0 1


 ,

R (20)
σ1

=



−1

2 −
√

3
2 0

−
√

3
2

1
2 0

0 0 1


 ,

R (21)
σd2

=




1
2 −

√
3

2 0
−

√
3

2 −1
2 0

0 0 1


 ,

R (22)
σ2

=




1 0 0
0 −1 0
0 0 1


 ,

R (23)
σd3

=




1
2

√
3

2
0√

3
2 −1

2 0
0 0 1


 ,

R (24)
σ3

=



−1

2

√
3

2
0√

3
2

1
2 0

0 0 1




Since the s-orbital engenders the identity Irrep, the s-orbitals of
both species engender the site permutation matrices.

Site Permutations:

P (1) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, P (2) =




0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



, P (3) =




1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0



,
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P (4) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



, P (5) =




0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



, P (6) =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



,

P (7) =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0



, P (8) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



, P (9) =




0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1



,

P (10) =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0



, P (11) =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0



, P (12) =




0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0




P (13) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, P (14) =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0



, P (15) =




0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0



,

P (16) =




0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



, P (17) =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0



, P (18) =




0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



,

P (19) =




0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0



, P (20) =




0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1



, P (21) =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



,

P (22) =




1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0



, P (23) =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0



, P (24) =




0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
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Class matrices:

Class(1) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, Class(2) =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0



, Class(3) =




0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0



,

Class(4) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



, Class(5) =




1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1



, Class(6) =




0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0



,

Class(7) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



, Class(8) =




0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0



, Class(9) =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0



,

Class(10) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, Class(11) =




0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0



, Class(12) =




1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1




(1)P =




1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6








Eigenvalues : 1, 0, 0, 0, 0,0

Eigenvectors : {1, 1, 1, 1, 1, 1}, {−1,0,0, 0, 0, 1}, {−1,0,0, 0, 1,0},
{−1, 0, 0, 1, 0,0},{−1,0, 1, 0,0,0},{−1,1, 0, 0,0,0}
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(6)P =




1
3 −1

6 −1
6

1
3 −1

6 −1
6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −1

6
1
3 −1

6 −1
6

1
3

1
3 −1

6 −1
6

1
3 −1

6 −1
6

−1
6

1
3
−1

6
−1

6
1
3
−1

6

−1
6
−1

6
1
3
−1

6
−1

6
1
3








Eigenvalues : 1, 1, 0, 0, 0, 0

Eigenvectors : {−1, 0, 1,−1, 0,1},{−1,1,0,−1,1,0},{1,1,0, 0, 0,1},
{0,−1, 0, 0, 1, 0}, {−1, 0,0,1, 0, 0}, {1, 1, 1,0,0, 0}

(9)P =




1
6
−1

6
1
6
−1

6
1
6
−1

6

−1
6

1
6
−1

6
1
6
−1

6
1
6

1
6
−1

6
1
6
−1

6
1
6
−1

6

−1
6

1
6
−1

6
1
6
−1

6
1
6

1
6
−1

6
1
6
−1

6
1
6
−1

6

−1
6

1
6
−1

6
1
6
−1

6
1
6








Eigenvalues : 1, 0, 0, 0, 0, 0

Eigenvectors : {−1, 1,−1, 1,−1,1},{1,0,0, 0, 0,1},{−1,0,0, 0, 1,0},
{1, 0, 0, 1,0,0},{−1, 0, 1,0,0,0},{1,1, 0, 0,0,0}

(11)P =




1
3

1
6
−1

6
−1

3
−1

6
1
6

1
6

1
3

1
6
−1

6
−1

3
−1

6

−1
6

1
6

1
3

1
6
−1

6
−1

3

−1
3
−1

6
1
6

1
3

1
6
−1

6

−1
6
−1

3
−1

6
1
6

1
3

1
6

1
6 −1

6 −1
3 −1

6
1
6

1
3








Eigenvalues : 1, 1, 0, 0, 0, 0

Eigenvectors : {1, 0,−1,−1, 0,1},{−1,−1, 0, 1,1,0},{−1, 1, 0,0,0,1},
{0, 1, 0, 0,1,0},{1,0, 0, 1,0,0},{1,−1, 1, 0,0,0}

The missing Irreps have null projection operators. The symmetry-
adapted vectors for the s-orbitals are

A1g

(
(1)Γ

)
:
[
1 1 1 1 1 1

]

E2g

(
(6)Γ

)
:

[
−1 0 1 −1 0 1

−1 1 0 −1 1 0

]
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B1u

(
(9)Γ

)
:
[
−1 1 −1 1 −1 1

]

E1u

(
(11)Γ

)
:

[
1 0 −1 −1 0 1

−1 −1 0 1 1 0

]

Rep engendered by the pz orbitals

Ppz(1) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, Ppz(2) =




0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




, Ppz(3) =




−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0




,

Ppz(4) =




0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




, Ppz(5) =




0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0




, Ppz(6) =




0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0




Ppz(7) =




0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
−1 0 0 0 0 0
0 −1 0 0 0 0




, Ppz(8) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




, Ppz(9) =




0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 −1




Ppz(10) =




0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
−1 0 0 0 0 0




, Ppz(11) =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0




, Ppz(12) =




0 0 0 −1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0




Ppz(13) =




−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




, Ppz(14) =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0




, Ppz(15) =




0 0 −1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0




Ppz(16) =




0 0 0 0 0 −1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0




, Ppz(17) =




0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 −1 0 0 0




, Ppz(18) =




0 0 0 0 −1 0
0 0 0 0 0 −1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
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Ppz(19) =




0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0




, Ppz(20) =




0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1




, Ppz(21) =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0




,

Ppz(22) =




1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0




, Ppz(23) =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0




, Ppz(24) =




0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0




The corresponding class matrices are

Clpz(1) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, Clpz(2) =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




, Clpz(3) =




0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0




,

Clpz(4) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




, Clpz(5) =




−1 0 −1 0 −1 0
0 −1 0 −1 0 −1
−1 0 −1 0 −1 0
0 −1 0 −1 0 −1
−1 0 −1 0 −1 0
0 −1 0 −1 0 −1




, Clpz(6) =




0 −1 0 −1 0 −1
−1 0 −1 0 −1 0
0 −1 0 −1 0 −1
−1 0 −1 0 −1 0
0 −1 0 −1 0 −1
−1 0 −1 0 −1 0




,

Clpz(7) =




0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




, Clpz(8) =




0 0 −1 0 −1 0
0 0 0 −1 0 −1
−1 0 0 0 −1 0
0 −1 0 0 0 −1
−1 0 −1 0 0 0
0 −1 0 −1 0 0




, Clpz(9) =




0 −1 0 0 0 −1
−1 0 −1 0 0 0
0 −1 0 −1 0 0
0 0 −1 0 −1 0
0 0 0 −1 0 −1
−1 0 0 0 −1 0




Clpz(10) =




−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




, Clpz(11) =




0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0




, Clpz(12) =




1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1




(4)
P =




1
6 − 1

6
1
6 − 1

6
1
6 − 1

6

− 1
6

1
6 − 1

6
1
6 − 1

6
1
6

1
6 − 1

6
1
6 − 1

6
1
6 − 1

6

− 1
6

1
6 − 1

6
1
6 − 1

6
1
6

1
6 − 1

6
1
6 − 1

6
1
6 − 1

6

− 1
6

1
6 − 1

6
1
6 − 1

6
1
6
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Eigenvalues : 1, 0, 0, 0, 0, 0

Eigenvectors : {−1, 1,−1, 1,−1,1},{1,0,0, 0, 0,1},{−1,0,0, 0, 1,0},
{1, 0, 0, 1,0,0},{−1, 0, 1,0,0,0},{1,1, 0, 0,0,0}

(5)P =




1
3

1
6 −1

6 −1
3 −1

6
1
6

1
6

1
3

1
6 −1

6 −1
3 −1

6

−1
6

1
6

1
3

1
6 −1

6 −1
3

−1
3
−1

6
1
6

1
3

1
6
−1

6

−1
6
−1

3
−1

6
1
6

1
3

1
6

1
6
−1

6
−1

3
−1

6
1
6

1
3








Eigenvalues : 1, 1, 0, 0, 0, 0

Eigenvectors : {1, 0,−1,−1, 0,1},{−1,−1, 0, 1,1,0},{−1, 1, 0,0,0,1},
{0, 1, 0, 0,1,0},{1,0, 0, 1,0,0},{1,−1, 1, 0,0,0}

(8)P =




1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6








Eigenvalues : 1, 0, 0, 0, 0, 0

Eigenvectors : {1, 1, 1, 1,1,1},{−1, 0, 0,0,0,1},{−1, 0, 0,0,1, 0},
{−1, 0, 0, 1, 0, 0}, {−1, 0,1,0, 0, 0}, {−1, 1,0,0, 0, 0}

(12)P =




1
3
−1

6
−1

6
1
3
−1

6
−1

6

−1
6

1
3
−1

6
−1

6
1
3
−1

6

−1
6
−1

6
1
3
−1

6
−1

6
1
3

1
3
−1

6
−1

6
1
3
−1

6
−1

6

−1
6

1
3 −1

6 −1
6

1
3 −1

6

−1
6 −1

6
1
3 −1

6 −1
6

1
3








Eigenvalues : 1, 1, 0, 0, 0, 0

Eigenvectors : {−1, 0, 1,−1, 0,1},{−1,1,0,−1,1,0},{1,1,0, 0, 0,1},
{0,−1, 0, 0, 1, 0}, {−1, 0,0,1, 0, 0}, {1, 1, 1,0,0, 0}
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The symmetry-adapted vectors are

B2g :
[
1 −1 1 −1 1 −1

]

E1g :
[

1 0 −1 −1 0 1
−1 −1 0 1 1 0

]

A2u :
[
1 1 1 1 1 1

]

E2u :
[
1 0 −1 1 0 −1
1 −1 0 1 −1 0

]

Rep engendered by px, py:

Rxy(1) =
(

1 0
0 1

)
, Rxy(2) =

(
1
2

√
3

2

−
√

3
2

1
2

)
, Rxy(3) =

(
1 0
0 −1

)
, Rxy(4) =

(
−1 0
0 −1

)

Rxy(5) =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
, Rxy(6) =

(
1
2 −

√
3

2

−
√

3
2 −1

2

)
, Rxy(7) =

(
−1

2 −
√

3
2√

3
2 −1

2

)
, Rxy(8) =

(
−1 0
0 −1

)

Rxy(9) =

(
−1

2
−

√
3

2

−
√

3
2

1
2

)
, Rxy(10) =

(
1
2
−

√
3

2√
3

2
1
2

)
, Rxy(11) =

(
−1

2
−

√
3

2√
3

2 −1
2

)
, Rxy(12) =

(
−1 0
0 1

)

Rxy(13) =
(

1 0
0 1

)
, Rxy(14) =

(
1
2 −

√
3

2√
3

2
1
2

)
, Rxy(15) =

(
−1

2

√
3

2√
3

2
1
2

)
, Rxy(16) =

(
1
2

√
3

2

−
√

3
2

1
2

)

Rxy(17) =

(
1
2

√
3

2√
3

2
−1

2

)
, Rxy(18) =

(
−1

2

√
3

2

−
√

3
2
−1

2

)
, Rxy(19) =

(
−1 0
0 1

)
, Rxy(20) =

(
−1

2 −
√

3
2

−
√

3
2

1
2

)

Rxy(21) =

(
1
2 −

√
3

2

−
√

3
2 −1

2

)
, Rxy(22) =

(
1 0
0 −1

)
, Rxy(23) =

(
1
2

√
3

2√
3

2 −1
2

)
, Rxy(24) =

(
−1

2

√
3

2√
3

2
1
2

)

The corresponding Rep engendered by the full set of px, py of the
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benzene molecule is

Pxy(1) =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




,

Pxy(2) =




0 0 0 0 0 0 0 0 0 0 1
2

√
3

2

0 0 0 0 0 0 0 0 0 0 −
√

3
2

1
2

1
2

√
3

2
0 0 0 0 0 0 0 0 0 0

−
√

3
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2

√
3

2 0 0 0 0 0 0 0 0

0 0 −
√

3
2

1
2

0 0 0 0 0 0 0 0

0 0 0 0 1
2

√
3

2
0 0 0 0 0 0

0 0 0 0 −
√

3
2

1
2

0 0 0 0 0 0

0 0 0 0 0 0 1
2

√
3

2
0 0 0 0

0 0 0 0 0 0 −
√

3
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 1
2

√
3

2 0 0

0 0 0 0 0 0 0 0 −
√

3
2

1
2 0 0




Pxy(3) =




1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0




,

Pxy(4) =




0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
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Pxy(5) =




0 0 0 0 0 0 0 0 − 1
2

√
3

2
0 0

0 0 0 0 0 0 0 0 −
√

3
2

− 1
2

0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

√
3

2

0 0 0 0 0 0 0 0 0 0 −
√

3
2 − 1

2

− 1
2

√
3

2
0 0 0 0 0 0 0 0 0 0

−
√

3
2

− 1
2

0 0 0 0 0 0 0 0 0 0

0 0 − 1
2

√
3

2
0 0 0 0 0 0 0 0

0 0 −
√

3
2

− 1
2

0 0 0 0 0 0 0 0

0 0 0 0 − 1
2

√
3

2 0 0 0 0 0 0

0 0 0 0 −
√

3
2 − 1

2 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

√
3

2 0 0 0 0

0 0 0 0 0 0 −
√

3
2

− 1
2

0 0 0 0




,

Pxy(6) =




0 0 1
2

−
√

3
2

0 0 0 0 0 0 0 0

0 0 −
√

3
2

− 1
2

0 0 0 0 0 0 0 0
1
2 −

√
3

2 0 0 0 0 0 0 0 0 0 0

−
√

3
2 − 1

2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0 −
√

3
2

− 1
2

0 0 0 0 0 0 0 0 1
2

−
√

3
2

0 0

0 0 0 0 0 0 0 0 −
√

3
2

− 1
2

0 0

0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0

0 0 0 0 0 0 −
√

3
2 − 1

2 0 0 0 0

0 0 0 0 1
2 −

√
3

2 0 0 0 0 0 0

0 0 0 0 −
√

3
2

− 1
2

0 0 0 0 0 0




Pxy(7) =




0 0 0 0 − 1
2

−
√

3
2

0 0 0 0 0 0

0 0 0 0
√

3
2

− 1
2

0 0 0 0 0 0

0 0 0 0 0 0 − 1
2 −

√
3

2 0 0 0 0

0 0 0 0 0 0
√

3
2 − 1

2 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2

−
√

3
2

0 0

0 0 0 0 0 0 0 0
√

3
2

− 1
2

0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0
√

3
2

− 1
2

− 1
2 −

√
3

2 0 0 0 0 0 0 0 0 0 0√
3

2 − 1
2 0 0 0 0 0 0 0 0 0 0

0 0 − 1
2 −

√
3

2 0 0 0 0 0 0 0 0

0 0
√

3
2

− 1
2

0 0 0 0 0 0 0 0




,

Pxy(8) =




0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
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Pxy(9) =




0 0 0 0 − 1
2

−
√

3
2

0 0 0 0 0 0

0 0 0 0 −
√

3
2

1
2

0 0 0 0 0 0

0 0 − 1
2 −

√
3

2 0 0 0 0 0 0 0 0

0 0 −
√

3
2

1
2 0 0 0 0 0 0 0 0

− 1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0

−
√

3
2

1
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0 −
√

3
2

1
2

0 0 0 0 0 0 0 0 − 1
2 −

√
3

2 0 0

0 0 0 0 0 0 0 0 −
√

3
2

1
2 0 0

0 0 0 0 0 0 − 1
2 −

√
3

2 0 0 0 0

0 0 0 0 0 0 −
√

3
2

1
2

0 0 0 0




,

Pxy(10) =




0 0 1
2

−
√

3
2

0 0 0 0 0 0 0 0

0 0
√

3
2

1
2

0 0 0 0 0 0 0 0

0 0 0 0 1
2 −

√
3

2 0 0 0 0 0 0

0 0 0 0
√

3
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 1
2

−
√

3
2

0 0 0 0

0 0 0 0 0 0
√

3
2

1
2

0 0 0 0

0 0 0 0 0 0 0 0 1
2

−
√

3
2

0 0

0 0 0 0 0 0 0 0
√

3
2

1
2

0 0

0 0 0 0 0 0 0 0 0 0 1
2 −

√
3

2

0 0 0 0 0 0 0 0 0 0
√

3
2

1
2

1
2 −

√
3

2 0 0 0 0 0 0 0 0 0 0√
3

2
1
2

0 0 0 0 0 0 0 0 0 0




Pxy(11) =




0 0 0 0 − 1
2

−
√

3
2

0 0 0 0 0 0

0 0 0 0
√

3
2

− 1
2

0 0 0 0 0 0

0 0 0 0 0 0 − 1
2 −

√
3

2 0 0 0 0

0 0 0 0 0 0
√

3
2 − 1

2 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2

−
√

3
2

0 0

0 0 0 0 0 0 0 0
√

3
2

− 1
2

0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0
√

3
2

− 1
2

− 1
2 −

√
3

2 0 0 0 0 0 0 0 0 0 0√
3

2 − 1
2 0 0 0 0 0 0 0 0 0 0

0 0 − 1
2 −

√
3

2 0 0 0 0 0 0 0 0

0 0
√

3
2

− 1
2

0 0 0 0 0 0 0 0




,

Pxy(12) =




0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
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Pxy(13) =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




,

Pxy(14) =




0 0 1
2 −

√
3

2 0 0 0 0 0 0 0 0

0 0
√

3
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 1
2

−
√

3
2

0 0 0 0 0 0

0 0 0 0
√

3
2

1
2

0 0 0 0 0 0

0 0 0 0 0 0 1
2

−
√

3
2

0 0 0 0

0 0 0 0 0 0
√

3
2

1
2

0 0 0 0

0 0 0 0 0 0 0 0 1
2 −

√
3

2 0 0

0 0 0 0 0 0 0 0
√

3
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0
√

3
2

1
2

1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0√
3

2
1
2

0 0 0 0 0 0 0 0 0 0




Pxy(15) =




0 0 0 0 0 0 0 0 − 1
2

√
3

2 0 0

0 0 0 0 0 0 0 0
√

3
2

1
2 0 0

0 0 0 0 0 0 − 1
2

√
3

2
0 0 0 0

0 0 0 0 0 0
√

3
2

1
2

0 0 0 0

0 0 0 0 − 1
2

√
3

2
0 0 0 0 0 0

0 0 0 0
√

3
2

1
2

0 0 0 0 0 0

0 0 − 1
2

√
3

2 0 0 0 0 0 0 0 0

0 0
√

3
2

1
2 0 0 0 0 0 0 0 0

− 1
2

√
3

2
0 0 0 0 0 0 0 0 0 0√

3
2

1
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

√
3

2

0 0 0 0 0 0 0 0 0 0
√

3
2

1
2




,

Pxy(16) =




0 0 0 0 0 0 0 0 0 0 1
2

√
3

2

0 0 0 0 0 0 0 0 0 0 −
√

3
2

1
2

1
2

√
3

2
0 0 0 0 0 0 0 0 0 0

−
√

3
2

1
2

0 0 0 0 0 0 0 0 0 0

0 0 1
2

√
3

2
0 0 0 0 0 0 0 0

0 0 −
√

3
2

1
2

0 0 0 0 0 0 0 0

0 0 0 0 1
2

√
3

2 0 0 0 0 0 0

0 0 0 0 −
√

3
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 1
2

√
3

2
0 0 0 0

0 0 0 0 0 0 −
√

3
2

1
2

0 0 0 0

0 0 0 0 0 0 0 0 1
2

√
3

2
0 0

0 0 0 0 0 0 0 0 −
√

3
2

1
2

0 0
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Pxy(17) =




0 0 0 0 0 0 0 0 0 0 1
2

√
3

2

0 0 0 0 0 0 0 0 0 0
√

3
2

− 1
2

0 0 0 0 0 0 0 0 1
2

√
3

2 0 0

0 0 0 0 0 0 0 0
√

3
2 − 1

2 0 0

0 0 0 0 0 0 1
2

√
3

2
0 0 0 0

0 0 0 0 0 0
√

3
2

− 1
2

0 0 0 0

0 0 0 0 1
2

√
3

2
0 0 0 0 0 0

0 0 0 0
√

3
2

− 1
2

0 0 0 0 0 0

0 0 1
2

√
3

2 0 0 0 0 0 0 0 0

0 0
√

3
2 − 1

2 0 0 0 0 0 0 0 0
1
2

√
3

2 0 0 0 0 0 0 0 0 0 0√
3

2
− 1

2
0 0 0 0 0 0 0 0 0 0




,

Pxy(18) =




0 0 0 0 0 0 0 0 − 1
2

√
3

2
0 0

0 0 0 0 0 0 0 0 −
√

3
2

− 1
2

0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

√
3

2

0 0 0 0 0 0 0 0 0 0 −
√

3
2 − 1

2

− 1
2

√
3

2
0 0 0 0 0 0 0 0 0 0

−
√

3
2

− 1
2

0 0 0 0 0 0 0 0 0 0

0 0 − 1
2

√
3

2
0 0 0 0 0 0 0 0

0 0 −
√

3
2

− 1
2

0 0 0 0 0 0 0 0

0 0 0 0 − 1
2

√
3

2 0 0 0 0 0 0

0 0 0 0 −
√

3
2 − 1

2 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

√
3

2 0 0 0 0

0 0 0 0 0 0 −
√

3
2

− 1
2

0 0 0 0




Pxy(19) =




0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0




,

Pxy(20) =




0 0 0 0 − 1
2 −

√
3

2 0 0 0 0 0 0

0 0 0 0 −
√

3
2

1
2 0 0 0 0 0 0

0 0 − 1
2

−
√

3
2

0 0 0 0 0 0 0 0

0 0 −
√

3
2

1
2

0 0 0 0 0 0 0 0
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2

−
√

3
2

0 0 0 0 0 0 0 0 0 0

−
√

3
2

1
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
2 −

√
3

2

0 0 0 0 0 0 0 0 0 0 −
√

3
2

1
2

0 0 0 0 0 0 0 0 − 1
2

−
√

3
2

0 0

0 0 0 0 0 0 0 0 −
√

3
2

1
2

0 0

0 0 0 0 0 0 − 1
2

−
√

3
2

0 0 0 0

0 0 0 0 0 0 −
√

3
2

1
2

0 0 0 0
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Pxy(21) =




0 0 1
2

−
√

3
2

0 0 0 0 0 0 0 0

0 0 −
√

3
2

− 1
2

0 0 0 0 0 0 0 0
1
2 −

√
3

2 0 0 0 0 0 0 0 0 0 0

−
√

3
2 − 1

2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

−
√

3
2

0 0 0 0 0 0 0 0 0 0 −
√

3
2

− 1
2

0 0 0 0 0 0 0 0 1
2

−
√

3
2

0 0

0 0 0 0 0 0 0 0 −
√

3
2

− 1
2

0 0

0 0 0 0 0 0 1
2 −

√
3

2 0 0 0 0

0 0 0 0 0 0 −
√

3
2 − 1

2 0 0 0 0

0 0 0 0 1
2 −

√
3

2 0 0 0 0 0 0

0 0 0 0 −
√

3
2

− 1
2

0 0 0 0 0 0




,

Pxy(22) =




1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0




Pxy(23) =




0 0 0 0 0 0 0 0 0 0 1
2

√
3

2

0 0 0 0 0 0 0 0 0 0
√

3
2 − 1

2

0 0 0 0 0 0 0 0 1
2

√
3

2
0 0

0 0 0 0 0 0 0 0
√

3
2

− 1
2

0 0

0 0 0 0 0 0 1
2

√
3

2
0 0 0 0

0 0 0 0 0 0
√

3
2

− 1
2

0 0 0 0

0 0 0 0 1
2

√
3

2 0 0 0 0 0 0

0 0 0 0
√

3
2 − 1

2 0 0 0 0 0 0

0 0 1
2

√
3

2
0 0 0 0 0 0 0 0

0 0
√

3
2

− 1
2

0 0 0 0 0 0 0 0
1
2

√
3

2
0 0 0 0 0 0 0 0 0 0√

3
2

− 1
2

0 0 0 0 0 0 0 0 0 0




,

Pxy(24) =




0 0 0 0 0 0 0 0 − 1
2

√
3

2 0 0

0 0 0 0 0 0 0 0
√

3
2

1
2 0 0

0 0 0 0 0 0 − 1
2

√
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2
0 0 0 0

0 0 0 0 0 0
√

3
2

1
2

0 0 0 0

0 0 0 0 − 1
2

√
3

2
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0 0 0 0
√

3
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1
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2

√
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0 0
√

3
2

1
2 0 0 0 0 0 0 0 0
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2

√
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0 0 0 0 0 0 0 0 0 0√
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0 0 0 0 0 0 0 0 0 0 − 1
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√
3

2

0 0 0 0 0 0 0 0 0 0
√
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2

1
2
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Clpxy(1) =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




,

Clpxy(2) =




0 0 1
2

−
√

3
2

0 0 0 0 0 0 1
2

√
3

2

0 0
√

3
2

1
2

0 0 0 0 0 0 −
√
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2

1
2

1
2

√
3

2
0 0 1

2
−

√
3

2
0 0 0 0 0 0

−
√

3
2

1
2 0 0

√
3

2
1
2 0 0 0 0 0 0

0 0 1
2

√
3

2 0 0 1
2 −

√
3

2 0 0 0 0

0 0 −
√

3
2

1
2

0 0
√

3
2

1
2

0 0 0 0

0 0 0 0 1
2

√
3

2
0 0 1

2
−

√
3

2
0 0

0 0 0 0 −
√

3
2

1
2

0 0
√

3
2

1
2

0 0

0 0 0 0 0 0 1
2

√
3

2
0 0 1

2
−

√
3

2

0 0 0 0 0 0 −
√

3
2

1
2 0 0

√
3

2
1
2

1
2 −

√
3

2 0 0 0 0 0 0 1
2

√
3

2 0 0√
3

2
1
2 0 0 0 0 0 0 −

√
3

2
1
2 0 0




Clpxy(3) =




0 0 0 0 − 1
2

−
√

3
2

0 0 − 1
2

√
3

2
0 0

0 0 0 0
√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

0 0

0 0 0 0 0 0 − 1
2

−
√

3
2

0 0 − 1
2

√
3

2

0 0 0 0 0 0
√

3
2 − 1

2 0 0 −
√

3
2 − 1

2

− 1
2

√
3

2 0 0 0 0 0 0 − 1
2 −

√
3

2 0 0

−
√

3
2

− 1
2

0 0 0 0 0 0
√

3
2

− 1
2

0 0

0 0 − 1
2

√
3

2
0 0 0 0 0 0 − 1

2
−

√
3

2

0 0 −
√

3
2

− 1
2

0 0 0 0 0 0
√

3
2

− 1
2

− 1
2

−
√

3
2

0 0 − 1
2

√
3

2
0 0 0 0 0 0√

3
2 − 1

2 0 0 −
√

3
2 − 1

2 0 0 0 0 0 0

0 0 − 1
2 −

√
3

2 0 0 − 1
2

√
3

2 0 0 0 0

0 0
√

3
2 − 1

2 0 0 −
√

3
2 − 1

2 0 0 0 0




,

Clpxy(4) =




0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
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Clpxy(5) =




1 0 0 0 − 1
2

−
√

3
2

0 0 − 1
2

√
3

2
0 0

0 −1 0 0 −
√

3
2

1
2

0 0
√

3
2

1
2

0 0

0 0 − 1
2 −

√
3

2 0 0 − 1
2

√
3

2 0 0 1 0

0 0 −
√

3
2

1
2 0 0

√
3

2
1
2 0 0 0 −1
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2

−
√

3
2

0 0 − 1
2

√
3

2
0 0 1 0 0 0

−
√

3
2

1
2

0 0
√

3
2

1
2

0 0 0 −1 0 0

0 0 − 1
2

√
3

2
0 0 1 0 0 0 − 1

2
−

√
3

2

0 0
√

3
2

1
2

0 0 0 −1 0 0 −
√

3
2

1
2

− 1
2

√
3

2 0 0 1 0 0 0 − 1
2 −

√
3

2 0 0√
3

2
1
2 0 0 0 −1 0 0 −

√
3

2
1
2 0 0

0 0 1 0 0 0 − 1
2 −

√
3

2 0 0 − 1
2

√
3

2

0 0 0 −1 0 0 −
√

3
2

1
2

0 0
√

3
2

1
2




,

Clpxy(6) =




0 0 1
2

−
√

3
2

0 0 −1 0 0 0 1
2

√
3

2

0 0 −
√

3
2

− 1
2

0 0 0 1 0 0
√

3
2

− 1
2

1
2 −

√
3

2 0 0 −1 0 0 0 1
2

√
3

2 0 0

−
√

3
2 − 1

2 0 0 0 1 0 0
√

3
2 − 1

2 0 0

0 0 −1 0 0 0 1
2

√
3

2
0 0 1

2
−

√
3

2

0 0 0 1 0 0
√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

−1 0 0 0 1
2

√
3

2
0 0 1

2
−

√
3

2
0 0

0 1 0 0
√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

0 0

0 0 1
2

√
3

2 0 0 1
2 −

√
3

2 0 0 −1 0

0 0
√

3
2 − 1

2 0 0 −
√

3
2 − 1

2 0 0 0 1
1
2

√
3

2 0 0 1
2 −

√
3

2 0 0 −1 0 0 0√
3

2
− 1

2
0 0 −

√
3

2
− 1

2
0 0 0 1 0 0




Clpxy(7) =




0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0




,

Clpxy(8) =




0 0 0 0 − 1
2 −

√
3

2 0 0 − 1
2

√
3

2 0 0

0 0 0 0
√

3
2 − 1

2 0 0 −
√

3
2 − 1

2 0 0

0 0 0 0 0 0 − 1
2

−
√

3
2

0 0 − 1
2

√
3

2

0 0 0 0 0 0
√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

− 1
2

√
3

2
0 0 0 0 0 0 − 1

2
−

√
3

2
0 0

−
√

3
2

− 1
2

0 0 0 0 0 0
√

3
2

− 1
2

0 0

0 0 − 1
2

√
3

2 0 0 0 0 0 0 − 1
2 −

√
3

2

0 0 −
√

3
2 − 1

2 0 0 0 0 0 0
√

3
2 − 1

2

− 1
2

−
√

3
2

0 0 − 1
2

√
3

2
0 0 0 0 0 0√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

0 0 0 0 0 0

0 0 − 1
2

−
√

3
2

0 0 − 1
2

√
3

2
0 0 0 0

0 0
√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

0 0 0 0
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Clpxy(9) =




0 0 1
2

−
√

3
2

0 0 0 0 0 0 1
2

√
3

2

0 0
√

3
2

1
2

0 0 0 0 0 0 −
√

3
2

1
2

1
2

√
3

2 0 0 1
2 −

√
3

2 0 0 0 0 0 0

−
√

3
2

1
2 0 0

√
3

2
1
2 0 0 0 0 0 0

0 0 1
2

√
3

2
0 0 1

2
−

√
3

2
0 0 0 0

0 0 −
√

3
2

1
2

0 0
√

3
2

1
2

0 0 0 0

0 0 0 0 1
2

√
3

2
0 0 1

2
−

√
3

2
0 0

0 0 0 0 −
√

3
2

1
2

0 0
√

3
2

1
2

0 0

0 0 0 0 0 0 1
2

√
3

2 0 0 1
2 −

√
3

2

0 0 0 0 0 0 −
√

3
2

1
2 0 0

√
3

2
1
2

1
2 −

√
3

2 0 0 0 0 0 0 1
2

√
3

2 0 0√
3

2
1
2

0 0 0 0 0 0 −
√

3
2

1
2

0 0




,

Clpxy(10) =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




Clpxy(11) =




0 0 1
2 −

√
3

2 0 0 −1 0 0 0 1
2

√
3

2

0 0 −
√

3
2 − 1

2 0 0 0 1 0 0
√

3
2 − 1

2
1
2

−
√

3
2

0 0 −1 0 0 0 1
2

√
3

2
0 0

−
√

3
2

− 1
2

0 0 0 1 0 0
√

3
2

− 1
2

0 0

0 0 −1 0 0 0 1
2

√
3

2
0 0 1

2
−

√
3

2

0 0 0 1 0 0
√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

−1 0 0 0 1
2

√
3

2 0 0 1
2 −

√
3

2 0 0

0 1 0 0
√

3
2 − 1

2 0 0 −
√

3
2 − 1

2 0 0

0 0 1
2

√
3

2
0 0 1

2
−

√
3

2
0 0 −1 0

0 0
√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

0 0 0 1
1
2

√
3

2
0 0 1

2
−

√
3

2
0 0 −1 0 0 0√

3
2

− 1
2

0 0 −
√

3
2

− 1
2

0 0 0 1 0 0




,

Clpxy(12) =




1 0 0 0 − 1
2 −

√
3

2 0 0 − 1
2

√
3

2 0 0

0 −1 0 0 −
√

3
2

1
2 0 0

√
3

2
1
2 0 0

0 0 − 1
2

−
√

3
2

0 0 − 1
2

√
3

2
0 0 1 0

0 0 −
√

3
2

1
2

0 0
√

3
2

1
2

0 0 0 −1

− 1
2

−
√

3
2

0 0 − 1
2

√
3

2
0 0 1 0 0 0

−
√

3
2

1
2

0 0
√

3
2

1
2

0 0 0 −1 0 0

0 0 − 1
2

√
3

2 0 0 1 0 0 0 − 1
2 −

√
3

2

0 0
√

3
2

1
2 0 0 0 −1 0 0 −

√
3

2
1
2

− 1
2

√
3

2
0 0 1 0 0 0 − 1

2
−

√
3

2
0 0√

3
2

1
2

0 0 0 −1 0 0 −
√

3
2

1
2

0 0

0 0 1 0 0 0 − 1
2

−
√

3
2

0 0 − 1
2

√
3

2

0 0 0 −1 0 0 −
√

3
2

1
2

0 0
√

3
2

1
2
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(1)
P =




1
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0 1
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4
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8
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1
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4
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8
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Eigenvalues : 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors :
{

2√
3
, 0, 1√

3
,−1,− 1√

3
,−1,− 2√

3
, 0,− 1√

3
, 1, 1√

3
, 1

}
,
{
−

√
3

2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
}

,
{
− 1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0

}
,
{
−

√
3

2
, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

}
,

{
1
2
, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

}
, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
{√

3
2

, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
}

,
{

1
2
, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

}
,
{√

3
2

, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
}

,
{
− 1

2
, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

}
, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

(2)
P =




0 0 0 0 0 0 0 0 0 0 0 0
0 1

6
1

4
√

3

1
12

1

4
√

3
− 1

12
0 − 1

6
− 1

4
√

3
− 1

12
− 1

4
√

3

1
12

0 1
4
√

3
1
8

1
8
√

3
1
8

− 1
8
√

3
0 − 1

4
√

3
− 1

8
− 1

8
√

3
− 1

8
1

8
√

3

0 1
12

1

8
√

3

1
24

1

8
√

3
− 1

24 0 − 1
12 − 1

8
√

3
− 1

24 − 1

8
√

3

1
24

0 1
4
√

3
1
8

1
8
√

3
1
8

− 1
8
√

3
0 − 1

4
√

3
− 1

8
− 1

8
√

3
− 1

8
1

8
√

3

0 − 1
12 − 1

8
√

3
− 1

24 − 1

8
√

3

1
24 0 1

12
1

8
√

3

1
24

1

8
√

3
− 1

24

0 0 0 0 0 0 0 0 0 0 0 0
0 − 1

6
− 1

4
√

3
− 1

12
− 1

4
√

3
1
12

0 1
6

1
4
√

3
1
12

1
4
√

3
− 1

12

0 − 1

4
√

3
− 1

8
− 1

8
√

3
− 1

8
1

8
√

3
0 1

4
√

3

1
8

1

8
√

3

1
8

− 1

8
√

3

0 − 1
12

− 1
8
√

3
− 1

24
− 1

8
√

3
1
24

0 1
12

1
8
√

3
1
24

1
8
√

3
− 1

24

0 − 1

4
√

3
− 1

8 − 1

8
√

3
− 1

8
1

8
√

3
0 1

4
√

3

1
8

1

8
√

3

1
8 − 1

8
√

3

0 1
12

1
8
√

3
1
24

1
8
√

3
− 1

24
0 − 1

12
− 1

8
√

3
− 1

24
− 1

8
√

3
1
24








Eigenvalues : 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors :
{
0, 2,

√
3, 1,

√
3,−1, 0,−2,−

√
3,−1,−

√
3, 1

}
,
{
0,− 1

2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
}

,{
0,

√
3

2 , 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
}

,
{
0, 1

2 , 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
}

,{
0,

√
3

2
, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

}
, {0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
{
0, 1

2
, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

}
,{

0,−
√

3
2

, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
}

,
{
0,− 1

2
, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

}
,{

0,−
√

3
2

, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
}

, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}



6.2 Solutions 77

(6)
P =




1
3

0 − 1
12

1
4
√

3
1
12

1
4
√

3
− 1

3
0 1

12
− 1

4
√

3
− 1

12
− 1

4
√

3

0 1
3 − 1

4
√

3
− 1

12 − 1

4
√

3

1
12 0 − 1

3
1

4
√

3

1
12

1

4
√

3
− 1

12

− 1
12

− 1

4
√

3

1
3

0 − 1
12

1

4
√

3

1
12

1

4
√

3
− 1

3
0 1

12
− 1

4
√

3
1

4
√

3
− 1

12
0 1

3
− 1

4
√

3
− 1

12
− 1

4
√

3
1
12

0 − 1
3

1
4
√

3
1
12

1
12 − 1

4
√

3
− 1

12 − 1

4
√

3

1
3 0 − 1

12
1

4
√

3

1
12

1

4
√

3
− 1

3 0
1

4
√

3
1
12

1
4
√

3
− 1

12
0 1

3
− 1

4
√

3
− 1

12
− 1

4
√

3
1
12

0 − 1
3

− 1
3 0 1

12 − 1

4
√

3
− 1

12 − 1

4
√

3

1
3 0 − 1

12
1

4
√

3

1
12

1

4
√

3

0 − 1
3

1
4
√

3
1
12

1
4
√

3
− 1

12
0 1

3
− 1

4
√

3
− 1

12
− 1

4
√

3
1
12

1
12

1
4
√

3
− 1

3
0 1

12
− 1

4
√

3
− 1

12
− 1

4
√

3
1
3

0 − 1
12

1
4
√

3

− 1

4
√

3

1
12

0 − 1
3

1

4
√

3

1
12

1

4
√

3
− 1

12
0 1

3
− 1

4
√

3
− 1

12

− 1
12

1
4
√

3
1
12

1
4
√

3
− 1

3
0 1

12
− 1

4
√

3
− 1

12
− 1

4
√

3
1
3

0

− 1

4
√

3
− 1

12 − 1

4
√

3

1
12 0 − 1

3
1

4
√

3

1
12

1

4
√

3
− 1

12 0 1
3








Eigenvalues : 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors :
{
−

√
3

2
,− 1

2
, 0, 0, 0,−1,

√
3

2
, 1

2
, 0, 0, 0, 1

}
,
{
− 1

2
,
√

3
2

, 0, 0,−1, 0, 1
2
,−

√
3

2
, 0, 0, 1, 0

}
,{

−
√

3
2

, 1
2
, 0,−1, 0, 0,

√
3

2
,− 1

2
, 0, 1, 0, 0

}
,
{

1
2
,
√

3
2

,−1, 0, 0, 0,− 1
2
,−

√
3

2
, 1, 0, 0, 0

}
,{√

3
2 , 1

2 ,
√

3
2 ,− 1

2 , 0, 0, 0, 0, 0, 0, 0, 1
}

,
{

1
2 ,−

√
3

2 ,− 1
2 ,−

√
3

2 , 0, 0, 0, 0, 0, 0, 1, 0
}

,

{0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},{
−

√
3

2 ,− 1
2 ,−

√
3

2 , 1
2 , 0, 1, 0, 0, 0, 0, 0, 0

}
,
{
− 1

2 ,
√

3
2 , 1

2 ,
√

3
2 , 1, 0, 0, 0, 0, 0, 0, 0

}

(9)
P =




1
6

0 − 1
12

1

4
√

3
− 1

12
− 1

4
√

3

1
6

0 − 1
12

1

4
√

3
− 1

12
− 1

4
√

3

0 0 0 0 0 0 0 0 0 0 0 0
− 1

12
0 1

24
− 1

8
√

3

1
24

1

8
√

3
− 1

12
0 1

24
− 1

8
√

3

1
24

1

8
√

3
1

4
√

3
0 − 1

8
√

3
1
8

− 1
8
√

3
− 1

8
1

4
√

3
0 − 1

8
√

3
1
8

− 1
8
√

3
− 1

8

− 1
12 0 1

24 − 1

8
√

3

1
24

1

8
√

3
− 1

12 0 1
24 − 1

8
√

3

1
24

1

8
√

3

− 1
4
√

3
0 1

8
√

3
− 1

8
1

8
√

3
1
8

− 1
4
√

3
0 1

8
√

3
− 1

8
1

8
√

3
1
8

1
6 0 − 1

12
1

4
√

3
− 1

12 − 1

4
√

3

1
6 0 − 1

12
1

4
√

3
− 1

12 − 1

4
√

3

0 0 0 0 0 0 0 0 0 0 0 0
− 1

12
0 1

24
− 1

8
√

3
1
24

1
8
√

3
− 1

12
0 1

24
− 1

8
√

3
1
24

1
8
√

3
1

4
√

3
0 − 1

8
√

3

1
8

− 1

8
√

3
− 1

8
1

4
√

3
0 − 1

8
√

3

1
8

− 1

8
√

3
− 1

8

− 1
12

0 1
24

− 1
8
√

3
1
24

1
8
√

3
− 1

12
0 1

24
− 1

8
√

3
1
24

1
8
√

3

− 1

4
√

3
0 1

8
√

3
− 1

8
1

8
√

3

1
8 − 1

4
√

3
0 1

8
√

3
− 1

8
1

8
√

3

1
8








Eigenvalues : 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors :
{
− 2√

3
, 0, 1√

3
,−1, 1√

3
, 1,− 2√

3
, 0, 1√

3
,−1, 1√

3
, 1

}
,
{√

3
2

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
}

,
{

1
2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0

}
,
{
−

√
3

2
, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

}
,

{
1
2 , 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

}
, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{−1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
{√

3
2 , 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

}
,

{
1
2 , 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

}
,
{
−

√
3

2 , 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
}

,
{

1
2
, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

}
, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
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(10)
P =




0 0 0 0 0 0 0 0 0 0 0 0
0 1

6 − 1

4
√

3
− 1

12
1

4
√

3
− 1

12 0 1
6 − 1

4
√

3
− 1

12
1

4
√

3
− 1

12

0 − 1
4
√

3
1
8

1
8
√

3
− 1

8
1

8
√

3
0 − 1

4
√

3
1
8

1
8
√

3
− 1

8
1

8
√

3

0 − 1
12

1
8
√

3
1
24

− 1
8
√

3
1
24

0 − 1
12

1
8
√

3
1
24

− 1
8
√

3
1
24

0 1

4
√

3
− 1

8
− 1

8
√

3

1
8

− 1

8
√

3
0 1

4
√

3
− 1

8
− 1

8
√

3

1
8

− 1

8
√

3

0 − 1
12

1
8
√

3
1
24

− 1
8
√

3
1
24

0 − 1
12

1
8
√

3
1
24

− 1
8
√

3
1
24

0 0 0 0 0 0 0 0 0 0 0 0
0 1

6
− 1

4
√

3
− 1

12
1

4
√

3
− 1

12
0 1

6
− 1

4
√

3
− 1

12
1

4
√

3
− 1

12

0 − 1

4
√

3

1
8

1

8
√

3
− 1

8
1

8
√

3
0 − 1

4
√

3

1
8

1

8
√

3
− 1

8
1

8
√

3

0 − 1
12

1
8
√

3
1
24

− 1
8
√

3
1
24

0 − 1
12

1
8
√

3
1
24

− 1
8
√

3
1
24

0 1
4
√

3
− 1

8
− 1

8
√

3
1
8

− 1
8
√

3
0 1

4
√

3
− 1

8
− 1

8
√

3
1
8

− 1
8
√

3

0 − 1
12

1

8
√

3

1
24

− 1

8
√

3

1
24

0 − 1
12

1

8
√

3

1
24

− 1

8
√

3

1
24








Eigenvalues : 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors :
{
0,−2,

√
3, 1,−

√
3, 1, 0,−2,

√
3, 1,−

√
3, 1

}
,
{
0, 1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

}
,{

0,−
√

3
2

, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
}

,
{
0, 1

2
, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

}
,{

0,
√

3
2

, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
}

, {0,−1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},

{
0, 1

2
, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

}
,{

0,−
√

3
2

, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
}

,
{
0, 1

2
, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

}
,{

0,
√

3
2

, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
}

, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

(11)
P =




1
3

0 1
12

− 1
4
√

3
1
12

1
4
√

3
1
3

0 1
12

− 1
4
√

3
1
12

1
4
√

3

0 1
3

1
4
√

3
1
12

− 1
4
√

3
1
12

0 1
3

1
4
√

3
1
12

− 1
4
√

3
1
12

1
12

1

4
√

3

1
3

0 1
12

− 1

4
√

3

1
12

1

4
√

3

1
3

0 1
12

− 1

4
√

3

− 1
4
√

3
1
12

0 1
3

1
4
√

3
1
12

− 1
4
√

3
1
12

0 1
3

1
4
√

3
1
12

1
12 − 1

4
√

3

1
12

1

4
√

3

1
3 0 1

12 − 1

4
√

3

1
12

1

4
√

3

1
3 0

1
4
√

3
1
12

− 1
4
√

3
1
12

0 1
3

1
4
√

3
1
12

− 1
4
√

3
1
12

0 1
3

1
3 0 1

12 − 1

4
√

3

1
12

1

4
√

3

1
3 0 1

12 − 1

4
√

3

1
12

1

4
√

3

0 1
3

1
4
√

3
1
12

− 1
4
√

3
1
12

0 1
3

1
4
√

3
1
12

− 1
4
√

3
1
12

1
12

1
4
√

3
1
3

0 1
12

− 1
4
√

3
1
12

1
4
√

3
1
3

0 1
12

− 1
4
√

3

− 1

4
√

3

1
12

0 1
3

1

4
√

3

1
12

− 1

4
√

3

1
12

0 1
3

1

4
√

3

1
12

1
12

− 1
4
√

3
1
12

1
4
√

3
1
3

0 1
12

− 1
4
√

3
1
12

1
4
√

3
1
3

0
1

4
√

3

1
12 − 1

4
√

3

1
12 0 1

3
1

4
√

3

1
12 − 1

4
√

3

1
12 0 1

3








Eigenvalues : 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors :
{√

3
2

, 1
2
, 0, 0, 0, 1,

√
3

2
, 1

2
, 0, 0, 0, 1

}
,
{

1
2
,−

√
3

2
, 0, 0, 1, 0, 1

2
,−

√
3

2
, 0, 0, 1, 0

}
,{

−
√

3
2

, 1
2
, 0, 1, 0, 0,−

√
3

2
, 1

2
, 0, 1, 0, 0

}
,
{

1
2
,
√

3
2

, 1, 0, 0, 0, 1
2
,
√

3
2

, 1, 0, 0, 0
}

,{
−

√
3

2 ,− 1
2 ,

√
3

2 ,− 1
2 , 0, 0, 0, 0, 0, 0, 0, 1

}
,
{
− 1

2 ,
√

3
2 ,− 1

2 ,−
√

3
2 , 0, 0, 0, 0, 0, 0, 1, 0

}
,

{0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0,−1, 0, 0, 0, 0, 0, 1, 0, 0, 0},
{0,−1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {−1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},{
−

√
3

2 ,− 1
2 ,

√
3

2 ,− 1
2 , 0, 1, 0, 0, 0, 0, 0, 0

}
,
{
− 1

2 ,
√

3
2 ,− 1

2 ,−
√

3
2 , 1, 0, 0, 0, 0, 0, 0, 0

}
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The missing Irreps have null projection operators. The symmetry-
adapted vectors for the px, py-orbitals are

p x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6

A1g

(
(1)Γ

)
:
[

2 0 1 −
√

3 −1 −
√

3 −2 0 −1
√

3 1
√

3
]

A2g

(
(2)Γ

)
:
[

0 2
√

3 1
√

3 −1 0 −2 −
√

3 −1 −
√

3 1
]

E2g

(
(6)Γ

)
:




−
√

3
2
−1

2
0 0 0 −1

√
3

2
1
2

0 0 0 1

−1
2

√
3

2
0 0 −1 0 1

2
−

√
3

2
0 0 1 0

−
√

3
2

1
2

0 −1 0 0
√

3
2

−1
2

0 1 0 0
1
2

√
3

2 −1 0 0 0 −1
2 −

√
3

2 1 0 0 0




B1u

(
(9)Γ

)
:
[
−2 0 1 −

√
3 1

√
3 −2 0 1 −

√
3 1

√
3
]

B2u

(
(10)Γ

)
:
[

0 −2
√

3 1 −
√

3 1 0 −2
√

3 1 −
√

3 1
]

E2u

(
(11)Γ

)
:




√
3

2
1
2 0 0 0 1

√
3

2
1
2 0 0 0 1

1
2 −

√
3

2 0 0 1 0 1
2 −

√
3

2 0 0 1 0

−
√

3
2

1
2 0 1 0 0 −

√
3

2
1
2 0 1 0 0

1
2

√
3

2 1 0 0 0 1
2

√
3

2 1 0 0 0
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Table 6.5. Character Table for D6h

E 2C6 2C3 C2 3U 3Ud I 2S3 2S6 σh 3σd 3σv

A1g
(1)Γ 1 1 1 1 1 1 1 1 1 1 1 1

A2g
(2)Γ 1 1 1 1 -1 -1 1 1 1 1 -1 -1

B1g
(3)Γ 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

B2g
(4)Γ 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1

E1g
(5)Γ 2 1 -1 -2 0 0 2 1 -1 -2 0 0

E2g
(6)Γ 2 -1 -1 2 0 0 2 -1 -1 2 0 0

A1u
(7)Γ 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

A2u
(8)Γ 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1

B1u
(9)Γ 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

B2u
(10)Γ 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1

E1u
(11)Γ 2 1 -1 -2 0 0 -2 -1 1 2 0 0

E2u
(12)Γ 2 -1 -1 2 0 0 -2 1 1 -2 0 0



7

Construction of the irreducible
representations

7.1 Exercises

7.1 In chapter 2 or 3 it was found that the matrix

S =
1√
2

(
1 1
i −i

)

diagonalized the matrix Ĉ2
3 . Use the inverse process to “undiagonal-

ize” the set of six matrices found in example 7.2 and show that this
similarity transformation produces a set of six matrices that form an
Irrep of the group C3v which differs from (2.3) only in having opposite
signs for the elements of the matrices σ1, σ2, σ3.

7.2 Solutions

4.1

81
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Product groups and product representations

8.1 Exercises

8.1 Show that if H2 ⊂ H1 ⊂ G, and H2 C G is an invariant subgroup of
G, then it is also an invariant subgroup of H2, i.e. H2 C H1. If H1 is
the largest invariant subgroup of G, i.e. maximal in G, it is called the
normalizer of H2 in G.

8.2 Show that the converse of problem 1 does not necessarily hold, and
give an example where it is not true.

8.3 Prove that the number of pairs of inequivalent conjugate Irreps of a
finite group is equal to the number of pairs of reciprocal classes.

8.4 Determine the subgroups of D4, and identify the invariant ones. De-
rive the factor groups of its invariant subgroups.

8.5 Determine the subgroups of the symmetric group S4, and identify the
invariant subgroups among them. Derive the corresponding factor
groups.

8.6 Construct the character table of D4h from that of D4.

8.7 Generalize the previous problem for the point-groups Dnh and Cnh.
8.8 Subduction of representations

Consider the vector Irrep of O(3), namely (j=1)Γ−.

(i) Now select among the infinitely uncountable set of operators those
that correspond to C4v, which comprise 4- and 2-fold rotations about
the z-axis, the two reflections planes xz and yz, and in the two
vertical diagonal reflection planes intersecting with the xy plane
through the lines x = y and x = −y, respectively.

(ii) Show that this set of matrices forms a group isomorphic to C4v, i.e.
they form a faithful representation of C4v.

82
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(iii) Decompose this representation in terms of the Irreps of C4v, and
obtain the corresponding reduction coefficients

〈
(j=1)Γ−

∣∣ (i)Γ
〉
.

This procedure is known as subduction, and will discussed in the fol-
lowing chapter.

8.9 Symmetrization of a second-rank tensor

Consider a second-rank tensor associated with a 3-dimensional sys-
tem with C4v symmetry. Use the fact that the O(3) Irrep of the tensor
is given by (j=1)Γ− ⊗ (j=1)Γ− , and obtain its CG-series in terms of
the Irreps of C4v.

8.10 What would be the outcome of the second-rank tensor symmetrization
had the symmetry of the system been D4 rather than C4v?

8.11 Repeat the symmetrization of the second-rank tensor if the symmetry
of the system is C3v.

8.12 Consider the tetrahedral point-group 23 (T ), which contains 4-axis 3-
fold oerations {Ci

3, C
−1,i
3 }, i = 1 − 4, and 3 2-fold axes, U i bisecting

opposite edges of the tetrahedron.

(i) Show that it has one invariant subgroup, and determine the
corresponding factor group.

(ii) Show that 23 (T ) can be constructed from the outer-product
of the invariant subgroup with its factor group.

(iii) Construct its character table with the help of the above results.

8.13 Consider the self-direct-product of the 3-dimensional Irrep T of 23 (T ),
with generators

Cxyz
3 =




0 0 1
1 0 0
0 1 0


 ; Cz

2 =



−1 0 0
0 −1 0
0 0 1


 .

23 has the character table

(i) Determine the CG series.
(ii) Determine the CGCs.

8.14 Derive the steps that lead to CGCs given in Example 8.17 for the
Irreps (2)Γ and (3)Γ of C3v.

8.15 Derive the results given in Example 8.18 for the CGCs
(

55 σ

ik 1

)
,

σ = 1, 2, 3, 4, of C4v.
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8.2 Solutions

8.1 A normal subgroup H2 of G satisfies the condition

RH2R
−1 = H2, ∀ R ∈ G

By definition, all the elements of the subgroup H1 are also elements
of G, hence

SH2 S
−1 = H2, ∀ S ∈ H1

which is the condition that H2 C H1.
8.2 Here the normal subgroup H2 of H1 satisfies the condition

SH2 S
−1 = H2, ∀ S ∈ H1

But, it does not necessarily satisfy the condition

RH2R
−1 = H2, ∀ R ∈ G

since not every R is to be found in H1. The group T contains the
subgroup D2 which is invariant in T ; it is comprised of E and three
two-fold rotations. D2 contains three invariant subgroups, each com-
prised of E and one two-fold rotations, however, these subgroups are
not invariant in T .

8.4 We write the elements of D4 as E, C4, C
−1
4 , C2, Ux, Uy, Uxy, Ubarxȳ.

D4 is of order 8; hence, it has subgroups of index 2 and 4:

Subgroups of index 2 :





C4 : E, C4, C2, C
−1
4

D2 : E, C2, Ux, Uy

Dd
2 : E, C2, Uxy, Ux̄ȳ

[4pt]Subgroups of index 4 :





C2 : E, C2

C2 : E, Ux

C2 : E, Uy

C2 : E, Uxy

C2 : E, Ux̄ȳ

All subgroups of index 2 are normal subgroups with factor groups

D4

C4
= C4, Ux C4

D4

D2
= D2, UxD2

D4

Dd
2

= Dd
2 , C4Dd

2

are
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8.5 We write the elements of S4 as

(1)(2)(3)(4), (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (124),

(132), (134), (142), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432)

S4 is of order 24, thus, it has subgroups of index 2, 3, 4, 6, 8, and 12.

Subgroups of index 2 :T : (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (123), (124), (132), (134),

(142), (143), (234), (243)

Subgroups of index 3 :T : (1)(2)(3)(4), (1234), (1432), (13)(24), (13), (12)(34), (24), (14)(23)

Subgroups of index 4 :4 subgroups isomorphic to S3, groups of permutations of 3 of the 4 objects

Subgroups of index 6 :

{
3 subgroups isomorphic to the cyclic group C4
V4 = (1)(2)(3)(4), (12)(34), (13)(24), (14)(23)

8.6 The character table of D4 is

Table 8.1. Character table of D4

E C4 C2 U Ud

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

Since

D4h = D4 ⊗ Ci

and Cs has the character table we obtain the character table of as

Table 8.2. Character table of Ci

E I

(+)Γ 1 1
(−)Γ 1 -1
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Table 8.3. Character table of D4h

E C4 C2 U Ud I S4 σh σ σd

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 -1 -1 1 1 1 -1 -1
B1g 1 -1 1 1 -1 1 -1 1 1 -1
B2g 1 -1 1 -1 1 1 -1 1 -1 1
Eg 2 0 -2 0 0 2 0 -2 0 0
A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 1 1 -1 -1 -1 -1 -1 1 1
B1u 1 -1 1 1 -1 -1 1 -1 -1 1
B2u 1 -1 1 -1 1 -1 1 -1 1 -1
Eu 2 0 -2 0 0 -2 0 2 0 0

8.7 For n even, the order of the group is g = 2n we set n = 2`; then we
have:

(i) An n-fold rotation axis, with the n rotations falling into ` + 1
classes: {E}, {C2}, {Cn, C

−1
n }, {C2

n, C
−2
n }, . . .

(ii) For the Dnh groups, we have n 2-fold rotation axes lying in
a plane perpendicular to the n-fold axis, U -axes. They are
divided into two classes: one class is comprised of the U axes
that pass through the apices of an n-polygon and the second
class of the perpendicular bisectors of the polygon edges.

(iii) The generating relations are

Cn
n = U2 = E,CnU = UC−1

n

For the Cnh groups, we replace the n 2-fold axes by n σv reflec-
tion planes.

In all, we have `+ 3 classes.
Both group types have the cyclic group Cn as an invariant subgroup

with index 2; its factor group is isomorphic with Ci. Cn has n 1-
dimensional Irreps of the form

(m)Γ(Cn) = e−i2mπ/n, 0 ≤ m ≤ n− 1

Thus, if define a basis function (m)η for Irrep m, we can construct a 2-
dimensional Irrep by defining a partner basis function (m)ζ = U (m)η

and obtain

U (m)ζ = (m)η, (m)η = (m)ζ, Cn
(m)ζ = UC−1

n
(m)η = ei2mπ/n (m)ζ
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Thus we engender the 2-dimensional Irrep of Dn

(m)E(Cn) =
(
e−i2mπ/n 0

0 ei2mπ/n

)
, (m)E(U ) =

(
0 1
1 0

)

There are ` − 1 such Irreps defined with 1 ≤ m ≤ ` − 1; the 2-
dimensional Reps engendered from m > `− 1 are either equivalent or
reducible.

This leaves us with four 1-dimensional Irreps. We construct the
Irreps A1 and A2 using the Irrep (0)Γ of Cn and the two Irreps of the
factor group Ci, namely

A1(Cn) = A1(U ) = 1

A2(Cn) = 1, A2(U ) = −1

To construct the remaining two Irreps we use the invariant subgroup

C` = E, C2
n, C

4
n, C

6
n, . . . , C

n−2
n

with index 4. Its factor group is isomorphic with D2, with cosets

C`, Cn C`, U C`, Ud C`

Its has the four 1-dimensional Irreps shown in Table 8.4.

Table 8.4. Character table of the factor group

E Cn U Ud

(1)Γ(A1) 1 1 1 1
(2)Γ(A2) 1 1 -1 -1
(3)Γ(B1) 1 -1 1 -1
(4)Γ(B2) 1 -1 -1 1

It is clear from Table 8.4 that the first two Irreps will just induce A1

and A2 we have just constructed, but with B1 and B2 we can induce
the remaining Irreps as

B1(C2i) = B1(U ) = 1, B1(C2i+1) = B1(Ud) = −1,

B1(C2i) = B1(Ud) = 1, B1(C2i+1) = B1(U ) = −1,

The Irreps of Dnh can then be constructed using the Irreps of Ci given
in Table 8.2.
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8.8 (i) The subduced Rep is

E =




1 0 0
0 1 0
0 0 1


 , C4 =




0 −1 0
1 0 0
0 0 1


 , C−1

4 =




0 1 0
−1 0 0
0 0 1


 , C2 =



−1 0 0
0 −1 0
0 0 1


 ,

σx =



−1 0 0
0 1 0
0 0 1


 , σy =




1 0 0
0 −1 0
0 0 1


 , σxy =




0 1 0
1 0 0
0 0 1


 , σxȳ =




0 −1 0
−1 0 0
0 0 1




(ii) Matrix multiplication can be used to show that the subduced
Rep is faithful

(iii) Examination of the matrices of (i) reveals that they all have the
same block-diagonal form, and that we can decompose these
matrices into

(1)Γ(A1) : E = 1, C4 = 1, C−1
4 = 1, C2 = 1, σx = 1, σy = 1, σxy = 1, σxȳ = 1

(5)Γ(E) :
(

1 0
0 1

)
, C4 =

(
0 −1
1 0

)
, C−1

4 =
(

0 1
−1 0

)
, C2 =

(
−1 0
0 −1

)
,

σx =
(
−1 0
0 1

)
, σy =

(
1 0
0 −1

)
, σxy =

(
0 1
1 0

)
, σxȳ =

(
0 −1
−1 0

)

8.9 We learned from problem 8.8 that the vector Rep

(j=1)Γ− ↓ C4v = (1)Γ(A1) ⊕ (5)Γ(E)

Thus,

(j=1)Γ− ⊗ (j=1)Γ− =
(

(1)Γ(A1) ⊕ (5)Γ(E)
)
⊗
(

(1)Γ(A1) ⊕ (5)Γ(E)
)

= 2 (1)Γ(A1) ⊕ (2)Γ(A2) ⊕ (3)Γ(B1) ⊕ (4)Γ(B2) ⊕ 2 (5)Γ(E)

where we have used Chapter 8 Table 8.4.
8.10 Since D4 is isomorphic with C4v they should have the same CG series.
8.11 The subduced Rep is

E =




1 0 0
0 1 0
0 0 1


 , C3 =



−1/2 −

√
3

2 0√
3

2 −1/2 0
0 0 1


 , C−1

3 =



−1/2

√
3

2 0
−

√
3

2 −1/2 0
0 0 1


 ,

σ1 =



−1 0 0
0 1 0
0 0 1


 , σ2 =



−1/2 −

√
3

2 0
−

√
3

2 1/2 0
0 0 1


 , σ3 =



−1/2

√
3

2 0√
3

2 1/2 0
0 0 1




(j=1)Γ− ↓ C3v = (1)Γ(A1) ⊕ (3)Γ(E)
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and using Table 8.2 of Chapter 8, we get

(j=1)Γ− ⊗ (j=1)Γ− = 2 (1)Γ(A1) ⊕ (2)Γ(A2) ⊕ 3 (3)Γ(E)

8.12 Group Permutations:

{{1, 2, 3, 4}, {2, 1,4,3},{3,2,1, 4}, {4,3, 2, 1}, {2, 3,1,4},{3,2,4, 1},

{1, 4, 2, 3},{4,1,3,2},{3,1, 2, 4}, {4, 2, 1,3},{1,3,4,2},{2,4, 3, 1},

Rotation Matrices of Group Elements:

R(1)
E

=




1 0 0
0 1 0
0 0 1


 ,

R(2)
Uz

=



−1 0 0
0 −1 0
0 0 1


 ,

R(3)
Ux

=




1 0 0
0 −1 0
0 0 −1


 ,

R(4)
Uy

=



−1 0 0
0 1 0
0 0 −1


 ,

R(5)
Cxyz

3
=




0 0 1
1 0 0
0 1 0


 ,

R(6)
C x̄yz

3
=




0 0 −1
−1 0 0
0 1 0


 ,

R(7)
C2xȳz

3

=




0 0 1
−1 0 0
0 −1 0


 ,

R(8)
C2xyz̄

3

=




0 0 −1
1 0 0
0 −1 0




R(9)
C2xyz

3
=




0 1 0
0 0 1
1 0 0


 ,

R(10)
Cxyz̄

3
=




0 1 0
0 0 −1
−1 0 0


 ,

R(11)
Cxȳz

3
=




0 −1 0
0 0 −1
1 0 0


 ,

R(12)
Cxȳz

3
=




0 −1 0
0 0 1
−1 0 0


 ,

It has four classes

C1 = {E},
C2 = {{2, 3, 1, 4}, {3, 2,4,1},{1,4,2, 3}, {4, 1, 3, 2}}
C3 = {{3, 1, 2, 4}, {4, 2,1,3},{1,3,4, 2}, {2, 4, 3, 1}}
C4 = {{2, 1, 4, 3}, {3, 2,1,4},{4,3,2, 1}}

The normal subgroup is

Table 8.5. Character table of T /N

N {123}N {321}N

(1)Γ 1 1 1
(2)Γ 1 ω ω2

(3)Γ 1 ω2 ω
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N = {{1, 2, 3, 4}, {2,1, 4, 3}, {3, 2,1,4},{4,3,2, 1}

with factor group

T
N = N , {2, 3, 1, 4}N , {3, 1, 2, 4}N

isomorphic to C3 with the character table in Table 8.5.
Since T has four classes, it has four Irreps, and since

∑
µ d2

µ = 12
we must have three 1-dimensional and one 3-dimensional Irreps. The
mapping defined in Table 8.5 gives the three 1-dimensional Irreps as

Table 8.6. Character table of T

E U C3 C−1
3

(1)Γ 1 1 1 1
(2)Γ 1 1 ω ω2

(3)Γ 1 1 ω2 ω
(4)Γ 3 -1 0 0

8.13 The characters of the outer products are

E U C3 C−1
3

(4)Γ ⊗ (4)Γ 9 1 0 0

It is then straightforward to obtain the frequencies:
〈
4⊗ 4

∣∣1
〉

=
〈
4⊗ 4

∣∣2
〉

=
〈
4⊗ 4

∣∣3
〉

= 1,
〈
4⊗ 4

∣∣4
〉

= 2

The CG series is

(4)Γ ⊗ (4)Γ = (1)Γ ⊕ (2)Γ ⊕ (3)Γ ⊕ 2 (4)Γ

(* Generators: C2z, C
xyz
3 *)(* Generators: C2z, C
xyz
3 *)(* Generators: C2z, C
xyz
3 *)

<<Combinatoricà<<Combinatoricà<<Combinatoricà

g=12;NG=3;g=12;NG=3;g=12;NG=3;

L={Range[4],{2,1,4,3},{2,3,1,4}};L={Range[4],{2,1,4,3},{2,3,1,4}};L={Range[4],{2,1,4,3},{2,3,1,4}};
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R={{{1,0,0},{0,1,0},{0,0,1}},{{-1,0,0},{0,-1,0},{0,0,1}},{{0,0,1},{1,0,0},{0,1,0}}};R={{{1,0,0},{0,1,0},{0,0,1}},{{-1,0,0},{0,-1,0},{0,0,1}},{{0,0,1},{1,0,0},{0,1,0}}};R={{{1,0,0},{0,1,0},{0,0,1}},{{-1,0,0},{0,-1,0},{0,0,1}},{{0,0,1},{1,0,0},{0,1,0}}};

Array[Rot,{3,3}];Array[Rot,{3,3}];Array[Rot,{3,3}];
Do[B=R[[i]];Rot[i]=B,{i,1,NG}];Do[B=R[[i]];Rot[i]=B,{i,1,NG}];Do[B=R[[i]];Rot[i]=B,{i,1,NG}];
f:=Permute[L[[i]],L[[j]]];nel=NG;f:=Permute[L[[i]],L[[j]]];nel=NG;f:=Permute[L[[i]],L[[j]]];nel=NG;

While[TrueQ[Length[L]¡g],While[TrueQ[Length[L]¡g],While[TrueQ[Length[L]¡g],

For[i=2,i¡g,i++,For[i=2,i¡g,i++,For[i=2,i¡g,i++,

For[j=2,j¡(Length[L]+1),j++,For[j=2,j¡(Length[L]+1),j++,For[j=2,j¡(Length[L]+1),j++,

Switch[FreeQ[L,f],Switch[FreeQ[L,f],Switch[FreeQ[L,f],

True,AppendTo[L,f];nel++;True,AppendTo[L,f];nel++;True,AppendTo[L,f];nel++;

Rot[nel]=Rot[i].Rot[j];Rot[nel]=Rot[i].Rot[j];Rot[nel]=Rot[i].Rot[j];

bc=R[[i]].R[[j]];AppendTo[R,bc]bc=R[[i]].R[[j]];AppendTo[R,bc]bc=R[[i]].R[[j]];AppendTo[R,bc]

]]]];Print[L];]]]];Print[L];]]]];Print[L];

Print["Rotation Matrices of Group Elements: "]Print["Rotation Matrices of Group Elements: "]Print["Rotation Matrices of Group Elements: "]

Do[Do[Do[

Print["R(",i,") = ",MatrixForm[Rot[i]],",",Print["R(",i,") = ",MatrixForm[Rot[i]],",",Print["R(",i,") = ",MatrixForm[Rot[i]],",",

" R(",i+1,") = ",MatrixForm[Rot[i+1]],","," R(",i+1,") = ",MatrixForm[Rot[i+1]],","," R(",i+1,") = ",MatrixForm[Rot[i+1]],",",

" R(",i+2,") = ", MatrixForm[Rot[i+2]],","," R(",i+2,") = ", MatrixForm[Rot[i+2]],","," R(",i+2,") = ", MatrixForm[Rot[i+2]],",",

" R(",i+3,") = ",MatrixForm[Rot[i+3]]" R(",i+3,") = ",MatrixForm[Rot[i+3]]" R(",i+3,") = ",MatrixForm[Rot[i+3]]

],],],

{i,1,g-3,4}{i,1,g-3,4}{i,1,g-3,4}
];];];

NM={{1},{2,9,12},{3,4,5,10},{6,7,8,11}};ω =
(
−1/2 + i

√
3
/

2
)
;NM={{1},{2,9,12},{3,4,5,10},{6,7,8,11}};ω =

(
−1/2 + i

√
3
/

2
)
;NM={{1},{2,9,12},{3,4,5,10},{6,7,8,11}};ω =

(
−1/2 + i

√
3
/

2
)
;

xi=
{
{1, 1, 1, 1},

{
1, 1, ω, ω2

}
,
{
1, 1, ω2, ω

}
, {3,−1, 0, 0}

}
;xi=

{
{1, 1, 1, 1},

{
1, 1, ω, ω2

}
,
{
1, 1, ω2, ω

}
, {3,−1, 0, 0}

}
;xi=

{
{1, 1, 1, 1},

{
1, 1, ω, ω2

}
,
{
1, 1, ω2, ω

}
, {3,−1, 0, 0}

}
;

Outpr={};Outpr={};Outpr={};
Do[ Rnu=R[[i]];Do[ Rnu=R[[i]];Do[ Rnu=R[[i]];

vx=KroneckerProduct[Rnu,Rnu];vx=KroneckerProduct[Rnu,Rnu];vx=KroneckerProduct[Rnu,Rnu];

AppendTo[Outpr,vx],{i,1,g}];AppendTo[Outpr,vx],{i,1,g}];AppendTo[Outpr,vx],{i,1,g}];

Do[Do[Do[

Print["OP(",i,") = ",MatrixForm[Outpr[[i]]],",",Print["OP(",i,") = ",MatrixForm[Outpr[[i]]],",",Print["OP(",i,") = ",MatrixForm[Outpr[[i]]],",",

" OP(",i+1,") = ",MatrixForm[Outpr[[i+1]]],","," OP(",i+1,") = ",MatrixForm[Outpr[[i+1]]],","," OP(",i+1,") = ",MatrixForm[Outpr[[i+1]]],",",

" OP(",i+2,") = ", MatrixForm[Outpr[[i+2]]],","," OP(",i+2,") = ", MatrixForm[Outpr[[i+2]]],","," OP(",i+2,") = ", MatrixForm[Outpr[[i+2]]],",",
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" OP(",i+3,") = ",MatrixForm[Outpr[[i+3]]]" OP(",i+3,") = ",MatrixForm[Outpr[[i+3]]]" OP(",i+3,") = ",MatrixForm[Outpr[[i+3]]]

], {i,1,g-3,4}], {i,1,g-3,4}], {i,1,g-3,4}

] ;] ;] ;

X=0*IdentityMatrix[9];Class={};X=0*IdentityMatrix[9];Class={};X=0*IdentityMatrix[9];Class={};

Do[Cls=X;Do[Cls=X;Do[Cls=X;

Do[Cls+=Outpr[[NM[[i,j]]]],{j,1,Length[NM[[i]]]}Do[Cls+=Outpr[[NM[[i,j]]]],{j,1,Length[NM[[i]]]}Do[Cls+=Outpr[[NM[[i,j]]]],{j,1,Length[NM[[i]]]}

] ;AppendTo[Class,Cls],{i,1,4}] ;AppendTo[Class,Cls],{i,1,4}] ;AppendTo[Class,Cls],{i,1,4}

];];];

Do[Print[MatrixForm[Class[[i]]]],{i,1,4}];Do[Print[MatrixForm[Class[[i]]]],{i,1,4}];Do[Print[MatrixForm[Class[[i]]]],{i,1,4}];

Do[Do[Do[

Pr2=xi[[i,1]]*Class[[1]];Pr2=xi[[i,1]]*Class[[1]];Pr2=xi[[i,1]]*Class[[1]];

Do[Do[Do[

Pr2+=xi[[i,j]]*Class[[j]],{j,2,4}Pr2+=xi[[i,j]]*Class[[j]],{j,2,4}Pr2+=xi[[i,j]]*Class[[j]],{j,2,4}

];Pr2=Pr2*xi[[i,1]];Pr2=Pr2/12;Print[MatrixForm[Pr2]];Print[N[Eigensystem[Pr2]]],{i,1,4}];];Pr2=Pr2*xi[[i,1]];Pr2=Pr2/12;Print[MatrixForm[Pr2]];Print[N[Eigensystem[Pr2]]],{i,1,4}];];Pr2=Pr2*xi[[i,1]];Pr2=Pr2/12;Print[MatrixForm[Pr2]];Print[N[Eigensystem[Pr2]]],{i,1,4}];

{{1,2,3,4},{2,1,4,3},{2,3,1,4},{1,4,2,3},{3,2,4,1},{3,1,2,4},

{2,4,3,1},{1,3,4,2},{3,4,1,2},{4,1,3,2},{4,2,1,3},{4,3,2,1}}
Rotation Matrices of Group Elements:

R(1) =




1 0 0
0 1 0
0 0 1


 , R(2) =



−1 0 0
0 −1 0
0 0 1


 , R(3) =




0 0 1
1 0 0
0 1 0


 , R(4) =




0 0 −1
−1 0 0
0 1 0




R(5) =




0 0 1
−1 0 0
0 −1 0


 , R(6) =




0 1 0
0 0 1
1 0 0


 , R(7) =




0 1 0
0 0 −1
−1 0 0


 , R(8) =




0 −1 0
0 0 1
−1 0 0




R(9) =



−1 0 0
0 1 0
0 0 −1


 , R(10) =




0 0 −1
1 0 0
0 −1 0


 , R(11) =




0 −1 0
0 0 −1
1 0 0


 , R(12) =




1 0 0
0 −1 0
0 0 −1
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OP(1) =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




, OP(2) =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1




,

OP(3) =




0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0




, OP(4) =




0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0




,

OP(5) =




0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0




, OP(6) =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




,

OP(7) =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




, OP(8) =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




,

OP(9) =




1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1




, OP(10) =




0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0




,

OP(11) =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




, OP(12) =




1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
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Class(1) =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




, Class(2) =




3 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 3 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 3




,

Class(3) =




0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0




, Class(4) =




0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0




(1)
P =




1
3

0 0 0 1
3

0 0 0 1
3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1
3

0 0 0 1
3

0 0 0 1
3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1
3

0 0 0 1
3

0 0 0 1
3








Eigenvalues : 1, 0, 0, 0, 0, 0, 0, 0, 0.

Eigenvectors : {1, 0, 0, 0, 1, 0, 0, 0, 1}, {−1, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, {−1, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0}
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(2)
P =




1
3 0 0 0 1

3

(
− 1

2 + i
√

3
2

)2

0 0 0 1
3

(
− 1

2 + i
√

3
2

)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
3

(
− 1

2
+ i

√
3

2

)
0 0 0 1

3
0 0 0 1

3

(
− 1

2
+ i

√
3

2

)2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
3

(
− 1

2 + i
√

3
2

)2

0 0 0 1
3

(
− 1

2 + i
√

3
2

)
0 0 0 1

3








Eigenvalues : 1, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors : {− 1
2

+ i
√

3
2

, 0, 0, 0,− 1
2
− i

√
3

2
, 0, 0, 0, 1}, { 1

2
− i

√
3

2
, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, { 1
2

+ i
√

3
2

, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0}

(3)
P =




1
3

0 0 0 1
3

(
− 1

2
+ i

√
3

2

)
0 0 0 1

3

(
− 1

2
+ i

√
3

2

)2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
3

(
− 1

2 + i
√

3
2

)2

0 0 0 1
3 0 0 0 1

3

(
− 1

2 + i
√

3
2

)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
3

(
− 1

2
+ i

√
3

2

)
0 0 0 1

3

(
− 1

2
+ i

√
3

2

)2

0 0 0 1
3








Eigenvalues : 1, 0, 0, 0, 0, 0, 0, 0, 0

Eigenvectors : {− 1
2
− i

√
3

2
, 0, 0, 0,− 1

2
+ i

√
3

2
, 0, 0, 0, 1}, { 1

2
+ i

√
3

2
, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0}, { 1
2 − i

√
3

2 , 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0}

(4)
P =




0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0








Eigenvalues : 1, 1, 1, 1, 1, 1, 0, 0, 0

Eigenvectors : {0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0}
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(1)Γ =
[
1 0 0 0 1 0 0 0 1

]

(2)Γ =
[

1
2
− i

√
3

2
0 0 0 1

2
+ i

√
3

2
0 0 0 −1

]

(3)Γ =
[

1
2 + i

√
3

2 0 0 0 1
2 − i

√
3

2 0 0 0 −1
]

(4)Γ1 =




0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0




(4)Γ2 =




0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0




8.14 The CGCs can be calculated with the aid of the following relations
(
µν σ

ik m

) (
σ µν

n jl

)
=

dσ

g

∑

R∈G

(µ)Γij(R)(ν)Γkl(R)(σ)Γ∗
mn(R)

∣∣∣∣
(
µν σ

ik m

)∣∣∣∣
2

=
dσ

g

∑

R∈G

(µ)Γii(R) (ν)Γkk(R) (σ)Γ∗
mm(R)

Remembering that the Irreps of C3v are

Table 8.7. Irreps of C3v

E σ C3

(1)Γ (A1) 1 1 1
(2)Γ (A2) 1 -1 1
(3)Γ (E) 2 0 -1

and that the matrices of (3)Γ (E) are

E =
(

1 0
0 1

)
, σ1 =

(
−1 0
0 1

)
, σ2 =

(
1/2 −

√
3/2

−
√

3/2 −1/2

)
,

σ3 =
(

1/2
√

3/2√
3/2 −1/2

)
, C3 =

(
−1/2 −

√
3/2√

3/2 −1/2

)
, C−1

3 =
(
−1/2

√
3/2

−
√

3/2 −1/2

)
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We obtain for (2)Γ (A2)
∣∣∣∣
(

33 2
11 1

)∣∣∣∣
2

=
∣∣∣∣
(

33 2
22 1

)∣∣∣∣
2

=
1
6

[
1− 1− 1

4
− 1

4
+

1
4

+
1
4

]
= 0

∣∣∣∣
(

33 2
12 1

)∣∣∣∣
2

=
1
6

[
0 + 0 +

3
4

+
3
4

+
3
4

+
3
4

]
=

1
2
,

(
33 2
12 1

)(
33 2
21 1

)
=

1
6

[
0 + 0− 3

4
− 3

4
− 3

4
− 3

4

]
= −1

2
(

33 2
ik 1

)
=

1√
2

(
0 1
−1 0

)

∣∣∣∣
(

33 3
11 1

)∣∣∣∣
2

=
1
3

[
1− 1− 1

8
− 1

8
+

1
8

+
1
8

]
= 0

∣∣∣∣
(

33 3
11 2

)∣∣∣∣
2

=
1
3

[
1 + 1− 1

8
− 1

8
− 1

8
− 1

8

]
=

1
2

∣∣∣∣
(

33 3
22 1

)∣∣∣∣
2

=
1
3

[
1− 1 +

1
8

+
1
8
− 1

8
− 1

8

]
= 0

∣∣∣∣
(

33 3
22 2

)∣∣∣∣
2

=
1
3

[
1 + 1− 1

8
− 1

8
− 1

8
− 1

8

]
=

1
2

∣∣∣∣
(

33 3
12 1

)∣∣∣∣
2

=
1
3

[
1 + 1− 1

8
− 1

8
− 1

8
− 1

8

]
=

1
2

∣∣∣∣
(

33 3
12 2

)∣∣∣∣
2

=
1
3

[
1− 1 +

1
8

+
1
8
− 1

8
− 1

8

]
= 0

(
33 3
11 2

)(
3 33
2 22

)
=

1
3

[
0 + 0− 3

8
− 3

8
− 3

8
− 3

8

]
= −1

2
(

33 3
12 1

)(
3 33
1 21

)
=

1
3

[
0 + 0 +

3
8

+
3
8

+
3
8

+
3
8

]
=

1
2

(
33 3
ik 1

)
=

1√
2

(
0 1
1 0

)

(
33 3
ik 2

)
=

1√
2

(
1 0
0 −1

)

8.15 The CG series is

(5⊗5)Γ = (1)Γ ⊕ (2)Γ ⊕ (3)Γ ⊕ (4)Γ,
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is comprised of 1-dimensional Irreps only. The matrices for Irrep (5)Γ
are

(5)Γ(E) =
[

1 0
0 1

]
, (5)Γ(C2x) =

[
1 0
0 −1

]
,

(5)Γ(C2y) =
[
−1 0
0 1

]
, (5)Γ(C2z) =

[
−1 0
0 −1

]
,

(5)Γ(C4z) =
[

0 1
−1 0

]
, (5)Γ(C−1

4z ) =
[
0 −1
1 0

]
,

(5)Γ(C2xy) =
[

0 1
1 0

]
, (5)Γ(C2x̄ȳ) =

[
0 −1
−1 0

]
.

Following the procedure and notation of the previous problem, we
obtain

∣∣∣∣
(

55 1
11 1

)∣∣∣∣
2

=
∣∣∣∣
(

55 1
22 1

)∣∣∣∣
2

=
1
8

[1 + 1 + 1 + 1 + 0 + 0 + 0 + 0] =
1
2

(
55 1
11 1

)(
1 55
1 12

)
=

1
8

∑
(5)Γ11

(5)Γ12 = 0

(
55 1
11 1

)(
1 55
1 22

)
=

1
8

∑
(5)Γ2

12 =
1
8

[0 + 0 + 0 + 0 + 1 + 1 + 1 + 1] =
1
2

(
55 1
ik 1

)
=

1√
2

(
1 0
0 1

)

∣∣∣∣
(

55 2
11 1

)∣∣∣∣
2

=
∣∣∣∣
(

55 2
22 1

)∣∣∣∣
2

=
1
8

[1 + 1 + 1 + 1 + 0 + 0 + 0 + 0] =
1
2

(
55 2
11 1

)(
2 55
1 12

)
=

1
8

∑
(5)Γ11

(5)Γ12
(2)Γ = 0

(
55 2
11 1

)(
2 55
1 22

)
=

1
8

∑
(5)Γ2

12
(2)Γ =

1
8

[0 + 0 + 0 + 0 + 1 + 1 + 1 + 1] =
1
2

(
55 2
ik 1

)
=

1√
2

(
1 0
0 −1

)
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∣∣∣∣
(

55 3
11 1

)∣∣∣∣
2

=
∣∣∣∣
(

55 3
22 1

)∣∣∣∣
2

=
1
8

[1 + 1 + 1 + 1 + 0 + 0 + 0 + 0] =
1
2

(
55 3
11 1

)(
3 55
1 12

)
=

1
8

∑
(5)Γ11

(5)Γ12
(3)Γ = 0

(
55 3
11 1

)(
3 55
1 22

)
=

1
8

∑
(5)Γ2

12
(3)Γ =

1
8

[0 + 0 + 0 + 0 + 1 + 1 + 1 + 1] =
1
2

(
55 3
ik 1

)
=

1√
2

(
0 −1
1 0

)

∣∣∣∣
(

55 4
11 1

)∣∣∣∣
2

=
∣∣∣∣
(

55 4
22 1

)∣∣∣∣
2

=
1
8

[1 + 1 + 1 + 1 + 0 + 0 + 0 + 0] =
1
2

(
55 4
11 1

)(
4 55
1 12

)
=

1
8

∑
(5)Γ11

(5)Γ12
(4)Γ = 0

(
55 4
11 1

)(
4 55
1 22

)
=

1
8

∑
(5)Γ2

12
(4)Γ =

1
8

[0 + 0 + 0 + 0 + 1 + 1 + 1 + 1] =
1
2

(
55 4
ik 1

)
=

1√
2

(
0 1
1 0

)



9

Induced representations

9.1 Exercises

9.1 Show explicitly that the set of matrices M∗ in (??) obeys the group
multiplication table for C3v.

9.2 Carry out all the steps to assure yourself that the results of (9.33)
are correct. Show explicitly that the set of matrices obeys the group
multiplication table for C4v.

9.3 Prove (9.30).
9.4 Consider the symmetric group S4 of order 24; it has 5 classes and 2

normal subgroups, as was determined in problem 4.5. Use the normal
subgroup isomorphic to T to induce Irreps of S4.

9.5 Consider the isomorphic point-groups C2nv and D2n.

(i) Show that their order is 4n.
(ii) Show that D4 and D6 have 5 and 7 classes.
(iii) Generalize these results by showing that for an arbitrary n

there correspond n+ 3 classes and hence n + 3 Irreps.
(iv) Describe the nature of the different classes.
(v) Show that the Irrep dimension sum-rule uniquely determines

the dimensionality of the Irreps.
(vi) Determine the invariant subgroup of either C2nv or D2n.
(vii) Use this normal subgroup and its factor group to construct the

group Irreps.

9.6 Consider the C(2n+1)v and D2n+1 type point-groups.

(i) Show that their order is 4n+ 2.
(ii) Show that they have n+ 2 classes.
(iii) Describe the nature of the different classes.

100
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(iv) Show that the Irrep dimension sum-rule uniquely determines
the dimensionality of the Irreps.

(v) Determine the invariant subgroup of either C2nv or D2n.
(vi) Use this normal subgroup and its factor group to construct the

group Irreps.

9.7 The proper cubic point-group 432 (O) contains the tetrahedral point-
group 23 (T ) as a normal subgroup. From the 4 Irreps of 23, derived
in problem 8.12 of chapter 8, construct the Irreps of 432.

9.8 Use the Irreps of the normal subgroup C4 C D4 to induce the latter’s
Irreps.

9.2 Solutions

9.1 Just carry out matrix multiplication to verify the group properties.
9.2
9.3
9.4
9.5 Parts (i) through (ii) have were covered in Problem 8.7.

(iv) Since we have n+ 3 classes, the number of Irreps is also n+ 3.
We write the Irrep dimension sum-rule as

4n = 1 +
n+3∑

µ=2

d2
µ

For n = 1 the Irrep sum rule required that all Irreps be 1-dimensional.
For larger n the sum-rule does not allow for Irreps of dimension greater
than 2. The sum rule is then uniquely satisfied with four 1-dimensional
Irreps and n− 1 2-dimensional Irreps.

Parts (v) and (vi) were also solved in Problem 8.7.
9.7 We have

O
T = Cs = T ⊕ Ud T

where

Ud T = 6Ud, 6C4

The Irreps of Cs are given in Table 8.2.

(i) (1)∆ (A) is self-conjugate, hence, LII = O, LI = Cs. We can
induce two Irreps of O from the Irrep A, namely,
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Table 9.1. Character table of T

E U C3 C−1
3

A (1)∆ 1 1 1 1

E

{ (2)∆ 1 1 ω ω2

(3)∆ 1 1 ω2 ω

T (4)∆ 3 -1 0 0

E 6C4 3C2 8C3 6Ud

(1)Γ (A1) 1 1 1 1 1
(2)Γ (A2) 1 -1 1 1 -1

(ii) Next, we find that Irreps (2)Γ and (3)Γ of T form a two-pronged
orbit under conjugation by elements of O, for example, we get

(2)∆ (Uxy
d Cxyz

3 Uxy
d ) = (2)∆ (Cxyz

3 ) = ω∗ = (3)∆
(
Cyz̄x̄

3

)

Thus, they have LII = T , LI = E. We need to determine the
ground Rep matrices with respect to LII = T for the generators
of O = E T ⊕ UdT , namely, Cxyz

3 , C2x, U
xy
d .

M (Cxyz
3 ) =

(
ECxyz

3 E ECxyz
3 Uxy

d

Uxy
d Cxyz

3 E Uxy
d Cxyz

3 Uxy
d

)
=
(

(2)∆ (Cxyz
3 ) 0

0 (3)∆ (Cxyz
3 )

)

=
(
ω 0
0 ω∗

)

M (C2x) =
(
EC2xE EC2zU

xy
d

Uxy
d C2xE Uxy

d C2xU
xy
d

)
=
(

(2)∆ (C2x) 0
0 (3)∆ (C2x)

)

=
(

1 0
0 1

)

M (Uxy
d ) =

(
EUxy

d E EUxy
d Uxy

d

UdU
xy
d E Uxy

d Uxy
d Uxy

d

)
=
(

0 (2)∆ (E)
(3)∆ (E) 0

)
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(iii) The Irrep T contains the matrices

(4)∆ (C2x) =




1 0 0
0 −1 0
0 0 −1


 , (4)∆ (Cxyz

3 ) =




0 0 1
1 0 0
0 1 0




Under the conjugation with Uxy
d we obtain

Uxy
d C2xU

xy
d = C2y, U

xy
d Cxyz

3 Uxy
d = Cyz̄x̄

3

or

(4)∆ (Uxy
d C2xU

xy
d ) =(4) ∆ (C2y) =



−1 0 0
0 1 0
0 0 −1


 ,

(4)∆ (Uxy
d Cxyz

3 Uxy
d ) = (4)∆

(
Cyz̄x̄

3

)
=




0 1 0
0 0 −1
−1 0 0




We see that the characters of the conjugate Irrep are the same
as of (4)∆ itself. Hence, (4)∆ is self-conjugate, and
LII = O, LI = Cs.
Now, we determine the matrix representative of Uxy

d , say U

that satifies
(4)∆ (C2y) = U−1 (4)∆ (C2x) U

(4)∆
(
Cyz̄x̄

3

)
= U−1 (4)∆

(
Cyz̄x̄

3

)
U

U2 = (Uxy
d )2 = I

which yields

Uxy
d =




0 1 0
1 0 0
0 0 −1
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Crystallographic Symmetry and
Space-Groups

10.1 Exercises

10.1 Use the integers 1, 2, 3, etc. to label each of the lattice points in
Fig. 12a whose x-coordinates are such that x ≥ 0. Perform the space-
group operation (C−

4

∣∣t) on each of these numbered lattice points and
label the resulting lattice points by 1’, 2’, etc. Find the new origin
such that the space group operations (C−

4

∣∣t) just carried out can be
described as pure rotations about the new origin.

10.2 Show that body-centered and face-centered tetragonal lattices are
equivalent.

10.3 Derive the a-holohedry matrices of the generators C4z, C3xyz, I of the
face-centered cubic structure.

10.4 Sketch the unit cell of figure 10.13 as viewed along the screw axis.
With the use of the solid and open circles to distinguish atoms in
the basal plane from those in the mid-plane, identify the glide plane.
What is the Seitz operator that takes atom 1 to the position of atom
2?

10.5 Show that for the 2-dimensional space-group p2mg
(
σx

∣∣τ
) (
σy

∣∣τ
)

r =
(
σxσy

∣∣τ + σx τ
)

r = −r.

Show explicitly that
(
σx

∣∣τ
) (
σy

∣∣τ
)

is its own inverse.

10.6 Explain the difference between the crystallographic point-groups 3m
and m3. Explain why that m3 (Th) is not holohedral despite the fact
that it contains a center of inversion.

10.7 Explain the reason that no face-centered lattices appear in the tetrag-
onal system.

104
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10.8 Show that monoclinic I (body-centered) lattices are possible, but not
new; that is, show that 2C is not a distinct lattice but that 2A and
2B are.

10.9 Use the reasoning presented in §5.2.1 to demonstrate that symmetry
operations involving improper rotations cannot be accompanied by a
nonprimitive translation τ , except 2̄(S2).

10.10 Discuss the reasons for the classification of the point-groups C3h and
S6 among the hexagonal and trigonal systems.

10.11 Write down an explicit form of the following Seitz operators:

(i) a c-glide plane at x, 1/4, z,
(ii) a 21 axis along [0, y, 1/4]
(iii) an n-glide plane at x, 0, z
(iv) a 42 axis along [1/4, 0, z].

Discuss the action of the following sequence of symmetry operations:

i. (a) followed by (b),
ii. (c) followed by (d)

on the point (x, y, z). Repeat the argument when the sequence of
operations are reversed.

10.12 Enumerate all n-glide plane operators that appear in the space-group
P4nc (C6

4v), #104. Show that there are two types of non-primitive
translations, namely, (b + c)/2 and (a + b+ c)/2. Discuss the action
of these glide planes on a point x, y, z.

10.13 Write down the Seitz operator form for the symmetry operations ef-
fecting the following mappings:

(x, y, z) → (1/2− x, 1/2− x, 1/2 + z)

(x, y, z) → (1/2 + z, 1/2− y,+z)
(1/4 + x, 1/4 + y, 1/4 + z) → (1/2 + x, y, 1/2 + z)

(y − x, y, 2/3− z) → (y − x,−x, 1/3 + z)

10.14 Discuss the action of the operations of the non-symmorphic space-
group P

42

m

21

n

2

m
of the rutile structure, presented in §6.5.2, on a wave-

function ψ(x, y, z).
10.15 What are the crystallographic point-groups and the site-symmetry of

the (a) Wyckoff position for the following space-groups: P 4̄m2, P 4̄c2, P3m1, R3̄c,
and 123?
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10.16 Consider the space-group Pban. Write out all the essential symmetry
operations with respect to a fixed origin taken at

(i) the intersection of the 2-fold axes,
(ii) a center of inversion.

10.17 The matrices representing an n-glide plane operation normal to a, and
an a-glide plane operation normal to b are




1̄ 0 0 0
0 1 0 1/2
0 0 1 1/2
0 0 0 1


 ,




1 0 0 1/2
0 1̄ 0 0
0 0 1 0
0 0 0 1




Determine the nature and orientation of the symmetry operator aris-
ing from the combination of the two operators given.

10.18 Consider a crystallographic point-group rotation operation R ∈ P ⊂
SO(3). Next, consider a unit sphere centered about the origin; the
axis of rotation of R intersects the sphere at two points, its poles of
rotation. Each element of SO(3) has two such poles.

We consider two poles p1 and p2 as equivalent if they are related
through some R ∈ P by

p2 = Rp1.

This definition allows us through the action of P to define a stabilizer
Gp ⊂ P of a pole p as

p = Gp p.

(i) Expand P in terms of cosets of Gp.
(ii) How many poles are equivalent to p, in other words, what is

the size of the equivalence class of p?
(iii) Enumerate the subgroups of P conjugate to Gp.
(iv) How many elements of P there are in the union of all conjugate

subgroups of Gp other than the identity?
(v) Excluding the identity, show that equating the number of non-

identity elements P to the total number of non-identity ele-
ments in all the equivalence classes of poles leads to the relation

2
(

1− 1
p

)
=

m∑

i=1

(
1− 1

gm
p

,

)

where p is the order of P, m is the total number of distinct
equivalent pole classes, and gp the order of Gp.
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(vi) The above relation can be used to determine all possible finite
subgroups of SO(3):

(a) Show that the limits of ∞ and 2 that can be imposed
on p lead to the inequalities

2 > 2(1− (1/p) > 1, 1 > (1 − (1/gm
p )) ≥ 1/2.

(b) Show, by considering the inequality

p ≥ gp ≥ 2,

that the only possible values m can assume are 2 and 3.
(c) Show that the case ofm = 2 leads to cyclic point-groups.
(d) Show that for the case of m = 3, the relation

1
n1

+
1
n2

+
1
n3

= 1 +
2
N

> 1

with n1 ≥ n2 ≥ n3, requires that n3 = 2.
(e) Show that the inequality n1 ≥ n2 ≥ n3 would then

require that n2 takes on the values 2 and 3 only.
(f) What values can n1 assume for n2 = n3 = 2? Show that

the corresponding groups are Dn.
(g) Repeat part (iv) for n2 = 3. What are the corresponding

point-groups?

10.19 The perovskite structure, with the formula ABX3 (A and B are
cations and X anions) belongs to the space-group P m3m (O1

h. The
unit cell coordinates of orbit representative atoms are:

A : at (1/2, 1/2, 1/2)

B : at (0, 0, 0)

X : at (1/2, 0, 0)

(i) Identify the corresponding Wyckoff positions, and determine
the new coordinates if the origin is moved to the A cation site.

(ii) Determine the appropriate space-subgroup and its type that
emerge when:

(a) The A andB cations are displaced, by differing amounts,
along the [001] direction.

(b) The A andB cations are displaced, by differing amounts,
along the [110] direction.

(c) The A andB cations are displaced, by differing amounts,
along the [111] direction.
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(d) neighboring coplanar anion octahedra are rotated in op-
posite directions about their z-axes.

10.20 Determine the Wyckoff positions for the space-group P23 (T 1). (B&
C).

10.21 Both the graphite and wurtzite (AB) structures belong to the space-
group P 63mc (C46v). Their unit cell coordinates are given in the table
below.

Graphite Wurtzite

(0,0,0) (0,0,1/2) A (1/3,2/3,0) (2/3,1/3,1/2)
(1/3,2/3,0) (2/3,1/3,1/2) B (1/3,2/3,u) (2/3,1/3,u+1/2)

Determine their respective Wyckoff positions.

10.2 Solutions

10.1
10.2 If we first consider a face-centered lattice we write its basis vectors as

a1 =
a

2
x̂ +

a

2
ŷ, a2 =

a

2
x̂ +

c

2
ẑ, a3 =

a

2
ŷ +

c

2
ẑ

Rotation by π/4 about the c-axis yields

x̂ =
1√
2

x̂′ +
1√
2

ŷ′, ŷ = − 1√
2

x̂′ +
1√
2

ŷ′, ẑ′ = ẑ

Thus,

a1 =
a

2

(
1√
2

x̂′ +
1√
2

ŷ′
)

+
a

2

(
−

1√
2

x̂′ +
1√
2

ŷ′
)

= a′ ŷ′

a2 =
a

2

(
1√
2

x̂′ +
1√
2

ŷ′
)

+
c

2
ẑ′ =

a′

2
x̂′ +

a′

2
ŷ′ +

c

2
ẑ′

a3 =
a

2

(
− 1√

2
x̂′ +

1√
2

ŷ′
)

+
c

2
ẑ′ = −a

′

2
x̂′ +

a′

2
ŷ′ +

c

2
ẑ′

where a′ = a/
√

2.
10.3 The primitive basis of the fcc lattice is

a1 =
a

2
(x̂ + ŷ) , a2 =

a

2
(x̂ + ẑ) , a3 =

a

2
(ŷ + ẑ)
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Under the action of C4z we obtain


x̂
ŷ
ẑ


 =




0 1 0
−1 0 0
0 0 1





x̂′

ŷ′

ẑ′


 =




ŷ′

−x̂′

ẑ′




Thus,
a′

1 = a
2 (ŷ′ − x̂′)

a′
2 = a

2 (ŷ′ + ẑ′)
a′

3 = a
2 (−x̂′ + ẑ′)



 ⇒




0 −1 1
0 0 1
−1 0 1




Under the action of Cxyz
3 we obtain



x̂
ŷ
ẑ


 =




0 1 0
0 0 1
1 0 0





ŷ′

ẑ′

x̂′


 =



ŷ′

x̂′

ẑ′




Thus,
a′

1 = a
2

(ŷ′ + ẑ′)
a′

2 = a
2

(ŷ′ + x̂′)
a′

3 = a
2

(ẑ′ + x̂′)



 ⇒




0 0 1
1 0 0
0 1 0




As for the action of I, it is easy to show that it engenders the matrix


−1 0 0
0 −1 0
0 0 −1




10.4
10.5

(
σx

∣∣τ
) (
σy

∣∣τ
)

r =
(
σxσy

∣∣τ + σx τ
)

r

But

τ + σx τ =
(
E + σx

)
τ =

(
0 0
0 2

)



1
2
1
2


 =

[
0
1

]

which is a primitive lattice vector. Hence,

(
σxσy

∣∣τ + σx τ
)

r =
(
C2

∣∣0
)

r =
(
−1 0
0 −1

)
r = −r

10.6 The crystallographic point group 3m is just C3v which contains the
six operations E, C3, C

−1
3 , σ1, σ2, σ3.

On the other hand, m3 is the tetrahedral group Th, it contains
the operations: E, 4C3, 4C−1

3 , 3U, I, 4S6, 4S−1
6 , 3σh. Although m3
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contains the inversion operation it is a subgroup of the full cubic group
Oh which also contains the inversion operation and is the holohedral
point group.

10.7 It was shown in problem 10.2 that a face-centered F-lattice is equiv-
alent to a body-centrered I-lattice. Since the I-lattice has a smaller
volume than the F-lattice, the latter is usually ignored.

10.8 The monoclinic structure has a C2h holohedry. The 2-fold axis of
rotation is usually taken along the c-direction. This, in turn, requires
that the c-axis be perpendicular to the a- and b-axes, and that the σh

lies in the ab-plane. The only restriction on the a-b angle is that it
should be different from π/2.

Fig. 10.1. Trans-
formation of a 2C
monoclinic lattice
to a P monoclinic
lattice.

Now, a 2C-structure can be simply reduced to a P -structure replac-
ing, say the a primitive basis vector by a′ that connects the lattice
point at the origin to the C-centered lattice point, as shown in figure
10.1; this changes the magnitude of a and the a-b angle, but the new
structure still satisfies the monoclinic conditions and has a smaller
primitive cell volume.

This is not the case for 2A or 2B centering. If we try to construct
a P -lattice by introducing basis vectors that connect the origin-point
to the A- or B-centered point we lose the monoclinic conditions. Yet,
we know that the lattice posses a 2-fold axis of symmetry. Thus, we
conclude that this lattice system has an orthorhombic unit cell which
contains multiple primitive cells.

The body-centered configuration can be easily transformed to a 2B
centered lattice as shown in figure 10.2.

10.9 As was shown in Chapter 1, only the improper rotations S2, S3, S4
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Fig. 10.2. Trans-
formation of an I-
monoclinic lattice
to a 2B mono-
clinic lattice.

and S6 are allowed in crystalline structures. It was also shown that
they have the form

S2 = I, S3 = IC−1
6 , S4 = IC−1

4 , S6 = IC−1
3

Now, we consider the case
(
S3|τ‖

)6 = (E|0)

τ‖ + IC−1
6 τ‖ +C−1

3 τ ‖ + IC2τ‖ +C3τ ‖ + IC6τ ‖ = 0

which gives

3(E + I) τ ‖ = 0× τ‖ = 0

Consequently, we can choose τ‖ = 0.

10.10 Although the point group C3h has only a 3-fold proper rotation axis,
it contains improper rotations of S3 type. Such operations can be
written as

S3 = σh C3 = IC2C3 = IC−1
6

which involve a 6-fold axis of rotation.
By contrast, the point group 6̄S6 does not contain a 6-fold axis of

proper rotation, but instead contains improper rotatation of the S6

type which have the form

S6 = σh C6 = IC2C6 = IC−1
3

10.11
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10.12 The space group P4nc contains the operations

E =




1 0 0 0
0 1 0 0
0 0 1 0


 , C2 =



−1 0 0 0
0 −1 0 0
0 0 1 0


 , C4 =




0 −1 0 0
1 0 0 0
0 0 1 0


 , C2

4 =




0 1 0 0
−1 0 0 0
0 0 1 0


 ,

σx =



−1 0 0 1/2
0 1 0 1/2
0 0 1 1/2


 , σy =




1 0 0 1/2
0 −1 0 1/2
0 0 1 1/2


 , σxy =




0 1 0 1/2
1 0 0 1/2
0 0 1 1/2


 , σx̄ȳ =




0 −1 0 1/2
−1 0 0 1/2
0 0 1 1/2




The choice of the nonprimitive translation vector τ =
(

1
2 ,

1
2 ,

1
2

)
is

based on having a common origin. However, the glide planes σx and σy

coincide with the yz and xz planes, respectively. Hence the component
of τ perpendicular to these planes can be removed by an origin shift.
This leads to (

σx

∣∣∣∣ 0,
1
2
,
1
2

)
,

(
σy

∣∣∣∣
1
2
, 0,

1
2

)

10.13
10.14 In the rutile structure example Of §6.5.2, we were given the coset

representatives of the symmetry operations as
(
E

∣∣0
)
,

(
C2

∣∣0
)
,

(
Uxy

∣∣0
)
,

(
Ux̄y

∣∣0
)
,

(
I
∣∣0

)
,

(
σh

∣∣0
)
,

(
σxy

∣∣0
)
,

(
σx̄y

∣∣0
)
,

(
C4

∣∣τ
)
,

(
C−1

4

∣∣τ
)
,

(
Ux

∣∣τ
)
,

(
Uy

∣∣τ
)
,

(
S4

∣∣τ
)
,

(
S−1

4

∣∣τ
)
,

(
σx

∣∣τ
)
,

(
σy

∣∣τ
)
,

where the nonprimitive vectors τ = (a1 + a2 + a3) /2 are associate
with the origin taken at the center of the unit cell, namely, (1/2, 1/2, 1/2),
or at (0, 0, 0). These points comprise the Wyckoff (a)-position.

The action of these operations on the wavefunction Ψ(x, y, z) can
be written as

(
E

∣∣0
) (

I
∣∣0

) (
C2

∣∣0
) (

σh

∣∣0
)

Ψ(x, y, z), Ψ(x̄, ȳ, z̄) , Ψ(x̄, ȳ, z) , Ψ(x, y, z̄).

(
σx̄y

∣∣0
) (

Uxy

∣∣0
) (

σxy

∣∣0
) (

Ux̄y

∣∣0
)

Ψ(y, x, z), Ψ(y, x, z̄) , Ψ(ȳ, x̄, z) , Ψ(ȳ, x̄z̄).

(
Uy

∣∣τ
) (

Ux

∣∣τ
)

Ψ

(
1

2
− x,

1

2
+ y,

1

2
− z

)
, Ψ

(
1

2
+ x,

1

2
− y,

1

2
− z

)

(
σy

∣∣τ
) (

σx

∣∣τ
)
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Ψ

(
1

2
+ x,

1

2
− y,

1

2
+ z

)
, Ψ

(
1

2
− x,

1

2
+ y,

1

2
+ z

)
.

(
S4

∣∣τ
) (

C−1
4

∣∣τ
)

Ψ

(
1

2
+ y,

1

2
− x,

1

2
− z

)
, Ψ

(
1

2
+ y,

1

2
− x,

1

2
+ z

)
.

(
S−1

4

∣∣τ
) (

C4

∣∣τ
)

Ψ

(
1

2
− y,

1

2
+ x,

1

2
− z

)
, Ψ

(
1

2
− y,

1

2
+ x,

1

2
+ z

)
.

10.15 The following table shows Wyckoff (a)-position and its site-symmetry
for the space-groups listed:

Space-group Point-group Wyckoff (a)-position Site-symmetry

P 4̄m2 4̄m2 (0, 0, 0) 4̄m2

P 4̄c2 4̄m2
(

0, 0,
1
4

)
,

(
0, 0,

3
4

)
222 .

P31m 31m
(
0, 0, z

)
3m.

R3̄c
3̄m

(
1
4
,
1
4
,
1
4

)
,

(
3
4
,
3
4
,
3
4

)
32

3̄m
(

0, 0,
1
4

)
,

(
0, 0,

3
4

)
32

P23 23 (0, 0, 0) 23 .
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10.16 We obtain for the stated choices of origin:
(i) Origin at the intersection of the 2-fold axes

E =




1 0 0 0
0 1 0 0
0 0 1 0


 , C2 =



−1 0 0 0
0 −1 0 0
0 0 1 0


 , Uy =



−1 0 0 0
0 1 0 0
0 0 −1 0


 , Ux =




1 0 0 0
0 −1 0 0
0 0 −1 0


 ,

I =



−1 0 0 1

2

0 −1 0 1
2

0 0 −1 0


 , σz =




1 0 0 1
2

0 1 0 1
2

0 0 −1 0


 , σy =




1 0 0 1
2

0 −1 0 1
2

0 0 1 0


 , σx =



−1 0 0 1

2

0 1 0 1
2

0 0 1 0


 ,

(ii) A center of inversion

E =




1 0 0 0

0 1 0 0

0 0 1 0


 , C2 =



−1 0 0 1

2

0 −1 0 1
2

0 0 1 0


 , Uy =



−1 0 0 1

2

0 1 0 0

0 0 −1 0


 , Ux =




1 0 0 0

0 −1 0 1
2

0 0 −1 0


 ,

I =



−1 0 0 0

0 −1 0 0

0 0 −1 0


 , σz =




1 0 0 1
2

0 1 0 1
2

0 0 −1 0


 , σy =




1 0 0 1
2

0 −1 0 0

0 0 1 0


 , σx =



−1 0 0 0

0 1 0 1
2

0 0 1 0


 ,

10.17 The two operations can be written as
(
σx

∣∣∣∣0,
1
2
,
1
2

) (
σy

∣∣∣∣
1
2
, 0, 0

)
=
(
σxσy

∣∣∣∣
(

0,
1
2
,
1
2

)
+ σx

(
1
2
, 0, 0

))

=
(
C2z

∣∣∣∣−
1
2
,
1
2
,
1
2

)

10.18 (i) P =
∑p/gp

i=1 Ri Gp.
(ii) The number of equivalent poles is equal to the index of Gp in

P; thus, the size of the equivalence class Cm of pole m is

cm =
p

gm
p

(iii) For every pi = Ri p1 there corresponds a conjugate subgroup
Gpi = Ri Gp1 R

−1
i .

(iv) The order of P can be expressed as

p = gm
p cm

Moreover, there are gm
p − 1 and p− 1 non-identity elements in

Gpm and P, respectively. Thus, in total we have

∑̀

m=1

cm
(
gm

p − 1
)
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non-identity elements, where ` is the number of distinct pole
classes. Now, since each rotation element has two poles, we get

p− 1 =
1
2

∑̀

m=1

cm
(
gm

p − 1
)

or

2
(

1− 1
p

)
=
∑̀

m=1

(
1− 1

gm
p

)
(10.1)

(v) For p =∞, the lhs of (10.1) becomes equal to 2, while for p = 2
it is equal to 1. Since p <∞, i.e. finite, we obtain

2 > 2
(

1− 1
p

)
≥ 1 (10.2)

and since p ≥ gm
p ≥ 2 and gm

p <∞, we get

1 >

(
1− 1

gm
p

)
≥ 1

2
(10.3)

(vi) We have

2− 2
p

= `−
∑̀

m=1

1
gm

p

⇒ 2
p

=
∑̀

m=1

1
gm

p

−
(
` − 2

)

` must be greater than 1, since for ` = 1, inequality (10.2)
requires that the lhs of (10.1) be ≥ 1, while inequality (10.3)
requires that the rhs be < 1. Again, for 4 ≤ ` inequality (10.2)
requires that the lhs of (10.1) be < 2, while inequality (10.3)
requires that the rhs be ≥ 2. Hence ` can assume only the
values 2 and 3.

(vii) For ` = 2 we have
2
p

=
1
g1

p

+
1
g2

p

But since
1
g1

p

≥ 1
p
, and

1
g2

p

≥ 1
p
,

g1
p = g2

p = p ≥ 2

In this case there are two inequivalent poles, each has the point
group P as its stabilizer. Since every rotation has two poles,
we recognize these groups as cyclic rotation point groups Cn.
The crystallographic point groups among them are n=2, 3, 4,
and 6.
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(viii) For ` = 3, (10.1) gives

1 +
2
p

=
1
g1

p

+
1
g2

p

+
1
g3

p

> 1 (10.4)

Assuming g1
p ≥ g2

p ≥ g3
p, and setting g3

p ≥ 3 we find that

1
g1

p

+
1
g2

p

+
1
g3

p

≤ 1

which contradicts (10.4); hence, g3
p must be equal to 2.

(ix) For ` = 3 and g3
p = 2 we obtain

1
g1

p

+
1
g2

p

>
1
2

+
2
p

For g1
p ≥ g2

p, g2
p ≥ 4 we find that

1
g1

p

+
1
g2

p

≤ 1
2
<

1
2

+
2
p

hence g2
p can only assume the values 2 and 3.

(x) Setting g2
p = g3

p = 2, we obtain

p = 2g1
p ≥ 4, g1

p = 2, 3, 4, ...

Here, the stabilizer of pole p1, G1
p is a cyclic group. A second

pole, p2, of the rotation axis is in the pole equivalence class
of p1, since it can be obtained from p1 by a 2-fold rotation in
either G2

p or G3
p . There g1

p poles in each of the inequivalent pole
classes corresponding G2

p and G3
p . It is now obvious that the

point group P is one of the dihedral point groups.
(xi) For g2

p = 3, g3
p = 2 we have

1
g1

p

− 1
6

=
2
p
⇒ p =

12g1
p

6− g1
p

Thus, setting

(a) g1
p = 3, we obtain p = 12. This is just the tetrahedral

point group T of order 12. It contains 3 pole classes :
2 with 4 poles of 3-fold rotations and 1 with 6 poles of
2-fold rotations.

(b) g1
p = 4, we obtain p = 24. This is the octahedral point

groupO of order 24. It has 3 pole classes : one contains 6
poles of 4-fold rotations, the second has 8 poles of 3-fold
rotations, and the third has 12 poles of 2-fold rotations.



10.2 Solutions 117

(c) g1
p = 5, we obtain p = 60. This is the icosahedral point

group of order 60.

10.19.(a) The Wyckoff positions occupied by the perovskite atoms are

A : (1/2, 1/2, 1/2) is the (b) Wyckoff position,

B : (0, 0, 0) is the (a) Wyckoff position,

C : (1/2, 0, 0) is the (d) Wyckoff position,

10.19.(b) The emerging space subgroups are

(i) For A at (0, 0, u) and B at (1/2, 1/2, 1/2+w) the structure be-
comes noncentrosymmetric. It has a 4-fold rotation symmetry
only about the z-axis, and thus tetragonal symmetry emerges.
Moreover, since u 6= w the structure does not possess 2-fold
symmetry axes or a mirror plane normal to the z-axis. Thus,
the point group symmetry reduces to C4v, and since the prim-
itive cell basis vectors are left invariant the subgroup is the
t-equal P4mm

(
C14v

)
.

(ii) For A at (u, u, 0) and B at (1/2+w, 1/2+w, 1/2) the 4-fold
symmetries are completely lost. The only rotational symmetry
left is a 2-fold axis along the [110]-direction, plus two mirror
planes: a σz and a σx̄ȳ. Thus, the space subgroup is the sym-
morphic and t-equal C2mm

(
C14
2v

)

(iii) For A at (u, u, u) and B at (1/2+w, 1/2+w, 1/2+w)R3m
(
C53v

)

(iv) For A at (u, 0, 0) and B at (1/2+w, 1/2, 1/2)

10.20 The Wyckoff positions for the space group P23 are given in the fol-
lowing table

Table 10.2: Wyckoff Positions of Space Group P23
(
T 1
)

Multiplicity Wyckoff Site Coordinates

Letter Symmetry

(x,y,z), (-x,-y,z), (-x,y,-z), (x,-y,-z)

12 j 1 (z,x,y), (z,-x,-y), (-z,-x,y), (-z,x,-y)

(y,z,x), (-y,z,-x), (y,-z,-x), (-y,-z,x)
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Table 10.2: Continued

(x,1/2,1/2),(-x,1/2,1/2),(1/2,x,1/2)
6 i 2..

(1/2,-x,1/2),(1/2,1/2,x),(1/2,1/2,-x)

(x,1/2,0), (-x,1/2,0), (0,x,1/2),
6 h 2..

(0,-x,1/2), (1/2,0,x), (1/2,0,-x)

(x,0,1/2), (-x,0,1/2),(1/2,x,0), (1/2,-x,0),
6 g 2..

(0,1/2,x),(0,1/2,-x)

(x,0,0), (-x,0,0), (0,x,0),

6 f 2..
(0,-x,0), (0,0,x), (0,0,-x)

4 e .3. (x,x,x), (-x,-x,x), (-x,x,-x), (x,-x,-x)

3 d 222.. (1/2,0,0), (0,1/2,0), (0,0,1/2)

3 c 222.. (0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0)

1 b 23. (1/2,1/2,1/2)

1 a 23. (0,0,0)
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10.21 The Wyckoff positions for graphite and wurtzite are given in the table
below.

System Atomic Positions Wyckoff Position

Graphite
(0,0,0) (0,0,1/2) (a)

(1/3,2/3,0) (2/3,1/3,1/2) (b)

Wurtzite
(1/3,2/3,0) (2/3,1/3,1/2) (b)

(1/3,2/3,u) (2/3,1/3,u+1/2) (b)
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Space groups: Irreps

11.1 Exercises

11.1 Show that the action of a space-group operation
(
R|w

)
on a planewave

exp
(
ik · r

)
, leads to
(
R|w

)
exp
(
ik · r

)
= exp

(
iRk · (r−w)

)
.

11.2 The choice of coset representatives is not unique. Show that if we
replace the coset representative C−

4 by σ2
d we find, for example,

M∗ (C+
4

)
=




0 0 0 σ1
v

0 0 E 0
E 0 0 0
0 σ1

v 0 0




Because we have used nonstandard coset representatives that do not
form a group, the modified ground representation contains a mix of
matrix elements from P∆. Nonetheless, the set of matrices obtained,
M∗ (R), still obey the group multiplication table for C4v.

11.3 Show that Tk is a normal subgroup of Sk and of T.

11.4 Consider the 2-dimensional square net; show that

(i) The translation subgroup of the wave vector T∆̄ is a subset of
all translation vectors (mxa,mya) ∈ T that satisfy the condi-
tion

T∆̄ ≡
{
(E
∣∣(m1a,mya)

}
; m1ak = 2nπ, and ∀my.

with cosets of S∆̄

T∆̄, (E
∣∣(ma, 0))T∆̄, (σv

∣∣(ma, 0))T∆̄; m 6= m1

which form the quotient group Q∆̄.
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(ii) The translation subgroup of the wave vector TΣ is the subgroup

TΣ ≡
{
(E
∣∣(m1a,m2a)

}
; (m1 +m2)ak = 2nπ.

with cosets of SΣ

TΣ, (E
∣∣(ma,m′a))TΣ, (σd

∣∣(ma,m′a))TΣ; m+m′a 6= m1+m2

which form the quotient group QΣ.
(iii) The translation subgroup of the wave vector TM is the sub-

group

TM ≡
{
(E
∣∣(m1a,m2a)

}
; m1 +m2 even,

=
{
(E
∣∣te)

}
.

with cosets of GM

(Rik

∣∣(0, 0))TM , (Rik

∣∣(a, 0))TM , (Rik

∣∣(0, a))TM

which form the quotient group QM .

11.5 Consider the 2-dimensional space-group p4mm presented in §11.2.2.1.
Determine:

(i) the two 4-dimensional Irreps for the Σ line.
(ii) the 2-dimensional Irrep of for the M -point.

11.6 Consider the 2D symmorphic space-group p 6mm.

(i) Determine its reciprocal lattice basis and determine the relative
orientation of its Brillouin zone, shown in figure, to its Wigner-
Seitz cell.

(ii) For wavevectors at: Γ̄, ∆̄, Σ̄, M, and K, determine:

(a) the star of the wavevector.
(b) The wavevector point-subgroup.
(c) The corresponding point-subgroup Irreps.
(d) The corresponding ground Rep.

11.7 Repeat part (b) of the previous problem for the space-group P d3m,
and the symmetry points Γ, ∆, Λ, Σ, X, L, W, and K.

11.8 Use Herrings method to obtain the Irreps of the rutile structure,
P

42

m

21

n

2

m
, at the X-point.

11.9 Consider the space-group P23 (T 1). Determine the star of kΓ and
kM , their ground Reps and the Irreps of their little groups.
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11.10 The translation group of the wave vector TY is the subgroup

TY ≡
{
(E
∣∣(m1a,m2a)

}
; m2ka = (2n−m1)π. (11.1)

with cosets of GY

TY , (E
∣∣(ma, 0))TY , (C2

∣∣(ma, 0))TY ; m 6= m1

which form the quotient group QY .
11.11 The translation group of the wave vector TΣ is the subgroup

TX ≡
{
(E
∣∣(m1a,mya)

}
; m1 even and ∀my. (11.2)

with cosets of GX

TX , (E
∣∣(a, 0))TX , (C2

∣∣(a, 0))TX , (σ1
v

∣∣(a, 0))TX , (σ2
v

∣∣(a, 0))TX

(11.3)
which form the quotient group QΣ.

11.12 Show that (??) can be generalized for the case of the more general
space-group operator

(
R
∣∣t
)
.

11.13 Given two vectors, k and t, and a rotation operator R with inverse
R−1, show that the angle between the vectors Rk and t equals the
angle between the vectors k and R−1t. Thus

k ·R−1t = Rk · t.

11.14 Show that in two dimensions, the glide and a two-fold screw axis are
identical.

11.15 Find the elements of the point-group P for the two-dimensional non-
symmorphic crystal of figure. 4. Show that the elements of P actually
form a group. Show that the point-group is not a subgroup of the
space-group because of the existence of a glide plane.

11.16 Find the elements of the little-group of the wave vector, Sk, for the
nonsymmorphic crystal of figure. 4, for each of the k-values (labeled
by Γ, ∆, · · · ) in figure. 11b.

11.17 Find the elements of the point-group Pk, for the nonsymmorphic crys-
tal of figure. 4, for each of the k-values (labeled by Γ, ∆, · · · , in figure
7b.

11.18 Consider the space-groups associated with the fcc lattice.

(i) Determine the stars of k at the X, L, W points on the surface
of the BZ.
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(ii) The diamond structure belongs to the space-group Fd3m. Use
Herrings method to obtain the corresponding Irreps at the
above points.

(iii) Repeat problem for the hcp structure at the BZ surface points
M, K, A.

11.2 Solutions

4.1
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Time-reversal symmetry: color groups and
the Onsager relations

12.1 Exercises

12.1 Demonstrate that the time-reversal operator commutes with the in-
version operator and all proper rotation operators. [Hint: write the
rotation operator in terms of the angular momentum J.]

12.2 Use Table 7 to generate the elements of the following double point-
groups, and then determine their Irreps:

(i) D3.
(ii) D4.
(iii) D222.
(iv) D32.
(v) D4̄2m.

12.3 Consider the crystallographic point-groups
n

m

2
m

2
m
, n = 1, 2, 4 and

6.

(i) Enumerate all subgroups of index 2 in each of these point-
groups.

(ii) Determine the corresponding dichromatic groups.

12.4 CoF2 has the rutile structure in its paramagnetic phase, with gray

space-group P
42

mnm
1. In the antiferromagnetic phase, the spins align

along the z-axis with the corner spins pointing opposite to the spin at
the center of the unit cell.

(i) Determine the appropriate dichromatic space-group associated
with that phase, and identify its unitary subgroup. [Refer to
Example 12.5]

(ii) Discuss the changes that occur to the Wyckoff site-symmetries

of P
42

mnm
, listed in chapter 10 §6.5.2.
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(iii) Identify the Brillouin zone of the unitary space-subgroup, and
compare its high-symmetry points and lines with those of the

primitive tetragonal zone associated with P
42

mnm
.

12.5 Consider the composite dichromatic/translation operator C âi, where
ai, i = 1, 2 is a translation basis vector.

(i) Simplify the product

2∏

i=1

(C âi)
mi ,

for (
∑

i mi) even and odd, bearing in mind that C2 = E, and
that the two operators commute.

(ii) Since the elements R of the lattice holohedry also commute
with C, namely RC = CR, show that

RC t1R
−1 = C t2, t1, t2 ∈ T.

(iii) Show that the basis sets (C â1, â2) and (C â1, C â2) produce
equivalent lattices

12.6 Determine the translation vectors τ0 that produce each of the 2-
dimensional dichromatic lattices of figure 4.

12.7 Write down the Seitz operator that would represent a dichromatic
screw axis operation involving an n-fold rotation. Use this form to
determine the allowed values of n for dichromatic nonsymmorphic
space-groups.

12.8 Use the Irreps of D32, obtained in problem 2 above, to derive the
CoIrreps of D 3m and to identify the extra degeneracies associated
with each.

12.9 Consider a Co2+ ion in a CoO crystal. The free ion has a 4F con-
figuration, that is L = 3, S = 3/2. In the crystal it has octahedral
site-symmetry. Derive the ensuing splitting when:

(i) we neglect the spin angular momentum,
(ii) we include the spin angular momentum.

12.10 In their high temperature paramagnetic phase, CoF2 and NiF2 be-

long to the grey group P
42

mnm
1. Below their respective Néel tem-

peratures they become antiferromagnetic; CoO has the dichromatic

group P
42

mnm
, while NiF2 exhibits additional weak ferromagnetism

and has the dichromatic group P nnm. The free ions Ni2+ and Co2+
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have ground state configurations 3F4 and 4F9/2, respectively. Discuss
the ensuing crystal field splittings for each of these crystals.

12.2 Solutions

4.1
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Tensors and Tensor Fields

13.1 Exercises

13.1 Consider the case where the symmetry point-group of a system pos-
sesses two conjugate inequivalent Irreps 1E and 2E. A basis for such
a pair is usually given in the form x1 ± ix2. Now, suppose that the
system exhibits a phenomenon where two of its physical properties,
(x1, x2) and (y1, y2), form two bases for such a pair of Irreps, namely,
x1 ± ix2 and y1 ± iy2, which in turn are related by tensors

y1 + iy2 = T (x1 + ix2), y1 − iy2 = T∗ (x1 − ix2).

(i) Determine the tensor that relates the physical vectors X =
[x1, x2] and Y = [y1, y2].

(ii) What happens when that tensor is intrinsically symmetric?

13.2 Consider the wurtzite structure with 6mm (C6v) point-group symme-
try. Determine the number of independent parameters in:

(i) The polarization tensor.

(ii) The piezoelectric tensor.

(iii) The Hall tensor.

(iv) The elasticity tensor.

13.3 Determine the nonvanishing components of the piezoelectric tensor
for a crystal with point-group symmetry 2 (C2). How would you ex-
trapolate your results to crystals with P = 222 (D2)?

13.4 Quartz crystals are commonly used as piezoelectric transducers. It
has P = 32 (D3).
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(i) Follow the procedure of Example 13.7 to show that its piezo-
electric tensor has the form



p11 −p11 0 p14 0 0
0 0 0 0 −p14 −2p11

0 0 0 0 0 0




(ii) Determine the electric field orientation that can produce ex-
pansion/contraction along the x1-axis.

13.2 Solutions

4.1
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Electronic Properties of Solids

14.1 Exercises

14.1 Derive an expression for the electron energy band dispersion of a
monovalent bcc metal, such as Na, using only first-neighbor terms
in (??).

14.2 Describe the motion in real space of free electrons in each of the eight
free electron states just referred to.

14.3 Verify that the free-electron energy bands of Fig. 12.4 are correct.
14.4 Show that the X point in Figure 13.4 occurs at 2π/a and not at π/a,

as it does for a one-dimensional crystal. What is the reason for the
difference?

14.5 Show that the eigenfunction coefficients, Ck−G, for wave functions
at the W point of the Brillouin zone for the fcc lattice, using the
eigenvalues of are as given in table 1.

14.7 Verify (??) and (??).
14.8 Solve for the eigenvalues and eigenfunctions at the X point. Identify

the splittings. Find the symmetrized wave functions. etc. Do the L
point? We already have the G vectors. Choose an energy?

14.9 Show that the matrix element of vKKRZ
ps between plane waves is

V KKRZ
ps,GG′ = VGG′ +

4πRc

Ω

∑

l

(2l + 1)

[
Ll − κ

j′l(κRc)

jl(κRc)

]

× jl

(∣∣k − G
∣∣Rc

)
jl

(∣∣k −G′∣∣Rc

)
Pl(cos θGG′), (14.1)

and that the term in square bracket in (2.6.40) can be written as

−(1/κ)[Rjl(κR)]−2 tan η′
l, (14.2)

in terms of the modified phase shift η′l defined by

cot η′
l = cot ηl − nl(κRc)/jl(κRc), (14.3)
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The proof follows readily from (2.6.31) by using the Wronskian iden-
tity x2(jn′ − j′n) = 1.

14.2 Solutions

4.1
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Dynamical Properties of Molecules, Solids
and Surfaces

15.1 Exercises

15.1 NaCl belongs to the space group Fm3m (O5
h). The Na+-Cl− bond

has C4v symmetry, while the Na-Na and Cl-Cl bonds mm. Determine
the forms of the force constant matrices corresponding to these two
bond-types.

15.2 The rigid ion model: One of the early models for the dynamics of
alkali halides, proposed by Born, considers an interionic potential of
the form

Φ(κκ′|r) =
Zκ Zκ′e2

r
+ aκκ′ e−br = Φ(C)(r) + Φ(R)(r)

where the last term is the short-range Born-Mayer type nearest-neighbor
repulsive potential. Consider, here, the case of NaCl, Na+1(κ = 1)
and Cl−1(κ = 2), with Z1 = 1 and Z2 = −1.

(i) Show that the energy per primitive cell is given by

Φ0 = −α
e2

r0
+ 6Φ(R)

where r0 = 2.1Å is the nearest-neighbor distance in NaCl, and

α =
∑

j

±1
ρ0j

is the Madelung constant. The (+) sign involve even neighbors
and the (-) sign odd ones, and ρ0j = r0j/r0.

(ii) The equilibrium value r0 is obtained by setting dΦ(r)
dr

∣∣∣
r0

= 0.

Writing (
1
r

dΦ(R)(r)
dr

)

r0

=
e2

2r30
B,
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where 2r30 = va is the primitive cell volume, use the equilibrium
condition to express B in terms of α.

(iii) Calculate α for NaCl with the aid of a simple program.
(iv) Given that the pressure is expressed as

P = − ∂Φ
∂va

= − 1
6r2

∂Φ
∂r

,

show that the comressibility κB is given by

1
κB

= −va
∂P

∂va

∣∣∣∣
r0

=
1

18r0

[
−2α

e2

r30
+

3
2
A
e2

r30

]
=

1
12r40

[A+ 2B] ,

where we set
d2Φ(R)

dr2

∣∣∣∣
r0

=
e2

va
A.

Express A in terms of α and κB .
(v) Given that κB = 4.16 × 10−12cm2/dyne, and the value you

obtained for α, evaluate A

15.3 (i) Derive expressions for the force constants

Φ(R)
αβ

(
0l
κκ′

)
=

∂2Φ(R)(0κ; lκ′)
∂xα∂xβ

in terms of A and B defined in Exercise 15.1.
(ii) Obtain an expression for Rαβ(κκ′|q), the short-range contri-

bution to the dynamical matrix. Remember that because the
ionic sites have inversion symmetry, all Rαβ(κκ′|q) are real.

(iii) Use the Ewald summation method to evaluate Cαβ(κκ′|q) for
q = [00ξ], i.e. the ∆-direction.

(iv) Show that as ξ → 0

Czz(κκ′|0) =
8πe2

3v0
, Cxx(κκ′|0) = Cyy(κκ′|0) = −4πe2

3v0

(v) Show that the corresponding optic modes are

µω2
L =

e2

v0
(A+ 2B) +

8πe2

3v0
, µω2

T =
e2

v0
(A + 2B) −

4πe2

3v0

(vi) Use the expressions you obtained for
←→
R and

←→
C to otain the

phonon dispersion curves along the ∆-direction for NaCl, in
the rigid ion model.

15.4 Phonon dispersion curves in diamond: Diamond belongs to the
nonsymorphic space group Fd3̄m.
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(i) As we demonstrated in Appendix 1, the macroscopic electric
field is associated with a dipole-moment array that arises from
atomic displacements. We may express the polarization density
as

P =
∑

lκ

←→
A (lκ) · u(lκ)

where, as usual, u(lκ) is the displacement from equilibrium
position R(lκ). Diamond has two atoms per primitive cell
([000], a/4[1,1,1]). Use the property of invariance under ar-
bitrary dispacement, together with S = (I|τ ) to show that
diamond has no macroscopic polarization associated with its
q = 0 modes.

(ii) The nearest-neighbor (nn) bond [000]− a/4[1, 1, 1], second-nn
bond [000]−a/2[1,1, 0] and third nn bond [000]−a/4[−1,−1,−3]
have bond-symmetry groups 3m, mm and m, respectively. De-
rive the corresponding symmetry adapted force-constant ma-
trices.

(iii) Use appropriate coset representatives to obtain force-constant
matrices belonging to the remaining orbit members of each
bond.

(iv) Construct the dynamical matrix in terms of the force-constant
matrices obtained above.

(v) Show that the acoustic and optical modes at the Γ-point, i.e.
q = 0, have Γ−

15 and Γ+
25 symmetries of Oh the factor group

of O7
h. Construct the symmetry-adapted vectors using the cor-

responding projection operators. (Note that in this case the
symmetry-adapted vectors are actually the eigenvectors!)

(vi) The group of the wavevector along the ∆-direction (q = [q, 0, 0])
is S∆ = 4mm ⊗ T , and the corresponding character table is
given in table 15.1. Use table 15.1 to obtain compatibility re-
lations between Γ and ∆. Show that the eigenvalue problem
reduces to two 1×1 and two 2×2 matrices, and determine the
coresponding eignevalues.

(vii) Repeat the above steps for the Σ and Λ directions.
(viii) Use the longwavelength limit of the expression you obtained

for the dynamical matrix, to derive the relations between the
elastic constants and force-constants of diamond. (Use the re-
lations developed in §15.3.4.3)
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Table 15.1. Character table of S∆

∆1 ∆2 ∆′
2 ∆′

1 ∆5

(E|0) 1 1 1 1 1
(Ux|0) 1 1 1 1 1
(C4,x, C−1

4,x|τ ) ζ −ζ −ζ ζ 0
(σy, σz|τ) ζ ζ −ζ −ζ 0
(σyz, σȳz|0) 1 -1 1 -1 0

ζ = exp[−iqa/4].

15.2 Solutions

4.1
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Experimental measurements and selection
rules

16.1 Exercises

16.1 LiNbO3 belongs to the space group R3c (C6
3v), #161; its generators

are (C3|0), (σd|τ), with τ = (1/2, 1/2, 1/2). It has two formulas per
primitive cell. The primitive lattice basis is (2/3, 1/3, 1/3), (−1/3, 1/3, 1/3),

Table 16.1. The positions of the 10 atoms in the rhombohedral
primitive cell

Atom positions

Nb (0, 0, w) ,
(
0, 0, 1

2
+ w

)

Li
(
0, 0, 1

3
+ w′) ,

(
0, 0, 5

6
+ w′)

O
(

1
3
− v, u − v, 5

12

)
,

(
v − u, 1

3
− u, 5

12

)
,

(
− 1

3
+ u,− 1

3
+ v, 5

12

)
,(

− 1
3
− v,−u, 7

12

)
,

(
u,− 1

3
+ u − v, 7

12

)
,

(
1
3
− u + v, 1

3
+ v, 7

12

)

w = 0.0186, w′ = −0.0318, u = 0.0492, v = 0.0113.

(−1/3,−2/3, 1/3) with respect to hexagonal axes: a = 5.15Å, c =
13.86Å. The atomic positions in the rhombohedral primitive cell are
given in table 16.1.

(i) Determine the symmetries of the phonon modes at the Γ-point.
(ii) Determine the symmetries of the acoustic modes at the Γ-point.
(iii) Determine the Raman active modes.
(iv) Derive the inelastic neutron scattering selection rules for q

along a 3-fold axis.
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16.2 The rutile family includes FeF2 and MgF2. It belongs to the space-
group P42/mnm (D14

4h, #136); its generators are (Ux|τ ), (C4|τ ), (I|0),
with τ = (a/2, a/2, c/2).

(i) Determine the symmetries of the phonon modes at the Γ-point.
(ii) Determine the symmetries of the acoustic modes at the Γ-point.
(iii) Determine the Raman active modes.
(iv) Derive the inelastic neutron scattering selection rules for q

along the ∆- and Σ-directions.

16.3 Repeat exercise 16.2 for α HgI2, which belongs to the space group
P42/nmc, (D15

4h), #137); its generators are (Ux|τ ), (C4|τ ), (I|τ ), with
τ = (a/2, a/2, c/2). The primitive cell contains two formulas with po-
sitions given in table 16.2

Table 16.2. The positions of the 6 atoms in the primitive cell

Atom positions

Hg (0, 0, 0) ,
(

1
2 , 1

2 , 1
2

)

I
(
0, 1

2
, u

)
,

(
− 1

2
, 0,−u

)
,

(
0 + u, 1

2
, 1

2
+ u

)
,

(
− 1

2
, 0, 1

2
− u

)
.

u = 0.14.

16.2 Solutions

4.1
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Landau’s Theory of Phase Transitions

17.1 Exercises

17.1 Consider systems that belong to the Bravais class P4mm:

(i) Determine the points in the Brillouin zone that satisfy the
Lishitz condition.

(ii) Derive the corresponding Pk.

17.2 Consider a crystal with cubic symmetry. It was shown in table 15.9
that the two elastic strain components

η ∝ 2ε33 − ε1 − ε22; ξ ∝ ε1 − ε22,

form a basis for the cubic Irrep Γ12.
Show that third-degree invariants of this Irrep do not vanish; and

hence, these two strain components cannot drive a second-order phase
transition to a t-equal tetragonal structure [?].

17.3 Determine the integrity basis of the 3-dimensional Rep of the dihedral
point-group D6, with Rep matrix generators

C2 =




1 0 0
0 −1 0
0 0 −1


 ; C6 =




1/2 −
√

3/2 0√
3/2 1/2 0
0 0 1


 .

17.4 Gadoliniummolybdate, Gd2(Mo4)3, undergoes a phase transition from
a P 4̄21m to a Pba2 space-group symmetry at 160◦C. It involves the
poin-group change 4̄2m ⇒ mm2. It also involves a reduction in
translational syymetry From a P -tetragonal T0 with basis a1, a2, a3

(along 4-fold symmetry axis), to another P -tetragonal T with a′
1 =

a1 − a2, a′
2 = a1 + a2, a′

3 = a3, with T0 : T = 2, giving S0 : S = 4.

(a) Identify ?k.
(b) Derive the Irreps of ?k.
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(c) Determine the corresponding kernel and image groups.
(d) Enumerate the possible low-symmetry space-groups, and identify

the Irrep corresponding to the phase transition in Gd2(Mo4)3.
(e) Use the integrity basis for C4 to construct ∆Φ
(f) We notice that P3 of the electric polarization tensor, and ε12 the

shear component of the strain tensor are invariant under the point-
group operations of Pba2. This suggests that the emerging low-
symmetry phase can support ferroelectricity and a shear distortion.
Write down a ∆Φ′ in these variables as secondary OPs (SOP), as
well as ∆Φc, the terms coupling the primary and secondary OPs.

(g) Describe the procedure of obtaining the minima of ∆Φ.

17.5 Determine the possible magnetic arrangement associated with the
point-group 4mm, 4mm, 4mm, 4mm.

17.2 Solutions

4.1
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Incommensurate Systems and
Quasi-Crystals

18.1 Solutions
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