Symmetry and Condensed Matter Physics
A Computational Approach
Solution Manual

Michael El-Batanouny

Boston University






1.1

1.2

1.3
1.4

1
Symmetry and physics

1.1 Exercises

Write down and solve the equations of motion for the system of masses
and springs shown in Fig. 1.5. Assume both masses to be equal and
all springs to have the same force constant. Show that the eigenvalues
for the energy are given by w?m = k, 3k, from which the eigenvectors
can be found to be in agreement with the results obtained purely by
symmetry arguments. Must all three force constants be equal for this
result to be obtained? Can you decide based on symmetry arguments
alone?

Write the equations of motion for exercise 1.1 in the form Mu =

—w?mu, where M is a matrix. Use the two eigenvectors found in the

text,
1 1
u; = (1> and us = (_1>

to construct the matrix
1 1
S p—
(1 _1> ’

where the first column of the matrix is given by u; and the second
column by uy. Find S7! and then diagonalize M according to

STIMS = )\,

where [ is the unit matrix, to find the eigenvalues A.

Find the function generated by C4 acting on the function z f(r).
Show that the operation SZ/ > = for n/2 odd. Show that for even n,
Sy, implies the existence of C, 5.
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Symmetry and physics

Consider the case of an n-fold principal axis. Show that the intro-
duction of a 2-fold symmetry axis perpendicular to it implies the co-
existence of n equivalent axes for n odd, and the coexistence of n/2
equivalent axes for n even.

Introduce diagonal reflection planes, o4, in the previous problem and
show, using the 3-dimensional defining matrices for a o4 plane and a
neighboring 2-fold axis U, that the product Ucq = Sj.

Show that the determinant of an improper rotation is —1.

Obtain the 3-dimensional rotation

matrix for the Cq axis joining two
opposite edges of a tetrahedron,
shown in figure 1.1. Note that the
origin of the coordinate system is
the centroid of the tetrahedron.
(Hint: Start with a 2-fold rota-
tion about the z-axis, then use a
counterclockwise rotation about X
the x-axis to transform the axis
to its final position, as shown in
the figure.)

Fig. 1.1. A C5 rotation about an
axis bisecting opposite edges of a
tetrahedron.

Using the results of the previous problem, find the new function gen-
erated by the function operator Cy acting on zf(r).

Obtain the 3-dimensional rotation
matrix for the operation Cs3[111]
shown in figure 1.2. (Hint: Start
with a 3-fold rotation axis along ~—
the z-direction, followed by rotat- i
ing the axis counterclockwise, by 20
45° about the y-axis; and, finally, ¥ j{’

rotate the axis counterclockwise el
by 45° about the z-axis.)

z ('E[I]]]

Fig. 1.2. A Cs rotation about
a [111] body-diagonal axis of a
cube.
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1.2 Solutions

1.1 The equation of motion are

d2$1

mW:/@(xQ—le) N E—w E Tl _ 0
d’zo —K 2K 2| |,
m 2 K (xl — 23:2) o o w 2

(1.1)

where we assumed a harmonic time-dependence. The characteristic
equation is
2
2 2 3
(o) = (@) = it
m m m’ m
Eigenvectors
5 K 1 |1 9 Sk 1 1
W= — — N W = —1 —=
m 2 |1 m 2 |[-1
The resulting eigenvectors obtain as long as the system is symmetric
about the center. This can be achieved by keeping the outer spring
constants at x and setting the middle one to ’; the eigenvalues will

become w? = k/m, (k + 2rK')/m.

1.2 S7! = S, and normalizing

=)

()6 06 )

1.3 The operation Cy is given by

we obtain

and we have

Cu(2f(r) = (Cita f(Cy ') = yf(r)
1.4 The operation S,, = C,, 0}, hence, for n/2 odd we have

Sul? = cnl2op? = Coop = 1
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1.5 The existence of a 2-fold axis U perpendicular to C),, implies the exis-
tence of equivalent 2-fold axes U(™) = c,mucr, m=0,...,n—1
For n odd there n distinct axes U™, while for n even the values
m and n — m define the same axis; hence there only n/2 2-fold axes
perpenducular to C,,.

1.6 If we take the 2-fold axis to be along the z-axis, then its matrix is

1 0 0
U® = 1o -1 0
0 0 -1

An adjacent diagonal reflection plane can be generated by rotating a
oy plane by 7/n about the z-axis, namely,

[cos(m/n) —sin(w/n) 0] [1 0 O] [ cos(x/n) sin(n/n)
o4 = |sin(w/n) cos(w/n) 0| |0 —1 0 |—sin(w/n) cos(mw/n)
L 0 0 1] 10 0 1 0 0
[cos(2m/n)  sin(2w/n) O
= |sin(27/n) —cos(2w/n) 0

0 0 1

The product

1 0 0 cos(2m/n)  sin(2w/n) 0
U@ .oq =10 —1 0] [sin(2r/n) —cos(2r/n) 0
0 0 -1 0 0 1

[ cos(2m/n)  sin(2w/n) O
= |—sin(27/n) cos(2w/n) 0| = Chon = Sy
0 0 1

1.7 The determinant of an improper rotation .S,, = C, 0}, is given by

det(Sp) = det(Cy - on) = det(Cy) - det(op) =1 x (—1) = -1



1.2 Solutions

1.8 The rotation Cs5 is obtained as

1.10
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Symmetry and group theory

2.1 Exercises

Note on the problems: Problems 1 through 15 range from those
which help in developing an understanding of the theory of groups to
those which are in the nature of finger exercises and help in develop-
ing familiarity with group theory and some dexterity in performing the
mathematical manipulations of group theory. Problems 17 and 18 are
crucial. The solution to problem 16 provides the basis for the remain-
ing computational methods that follow in later chapters. Problem 19
provides a check on the program developed in problem 18. Problems
20 through 25 provide an introduction to crystallographic point-groups.
They should all be read and thought about, and at least a few of them
carried to completion. Geometric figures are provided to elucidate the
properties of these point-groups. The vertices of the figures are num-
bered sequentially, to facilitate the construction of permutation opera-
tions associated with the groups. In addition to the particular questions
posed in each problem, apply the program developed in problem 18 to
each of problems 20 through 25.

2.1 Convert the following permutation from bracket notation to cycle no-

tation.
1 2 3 4 5 6 7
6 5 2 3 4 1 7

2.2 Convert (163275) to bracket notation.
3 Given permutation operators p and ¢ defined by

(1 2 3 4 5 6 7 (1 2 3 4 5 6 7
P=\1 7 45 3 26 “\5 124 3 7 6)
(a) Find the product pq in bracket notation.

(b) Use the Permute function defined in Mathematica, or any other
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computer language code you develop, to carry out the permutation
product.
Repeat problem 2.3 for the following pairs of permutation operators
(a) p = (567), q = (2673),
(b) p = (246)(37), ¢ = (143)(56).

Write the products pg in cycle notation. Try to do this by sight

without writing out the implicit cycles in p or q.

Find the inverse and degree of each of the following permutation opera-
tions, by long-hand, using the Mathematicalfunction InversePermutation,
or developing your own code in C or FORTRAN:

(1 2 3\ (1 2 3, (1 2 3 4
=\1 3 2)97\3 2 1)"=\4 3 1 2

w = (12)(34657)

Show that the permutations of n objects, which form the symmetric
group S, is of order n!.

Show for the symmetric group Ss that elements with the same form
of decomposition into cycles belong to the same class. In generating
the classes augment the above computer functions, or codes, with the
Mathematicalfunction ToCycle [p], or an equivalent.

Determine the classes of the symmetric group S;.

Show that the number of element nc; of a class C; of a finite group G,
divides its order, i.e. g/nc; is an integer.

Show that the set comprised of all inverses of the elements of a class
C; of a group G is also a class of G, which we may denote by C; = G;l.
Such classes are called mutually reciprocal classes. If a class contains

its own inverse elements it is called a self-inverse class.
Consider the isomorphic realizations Cy, and D, of the square. These
realization groups contain 8 elements:

B,C4,Cy ", Ca,01(C5Y), 02(C5%), 01 (C5?), 05(C57).

In addition to the identity operation we find in each realization 4-
fold rotations and reflections (or 2-fold rotations). However, if we ex-
amine the class structure of these realization groups we find: C; =
{E}a C = {C4aczl}a C3 = Cy, Gy = {0’1(051),0'2(052)}, G =
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{01(CY?),05(CY?)}. A close examination of the nature of the opera-
tions in these groups reveals that the reflections (or 2-fold rotations)
in different classes are not mutually reachable by any of the group
elements.
Prove that if class C; contains the inverse of element R in class C;, then
C; must be comprised of all the inverse elements of C;, and nc(j) =
nc(i), where nc(7) is the number of elements in class C;. An ambivalent
class is a class that is its own inverse.
Find the class multiplication coefficients h;;; for the groups Cs, and
Ciuy.
Show that the following general relations are satisfied by the class
multiplication coefficients.

(1) hijrx = hji, (This is equivalent to proving that C; X = XC; for

all elements X. Let X range over all elements in C;.)

(11) zcll ijk hklm - zczll hjlk hikm
(iif) nc(i)n ( ) = Sr g ne(k).
(iv) hiji = hyzg

)

) h

5

(v) me(k) hijr = ne(z) hyj = nc(i) by = ne(f) hyg

(vi) hij1 = mnc(i) &;; where nc(i) is the number of elements in
class C; and where bars denote the inverse class. That is, C;
is a class that contains the inverses of the elements of class C;.
Note, that the third subscript on h, here, is the number 1, not
the letter 1.

(vii) Show that a mapping of one group onto another can be com-
pletely specified by the action of the mapping on the generators
of the larger group.

Prove the group rearrangement theorem.

Prove the class rearrangement theorem.

Prove that the set of integers 1,2,3, ..., (k—1) form a group of order

(k-1) under ordinary multiplication modulo k. Note: Two integers m

and n are equal, modulo k, if m = n + jk, where j is an integer.
Multiplication, modulo a prime number, plays an important role in

Dixon’s method for determining the characters of irreducible repre-

sentations.

Write a a general computer program, guided by the outlines in the

text, which makes use of the minimal set of group generators to

(i) generate the group elements in permutation form,

ii) construct the corresponding Cayley tables,
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(iii) generate the inverse elements,

11

(iv) generate the classes and class arrays, specified in Section 3.1,

(v) generate the class multiplication matrices

2.19 Use the program from the previous problem to obtain the group mul-
tiplication tables for the point-groups Csy, Cyy, Csy-

w
i)

Fig. 2.1. Clockwise from top left:
Symmetries of the point-groups Cav,

Cav, Cév, and Csy, respectively.

The surface nets of fig-
ure 2.5 can be modified by
replacing the n reflection
planes o, with n 2-fold ro-
tation axes C2 that are per-
pendicular to the princi-
pal C,, axis, and by replac-
ing the n reflection planes
oq with n 2-fold C4 axes,
giving rise to the dihe-
dral symmetry groups Dy
shown in figure 2.6, which
are isomorphic to the Cpy
groups.D, shown in figure
2.6, which are isomorphic
to the Cny groups.

2.20 Figure 2.5 shows the primitive meshes corresponding to allowed two-

dimensional surface lattices (nets). The vertices are sequentially num-
bered, clockwise. Also shown, are the allowed types of reflection
planes, designated by o, and og.

Gy

Fig. 2.2. Symmetries
of the dihedral groups
Dz, D4, D3, and Dg.

(a) Find all the physically realizable point-symmetry operations for
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the four meshes of figure 2.5. Write out these symmetry operations as
permutations of the vertex numbering, in cycle notation. ( Note that
there are 4, 8, 6, and 12 operations for these meshes, respectively; and
that the identity operation and the rotations maintain the clockwise
ordering of the labeling. The mirror reflections change the labeling to
counterclockwise.)

b) Why aren’t the remaining permutations, like (1324) for Cyy,
symmetry operations?
Figure 2.7 shows the primitive (Wigner-Seitz) cells for lattices with
symmetry involving a major axis of rotation and a horizontal reflection
plane oy, that is, a reflection plane perpendicular to the major axis.

These improper point symmetry groups are designated C,y, where n
=2,3,4,6.

Fig. 2.3. Primi-
tive cells with Cuon
symmetries.

Show that these groups have the following properties:

(i) Since groups with even n include the 2-fold rotation Co=C1/2,

by taking the major axis along the z-direction, and defining the
Cs and oy, by the 3-dimensional rotation matrices, show that

-1 0 0
Coon=onCo=[0 -1 0] =1,

0 0 -1

which is just the matrix that defines the inversion symmetry
operation r — —r. Thus, Cp, symmetries with even n contain
the inversion operation, i.e., the corresponding primitive cell
have a center of inversion. Groups with odd n do not contain

the inversion.

(ii) For n=1, the group Ci}, is comprised of the identity E and o,
and is usually denoted by Cs. Thus, show that we can express
the Cyp groups as the outer products

Cnh:Cn®CS7

containing 2n elements.
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(iii) Each has 2n classes.

Fig.  2.4. Prim-
itive cells with
Dnn symmetries

2.22 When the dihedral groups D, are augmented by a o}, reflection plane,
perpendicular to the major axis, as shown in Fig. 2.8, we obtain
the improper point-groups Dyy. Again, I is an element of the group,
only if n is even. Show that the D, point-groups have the following
properties:

(i) The group order is 4n.
(ii) They contain n oy reflection planes, in addition to the n Cs

rotations.
(iii) on commutes with all the elements of the group. Hence we can
express these groups as

Dnh:Dn ®Cs .

2.23 In Figure 2.9, we show the case of augmenting D, by a vertical oq
reflection plane that bisects the angle between two neighboring Cso
axes. The ensuing groups are designated Dygq.

Show that
(1) the operation

Cae0q = Son ,

where Cs is one of the neighboring 2-fold axes.
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Fig.  2.5. Prim-
itive cells with
Drna symmetries.

(ii) for n odd, there is one o4 plane perpendicular to one of
2-fold axes, and that, in this case, the group can be expressed as

Dnd :DD®CZ .

Figure 2.10 shows two regular tetrahedra with symmetries T and Tg.

(a) For the tetrahedron shown with point-group symmetry T, write
out the symmetry operations in cycle notation for the various rotations
about the axes that pass through an apex of the tetrahedron and the
center of the opposite face. These consist of rotations denoted by
C3 and C%. Do the same for symmetry operations that consist of
rotations about a 2-fold axis that passes through the midpoint of one
edge, the center of the tetrahedron, and the midpoint of the opposite
edge. Show that these 11 operations together with the identity form
a group, the T group.

Fig.  2.6. Prim-

itive cells with
tetrahedral sym-
metries T and
Tq.

(b) In addition to the operation of part (a), the tetrahedron with
point-group symmetry T, shows reflection planes that pass through
one edge of the tetrahedron and bisect the opposite edge. Each of these
reflection planes contains one 2-fold and two 3-fold axes, and bisects
the angle between the remaining two 2-fold axes, thus designated og4.



2.1 FExercises 15

Show that each o4 plane converts the 2-fold axis it contains into a
4-fold rotary reflection axes Sy.

Write out the symmetry operations corresponding to the reflections
o4 in cycle form. Expand the group of part (a) by including these
symmetry operations in the group. Note that this requires the inclu-
sion of other symmetry operations to complete the group, an example
being (1234) = (14)(123), which corresponds to a rotation followed by
a reflection. This group is designated Ty.

C [111]
e =0
\ 1

1

Fig.  2.7. Prim-
itive cell with
Th tetrahedral
symmetries.

(c) Figure 2.11 shows the primitive cell with T}, symmetry. In this
figure the 3-fold axes are rotated to coincide with the body diagonals
of a cube. One of the 2-fold axes is now along the z-axis. The oy
reflection planes are perpendicular to the 2-fold axes and bisect the
angles between the 3-fold axes. Carry out all the steps stated in parts
(a) and (b).

C.[111]
T @Cy
1Y [ )

e Op

e\ Fig. 2.8. The oc-
- - tahedral primitive

NER Y% lile ;
LN\ Y- 2cell with O and
-7 o N 7 Oy symmetries.
s L AT N
' \ 5 I <3
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2.25 Figure 2.12 shows the primitive cell with O and Oy symmetry. O
is comprised of allowed rotation and reflection operation except oy,
it has 24 operations. Obviously, Oy contains oy,. Carry out all the
steps stated in parts (a) and (c) of the previous problem for these two
octahedral groups.

2.2 Solutions

2.1 (16)(2543)

1 23456 7
22(6724135)
/2354176
2'33“)‘1_(1234567)
(2354 176\ (1234567
PE=1\1 7453296/ \831 7546 2

b) Permute[{1, 7, 4, 5, 3, 2, 6},{5, 1, 2, 4, 3, 7, 6}]

={3, 1, 7, 5, 4, 6, 2}

1234675
2.4 a) =
@) q (1234567)

/16 245 73\ (1234567
PA=1\1 234756/ \1 364725
Cycles: (236)(57)

/421365 7T
b)q_(1234567>
/421365 7 (123 5 6 7
PE=1\1 67 25 43 " \76 2145 3

Cycles: (1732654)
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1 2 3 4
-1 __ -1 __ 1 _ -1 _
p =D q9 " =4q r (3 4 9 1>, s =95
(12345 (123 45 67
- \3 4 5 2 1)’ ~\1 6 5 2 7 4 3)°
_ 1 23 45 6 7 _
vl_G 3 4 s 216), w™! = (12)(43756)

o [P=m@e). o= 023).c5t - 032)
P ) o1 = (12), 0= (23), 05 = (31)

{E},
{(12), (13), (14), (23), (24), (34)},

{(12)(34), (13)(24), (14)(23)},
{(123), (124), (132), (134), (142), (143), (234), (243)}

{(1234), (1243), (1324), (1342), (1423), (1432)}.

In the conjugation operation SUS™! =V, where S, U, V € G, either
V = U, and U is in a class by itself, or V # U i.e. distinct from U.
Accordingly, if we define the class sum for C;

YU
vece;

containing nc(i) distinct elements, then we find that

Uee Uee
We consider any two elements U, V' of some class € of a group G,
related by the conjugation V = SUS™! S € G, then

> RVR™ =) RSUST'R™' =Y (RSU(RS)™' = > RUR™'
Reg Reg Reg REG
by the group rearrangement theorem. Moreover,

SY RVR™ =Y SRUR'S'S =Y (SRU(SR)™'S = > RUR'S
Reg Reg Reg Reg
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2.11

2.12
2.13

2.14

or
S (Z RVR1> s = Z RUR™!
Reg Reg

i.e. it contains the same

Thus,
Consider the mutually inverse elements UU ! = E, and the conju-
gation RUR™! = V, where U and V belong to the same class €;,
then

v~ = (RUR™)™' = RU'R™

thus, U~* and V! belong to the same class C;. If V™! € €;, then
U1 €@, and G, is a self-inverse class.
There is no conjugation operation in the group that would take one
set of reflections (U rotations) into the other, since there is no 7/4
rotation about the z-axis.

See Exercise 2.10.
For Csy, see example 2.7. C4y has five classes

C1 = {E}, Co = {Ca}, €3 = {C4, C '}, Ca = {01, 02}, €5 = {0, 05}
The class multiplications are
€16 = CiC =Gy
€3 =€y, CaC3 =0C3, CgC4=Cy CoC5 = Cs,
C3 = 2@; +2Cy, C3Cy = C3, €34 = 2G5, C3C5 = 2C4,
€3 = 2@; +2Cy, CuCy = C4, C4C3 = 2C5, C4C5 = 2C3,
C2 = 2@ +2Cy, C5Cy = C5, C5C3 = 2G4, C5C4 = 2C3

(1) Using XG =6 X, VX € G then

Y OX;0=66=0 Y X;=0C¢

X;€C; X;j€eC;

hence hijk = hjik
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Since each element of the group appears only once in any row or
column, then multiplying any row by one element of the group should
not introduce any redundancies, but only rearanges the elements as

they appear in the row.
We define the class sum for C;

> U
U,eC;
containing nc(i) distinct elements, then we find that

S<Z Ul->Sl— Yo osusTt= >V

U;eC; U;ec; Viee;

where V; = SU;S~! € C;, and twe obtain a set of nc(i) distinct ele-

ments of C;.
Denote the set of number 1,2,3...,(k — 1) by 8, then

(ixj) modk =1€8,Vijes§, Closure

mk + 1

1

(ixj) modk=1 = ixj=mk+1, orj= <k

Mathematica program:

<< "Combinatorica‘"

Print ["GROUP T"];

g = 12;

Print ["GROUP ORDER: ", gl;

(* GENERATE THE GROUP ELEMENTS IN PERMUTATION FORM *)
i=1;

lgen = 3;

L = {Range[4], {4, 3, 2, 1}, {1, 4, 2, 3}};

Print ["GROUP GENERATORS: ", L];

(x L is the list of group elements in permutation form. *)

f := Permute[L[[i]], LL[j]]1]
While[TrueQ[Length[L] < g],
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For[i =1, i < g, i++,
For[j = 1, j < (Length[L] + 1), j++,
Switch[FreeQ[L, f], True,
AppendTo [L, f]
]

1;
Print ["GROUP ELEMENTS: ", L];

(* GENERATE INVERSE ELEMENTS *)
(* LI is list of inverse elements of L in permutation form.*)

Print ["MULTIPLICATION TABLE"];
(* m is the multiplication table.*)

m = TableForm[MultiplicationTable[L, Permute]];
(* LI1 is list of the inverse elements of L in number form.x*)

LI1 = {1};
For[i =2, i < g+ 1, i++,
For[j =1, j < g+ 1, j++,
Switch[TrueQ[m[[1, i, j1] == 1], True,
AppendTo[LI1, j]
]

1;
Print ["INVERSE ELEMENTS; ", LI1]
(* GENERATE THE GROUP CLASSES . *)

(* LC is the list of classes where
LC[i,j] is the jth element of class i,
nc is the number of classes. *)
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LC = {{1}};
i=1;
nc = 1;

f :=ml[1, m[[1, j, i1, LI1[[3111];
Block[{p = Rangelg], C1 = {}}, p[[1]] = O;
While [Apply[Plus, pl!= 0, 1 = i + 1;
Switch[TrueQ[p[[i]]!'= 0], True,
C1 = {i}; pl[[il] = 0O;
For[j =2, j<g+ 1, jt++,
Switch[FreeQ[C1, f], True,
AppendTo [C1, £f];
pll£f]] = 011;
AppendTo [LC, C1];
nc = nc + 1;
c1 = {}
]

iIE
Print ["NUMBER OF CLASSES: ", nc]
Print ["CLASSES: ", LC];

(* indc[i] is the class to which element i belongs.

Do[j = 1;
While[j <= nc,
Switch[MemberQ[LC[[j]], il, True,
indc[i] = j; j = nc + 1,
False,

i=3+
]

*)
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I, {1, 1, g
13
Print["CLASS OF ELEMENT I: ",
MatrixForm([indexc = Array[indc, {g}]1]]

(* GENERATE THE CLASS MULTIPLICATION MATRICES *)
(* ali,j,k] is the class multiplication matrix.x*)

Print ["CLASS MULTIPLICATION MATRICES"];
Do[ali, j, k] = 0, {i, 1, nc}, {j, 1, nc}, {k, 1, nc}l;
Do[a[1, i, i] = 1; ali, 1, il = 1, {i, 1, nc}];
s :=m[[1, LC[[i, 111, LCL[j, k1111;
Do [
For[l =1, 1 < Length[LC[[i]]] + 1, 1++,
For[k = 1, k < Length[LC[[j]]1] + 1, k++,
For[ml = 1, ml < nc + 1, ml++,
Switch[MemberQ[LC[[m1]], s], True,

ali, j, m1] = ali, j, m1] + 1

]
]
]
1;
Dol[a[i, j, ml1] = ali, j, m1]/Length[LC[[m1]]],
{m1, 1, nc}
e
{i, 2, nc}, {j, 2, nc}

]
Print ["CLASS MULTIPLICATION MATRICES: ",

MatrixForm[h = Array([a, {nc, nc, nc}]]]
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2.19 Cay
GROUP ORDER: 6
GROUP ELEMENTS: {E=1={1,2,3}, C3 =2={2,3,1}, C;' =3 ={2,1,3},
o1 =4=1{3,1,2}, 0, =5={3,2,1}, 05 =6 = {1,3,2}}

MULTIPLICATION TABLE:

[ S B N JUR NC R
[ S CRNTIRNC NG
N e S C S SC)
W O N U
O = W R O Ot
— R TN W o

INVERSE ELEMENTS: {1, 4, 3,2, 5, 6}
NUMBER OF CLASSES: 3
CLASSES: {{1}, {2, 4}, {3, 6, 5}}

at
(@)

CLASS OF ELEMENT 1284
12 3 2

CLASS MULTIPLICATION MATRICES:

w
w

10 0 02 0 00 3
HY =0 1 0], 8@ =(1 1 0,8 =(0 0 3
00 1 00 2 120

C4v
GROUP ORDER: 8

GROUP GENERATORS: {E =1 ={1,2,3,4}, C, =2 ={4,1,2,3}, 0¢ =3={3,2,1,4}}

GROUP ELEMENTS: {E=1={1,2,3,4}, C, =2={4,1,2,3}, 0f =3 ={3,2,1,4},
Co=4=1{3,4,1,2}, 0, =5=1{2,1,4,3}, C;* =6 ={2,3,4,1},
0§ =7=1{1,4,3,2}, 0y, =8=1{4,3,2,1}}

MULTIPLICATION TABLE
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0 O Ok W N -
N Ut = W O 00 =N
Sy~ 00 N~ Ot Ww
T W N O IO
=N W = 00 O N Ot
W oo k= I Tt O
N = OO Wk

= O N e Ot N W

INVERSE ELEMENTS: {1,6,3,4,5,2,7,8}
NUMBER OF CLASSES: 5
CLASSES: {{1}, {2,6}, {3,7}, {4}, {5,8}}

1 23456 7 8
CLASS OF ELEMENT I: 1 2 345 2 3 5
CLASS MULTIPLICATION MATRICES:
10000 020 0 0 0 0
0100 0 10010 00
HYD =10 0 1 0 of,H® =0 0 0 0 2[,8® =11 0
00010 020 0 0 00
0000 1 00 20 0 0 2
00010 000 0 2
010 00 00 20 0
HY = o 0o 1 0 0,8 =0 2 0 0 0
10000 0000 2
0000 1 10010
C5v

GROUP ORDER: 10
GROUP GENERATORS: {E =1={1,2,3,4,5}, Cs =2 ={5,1,2,3,4}, 05 =
3=1{3,2,1,5,4}}
GROUP ELEMENTS: {E =1={1,2,3,4,5}, Cs =2 = {5,1,2,3,4},
o9 =3=13,2,1,5,4}, C2 =4 ={4,5,1,2,3},
o4=5=1{2,1,5,4,3}, C2 =6 = {3,4,5,1,2},
o1 =7=1{1,5,4,3,2}, C2 =8 ={2,3,4,5,1},
o3 =9=1{5,4,3,2,1}, 05 = 10 = {4,3,2,1,5} }

O N O O N

O O = O O

O O O N O
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MULTIPLICATION TABLE:

12 3 4 5 6 7 8 9 10
2 4 5 6 7 8 9 1 10 3
3 1019 8 7 6 5 4 2
4 6 7 8 9 1 10 2 3 5
5 3 2 10 1 9 8 7 6 4
6 8 9 1 10 2 3 4 5 7
7T 5 4 3 2 10 1 9 8 6
§ 1 10 2 3 4 5 6 7 9
9 7 5 4 3 2 10 1 8
09 8 7 6 5 4 3 2 1

INVERSE ELEMENTS: {1,8,3,6,5,4,7,2,9, 10}
NUMBER OF CLASSES: 4
CLASSES: {{1}, {2,8}, {3,7,10,5,9}, {4,6}}

123456789 10
CLASS OF ELEMENT I:l 9 3 43 43 92 3 3
CLASS MULTIPLICATION MATRICES:
100 0 020 0 005 0
o o100 . [10o01 0050
KO =10 01 0" =002 o B =|1 2 0 2 =
00 0 1 010 1 0050
2.20
Co: B = ()QB)). C2 = 20)(13), 0 = (12)(34), 0, = (14)(23)
Cors E=(H@B)), Ci = (1234), 07 - 32, € = (241
oz = (12)(34), oy = (14)23), of = (13), 0§ = (24)
Cov: E=(1)(2)(3), Cs = (123), C5" = (132), 01 = (23), o9 = (34), 03 = (12),
Cor: E = (1)(2)(3)(4)(5)(6), Cs = (123456), C;' = (165432),
C3 = (135)(246), Gy = (153)(264), Cy = ( 4)(25)(36),
o1 = (12)(36)(45), o3 = (14)(23)(56), o5 = (16)(25)(34),
of = (26)(35), 0§ = (13)(46), 0§ = (15)(24)

o O O
_ o = O
o N O O
O O =N
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1 0 0 -1 0 0
2.21 (i) Since bothop, =0 1 0 JandCo=| 0 -1 0| aredi-
0 0 -1 0 0 1
agonal matrices, they commute; and
1 0 0 -1 0 0 -1 0 0
onbCo =10 1 0 0 -1 0)=10 -1 0
0 0 -1 0 0 1 0 0 -1

(ii) C,, is a cyclic group of order n. Taking o = o}, the outer product
is comprised of the elements E x C¢ and o, x C%, i =0,...n—1. Cuy
contains 2n elements.

(iii) C, is abelian, and op, x C = C! X oy, hence the group Cu, is
abelian and contains 2n classes.

2.22 (i) For n even, D, contains the n elements of the point-group C,, two
inequvalent sets of two-fold rotations Uy and U}, each containing n/2
elements.

Dnh:EXDn+UhXDn

and, thus, contains 4n elements.

-1 0 0
(ii) We consider the representative two-fold rotationU = [ 0 1 0
0 0 -1
then
1 0 0 1 0 0 -1 0 0
ooU = [0 1 0 01 0J=({0 10
00 -1 0 0 -1 0 0 1

which is a o, type reflection.
(iii) oy is diagonal, hence, it commutes with all the elements of Dy,
and we write

Dnh - Dn ® Cs-
1 0 0 010
2.23 (i) We consider Dy, and takeU = [0 —1 0 |andog= |1 0 O
0 0 -1 0 0 1

1 0 0 0 1 0
Uog = |0 -1 0 1 0 0)]=(-1 0 0] =o0nCs=S5s
0 0 -1 0 01
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(ii) A reflection plane that bisects the angle between two U-axes of
D, overlaps passes through another U-axis, in which case, we obtain
a Dyy group. Thus, a o4 plane can only be perpendicular to a U-axis.
Taking the U-axis to be along the y-axis, we get

-1 0 0 1 0 0 -1 0 0
Uoqg=10 1 0 0 -1 0f=10 -1 0| =1
0 0 -1 0 0 1 0o 0 -1

and since J commutes with all elements of D,,, we write

Dnd - Dn ®Cl

2.24 (a) The group elements in cycle notation are

(234), (243), (134), (143), (124), (142), (123), (132)

(14)(32), (12)(34), (13)(24)

GROUP: T

GROUP ORDER: 12

GROUP GENERATORS: {E =1={1,2,3,4},U; =2={4,3,2,1}
i =3=1{1,4,2,3}}

GROUP ELEMENTS: {{E =1={1,2,3,4},U; =2 = {4,3,2,1},
e =3=1{1,4,2,3}, ¢’ =4={4,1,3,2},
cl® =5=1{3,2,4,1}, c2V =6 = {1,3,4,2},
c2W=7=43,1,2,4}, ¥ =8=1{2,4,3,1},
Uy=9=1{214,3}, ¢V =10={2,3,1,4},
C® =11=1{4,2,1,3}, Us = 12 = {3,4,1,2}}
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MULTIPLICATION TABLE

r 2 3 4 5 6 7 8 9 10 11 12
2 1 4 3 10 1 8 7 12 5 6 9
3 5 6 7 8 1 9 2 4 11 12 10
4 10 11 8 7 2 12 1 3 6 9 5
5 3 7 6 11 12 2 9 10 8 4
6 8 9 2 3 4 5 7 12 10 11
7T 11 12 2 5 10 3 6 1 4 8
8 9 1 12 10 5 4 11 2 3 7
9 12 10 5 4 8 11 6 1 3 7 2
0 4 8 11 6 9 1 12 5 7 2 3
1 7 2 12 1 4 0 8 9 5 6
2 9 5 10 3 7 6 11 2 4 8 1

INVERSE ELEMENTS: {1,2,6,8,11,3,10,4,9,7,5,12}
NUMBER OF CLASSES: 4
CLASSES: {{1}, {2,12,9}, {3,10,4,5}, {6,7,8,11}}

2 3 4 5 6 7 8 9 10 11 12
CLASS OF ELEMENT I: 9 3 3 3 4 4 4 9 3 4 9
CLASS MULTIPLICATION MATRICES:
1000 0300 000 4
0100 120 0 000 4
m _ @ _ ®) _ @ _
i 001 o™ 003 of" 130 0|"
0001 000 3 0040

(b) We take the U-axis along the z-direction, and o in the yz-plane,

we then get
1 0 0 010
Uoc=|0 -1 0 1 00
0 0 1 0 0 1
(12), (13), (14), (23), (24), (34)
()

2.25

_ o O O
w o O O
S O =
O =~ O O



3.1

3.2

3.3

3.4

3.5

3.6

3

Group representations: Concepts

3.1 Exercises

Replace the dots in figure 3.2 with ones, and fill the blank squares
with zeroes; show that the resultant matrices satisfy the group multi-
plication rules of Table 2.1.

Consider an equilateral triangle with sides of unit length. The triangle
is in the xy-plane with its center of gravity at the origin and the
coordinates of its apices being

(0,v/3/3),(1/2,—/3/6), (—1/2, —/3/6).

Show that the first apex is taken into the second apex by a clockwise
rotation of 120 deg. Let C35 be the operator which rotates the triangle
clockwise by 120deg. Show that the transpose of Cs is the operator
6’3 which, operating on the function represented by the vector di-
rected from the origin to the second apex, generates a new function
represented by the vector from the origin to the first apex.

Show that the set of matrices analogous to the one in (3.16) do not
satisfy the group multiplication table give in Table 2.3.

Show that the set of function operator matrices as illustrated by (3.16)
for 63 do not satisfy the group multiplication table.

Consider 22 — 32 and xy as two possible basis functions for the group
Csy. Writing x = rcos¢, y = rsin ¢, show that one must use 2zy
rather than xy as a basis function in order that 22 — y? and 2xy have
the same normalization and thus lead to a unitary matrix representa-
tion of Csy.

The ammonia molecule, NHs, belongs to the point-group Cs,. Con-
sider three functions {fa, fB, fc} that describe the three valence
bonds connecting the N atom with the three H atoms. The operation

29
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3.1
3.2
3.3
3.4
3.5

of 6’3 on the valence bond functions can be described by

~ 00 1
Cs(fafefe)=(fafefc)[1 0 0
0 1 0

Find the remaining matrices that provide a matrix representation
based on the three valence bond functions. Check that the matri-
ces actually obey the group multiplication table.

We assume the original basis set to be normalized as well as being
orthogonal. Now consider three new (orthonormal) basis functions
(vectors) that are linear combinations of the original set:

b1 = %(fAJrfBJrfc)
bs = %(fAﬂLfB—?fc)
63 = “—(fa—f5)

S

Construct a matrix S whose columns (corresponding to {¢1, ¢2, ¢s})
are the coefficients of the original basis functions {fa, fB, fc}. Per-
form the similarity transformation .S ~1)[S for each matrix representa-
tive of Cs based on the original basis set to find the new transformed
representation relative to the transformed basis set. What can be said
about the new-found representation?

3.2 Solutions

In polar coordinates, we have

z? -y = r? (0032 ¢ — sin® (;5) = 12 cos(2¢)
2
zy = r’sin¢ cos¢p = % sin(2¢)

It is then obvious that in order to have the same normalization with
respect to ¢ the second function must be 2zy.
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3.6 The representation I' engendered by the basis function set { fa, f5, f.}
is

1 00 00 1 010
I'E) = (o 1 o) I'(C3) = (1 0 o) res:) =10 0 1)
00 1 010 1 00
1 00 00 1 010
[(o1) = (o 0 1) [(oy) = (o 1 o) [(o3) = (1 0 o)
010 1 00 0 0 1

The transfromation is

. V2 1 VB
S=—=1[v2 1 -3
Ve (x/i 2 0)

S~1 M S blockdiagonalizes the T" representation

100 1 0 0 1 0 0
I(E) = (o 1 o) (C3) = (o —0.5 ﬁ/z) (C32) = (0 —0.5 —ﬁ/z)

00 1 0 —V3/2 —05 0 .

1

0 0 1 0 0 10 0
I(o1) = (O —0.5 \/§/2> I(og) = (() —0.5 _\/§/2> T(03) = (O 1 0
0 V3/2 05 0 —/3/2 05 00 —1



4.1

4.2

4.3
44

4.5

4.6

4

Group representations: Formalism and
methodology

4.1 Exercises

Show that a similarity transformation relating two equivalent unitary
Irreps, must be unitary, if its determinant is 1, i.e. if it is unimodular.
Use Schur’s lemma to demonstrate that all the Irreps of an abelian
group are one dimensional. Hence the number of Reps equals the
order of the group.
Show that the character is invariant under a similarity transformation.
Prove the character orthogonality relationship

> () D) = = d,

p ne(j)

for the complete set of unitary Irreps of a group G. This is useful for
checking the orthonormality of columns in a character table such as in
Table 3.2. Hint: Use the first orthogonality relation to demonstrate
the unitarity of the matrix

ne(i)\ '/
g
hence, show that simple commutation of this product yields the second
orthogonality relation.
Show that
S Wy(R) =0,

Reg

for any Irrep (u) of G except the identity Irrep.

Since the characters form an orthogonal set of vectors, as described
by (4.33) and (4.34), multiply (4.37) on both sides by (®)x(R~1), sum
over group elements ﬁ, collect elements into classes and obtain (4.40).

32



4.7

4.8

4.9
4.10

4.11

4.12

4.13

4.2 Computational Projects 33

Use Burnside’s method to determine the Irreps and characters of the
point-group Cs. Do not use a computer program, rather work it out
by hand.

Construct the character table for the group Cy, following the steps of
example 4.2.

Construct the character table for the tetrahedral point-group 7.
Construct the class matrices for the 2-dimensional Irrep of the group
Clyyp:

(10 (0 -1 (0 1 (-1 0
p=(o 1) a=(1 9) e =( o) e= (3 b))
(1 0 (=1 0\ ., (o 1\ , [0 -1
2=1p —-1)>%=\o 1)727\1 0)27\=1 o)

Show that they commute with all the corresponding matrix operators
of the group. Hence, according to Schur’s lemma they should have the
form of a constant (the Dirac character) times the 2-dimensional unit
matrix. Diagonalize these class matrices and obtain the corresponding
Dirac characters.

Show that a necessary and sufficient condition for the irreducibility of
a Rep () of a finite group G is

3
)

Reg

= 1.

2
x(R)

Transform the permutations obtained in problem 2.16 for the point-
group Cly, into matrix form, and show that it forms a matrix Rep of
Cy, of dimension 4. Show that this Rep is reducible. Determine the
multiplicities of the Irreps of Cy, in this Rep.

Determine the multiplicities of the three Irrep of Cs, in its regular
Rep.

4.2 Computational Projects

(i) Write a program to generate the regular Rep. Check that the
matrix representatives for Cs, are given correctly by 3.49).

(ii) (a) Augment the class multiplication matrices program, devel-
oped in chapter 2, with matrix diagonalization capabilities (ei-
ther by using diagonalization subroutines, or using Mathemat-
ical functions such as Eigenvalues[m], Eigenvectors[m], or
Eigensystem[m]).
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(b) Use this new program to calculate the Dirac characters of
the groups: Cgy, Dsp, 4.

(c) Determine the dimensionality of the respective Irreps.

(d) Use (4.47) to construct the corresponding irreducible char-
acter tables.

4.3 Solutions

4.1 Consider two equivalent Irreps " and I, related by a similarity trans-
formation S, such that

and
X' (R) = x(R)
This is established by the trace identity
Tr(ABC) = Tr(BCA)
Thus,
Tr(ST'T(R)S) = Tr(T(R)SS™)

> Th(R) =Y (S HmTy(R) Sjk = Y Tre(R)
k k

klj
4.2
4.3 This is again established by the trace identity
Tr(ABC) = Tr(BCA)
Thus,
Tr(ST'T(R)S) = Tr(T(R)SS™) = Tr(T(R))
4.4

4.5 We use the character orthogonality theorem, and choose the identity
Irrep and the Irrep (i), we obtain

S U(R) = 0,
Reg

4.6
4.7
4.8
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4.9 We choose the class multiplication matrices

H(2) — , H(3) —

- O O O
O O =

0
0
3
0

o O = O
O O N W
w O O O
o = O O
O w o O

derived in problem 2.24. H® has only one nondegenerate eigenvalue
with corresponding eigenvector (—3, 1,0, O) H®) has 4 nondegenerate
eigenvalues

M. X\=4 = Eigenvector [1,1,1,1] = Normalized Eigenvector [1,1,1,1]

[

[e7™/3 e7im/3 /3 1] = Normalized Eigenvector [1,1,e"™/3 ¢i"/3]
G)P: A =4e7"/3 = Eigenvector [ei™/3 ei™/3 ¢71"/3 1] = Normalized Eigenvector [1,1, ™3 ¢=i"/3

[

Wr: X=0 = Eigenvector [1,—1/3,0,0]

@ \=4¢"/3 = Eigenvector e

It is straightforward to see that dy = dy = d3s = 1;
o 12

di = 14 (3/9)

and
@x(1) =3, Wx(2) = -1, Wx(3) =0, Wx(4) = 0.

The character table of 7 is

Table 4.1. Character table of the point-group T

E 3U  4Cs 405"

O 11 1 1
@r 1 1 ei2m/3 e—i2m/3
(3)1—\ 1 1 efiZTr/B ei27r/3
@Wr 3 1 0 0

4.10 The class matrices are

e, = ((1) (j) €5(Cy) = Calo) = C5(0") = (8 8) C; = (_01 _01>
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1 0 0 0 -1 0
(O 1>_1><}1, (O O>_O><H, (O _1>_—1><]1

hence all class matrices commute with all )T matrices. The corre-
sponding Dirac characters are

AM=1 =M= =0 I=-1

4.11 From the character orthogonality theorem two Irreps, («) and (5), of
a finite group G, have to satisfy the relation
> R PIX(R) = gbap,
Reg
hence, for a Rep ()
2
> @) =

Reg

is a necessary and sufficient condition for («) to be an Irrep of G.
4.12
4.13



4.1

5

Dixon’s Method for Computing Group
Characters

5.1 Solutions

37



6.1

6.2

6.3

6.4

6

Group action and symmetry projection
operators

6.1 Exercises

Determine the orbits, stabilizers and strata of the action of

o= {6 )6 W) () ()

on the xy-plane.

With reference to example 6.3, to which rows of )T do the functions
{yz, zy} belong, if any?

The valence electron orbitals of a water molecule consist of one 1s-
orbitals on each H atom, and the 3-fold degenerate 2p orbital manifold
centered on the O atom. Under the Co, symmetry group operations
the permutations among the atoms are the same as those considered
in example 6.. However the function-space is now different it consists
of electron wavefunctions.

(i) Determine the Rep engendered by Cs, on the set of electron
states.
(ii) Derive the symmetry-adapted states of the water molecule.

The ammonia molecule N H3 has Cs, symmetry. Determine:

(i) Its symmetry-adapted vibrational modes.

(ii) Its symmetry-adapted molecular orbitals. (Again, consider s-
orbitals centered on the H atoms, and a p-manifold on the N
atom.

In the following problems we consider molecules which contain carbon
atoms. The 4 valence electrons of a carbon atom occupy both the 2s
and 2p states, which have to be included in each set of orbitals of
these molecules.

38
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6.5 Repeat problem 4 for the case of a planar molecule of the form ABs,
such as CO32~, which has D3 symmetry.

6.6 In the methane molecule CHy4, the C' atom is located at the center of
a tetrahedron, while the H atoms are at its apices.

6.7 Repeat problem 4 for the benzene molecule. It consists of 6 carbon
atoms forming the apices of a hexagon and 6 hydrogen atoms bound
radially, thus having Dgj symmetry.

6.2 Solutions

6.1
6.2
6.3 The engendered representation is
10 0 0 O 01 0 0 O
01 0 00 10 0 0 O
E=10 01 00 Cob=10 0 -1 0 O
000 10 00 0 -1
0 00 01 00 0 1
10 0 00 010 0 O
01 0 00 100 0 O
o, =10 0 -1 0 O oy=10 01 0 O
00 0 10 000 -1 0
00 0 01 000 0 1

Table 6.1. Character Table for Cs,

Wr o111 1
@r 1 1 -1 -1
Gr 1 -1 1 -1
@Wr 1 -1 -1 1

Next, we construct the Irrep projection matrices using the following
simple program:
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P1=(E + C2 + Sigma,, + Sigma,,) /4;

P2 = (E + C;- Sigma, - Sigma, ) /4;

P3 = (E-C; + Sigma, - Sigma,) /4;

P4 =(E-C;-Sigma, + Sigma, ) /4;

Eigensystem [P1]

Eigensystem [P2]

Eigensystem P3]

Eigensystem [P4]

The resulting eigenvalues and eigenvectors are:

14000
11000 Eigenvalues: 1,1,0,0,0

Wp =10 0 0 0 0 Eigenvectors :  {0,0,0,0,1},{1,1,0,0,0},
00000 {0,0,0,1,0},{0,0,1,0,0},{-1,1,0,0,0}
0 000 1
0000 0
000 0 0 Figenvalues : 0,0,0,0,0

@p =100 000 Eigenvectors :  {0,0,0,0,1},{0,0,0,1,0},
00000 {0,0,1,0,0},{0,1,0,0,0},{1,0,0,0,0}
0000 0
I -1 000
-1 1 000 Eigenvalues: 1,1,0,0,0

GBp=10 0 00 0 Eigenvectors :  {{0,0,0,1,0},{—1,1,0,0,0},
0 0 010 {0,0,0,0,1},{0,0,1,0,0},{1,1,0,0,0}
0 0 0 0 0
0000 0
000 0 0 Figenvalues : 1,0,0,0,0

Wp=10o0100 Eigenvectors :  {0,0,1,0,0},{0,0,0,0,1},
00000 {0,0,0,1,0},{0,1,0,0,0},{1,0,0,0,0}
0000 0

Selecting the eigenvectors corresponding to eigenvalue of unity, we
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obtain the following symmetry-adapted vectors:

mp. [00 001
11000

)T . None

I B

0 0
-1 0 0

@Wr: o o1 0 0

1
0

6.4(1) The symmetry-adapted vibrational modes of NHj are derived in

Chapter 15.
(ii) The representation of Cs, engendered by the atomic orbitals is
10 000 O 0 0 1 0 0 0
01 0 0 00O 1 0 0 0 0 0
o 0 01 0 00 Oy = 0 10 0 0 0
000100 000 -1/2 V3/2 0
000010 00 0 —/3/2 —1/2 0
0 000 00O 0 00 0 0 1
0 1 0 0 0 0 100 0 0 O
0 0 1 0 0 0 001 0 0 O
Cn — 1 0 0 0 0 0 o — 0100 0 O
3 00 0 —1/2 —/3/2 0 ! 00071 0 0
00 0 V32 —-1/2 0 0000 —1 0
0 0 0 0 0 1 0 000 0 1
0 0 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
o — 1 0 0 0 0 0 o — 0 1 0 0 0 0
2 000 —1/2 v3/2 0 3 000 —1/2 —3/2 0
00 0 v3/2 1/2 0 00 0 —/3/2 1/2 0
0 0 0 0 0 1 0 0 O 0 0 1
where we ordered the atomic orbital basis set as s(H1), s(Hz), s(Hs), pz(N), py(N), p-(N).
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Table 6.2. Character Table for Cs,

2
E (3,05 01,02 03

W 1 1 1
@r 1 1 -1
Gr 2 -1 0

Next, we construct the class matrices and the Irrep projection ma-

trices using the following simple program:

c2=c3x+c32x

c3=s1x+s2x+s3x

pl=(ex+c2+c3)/6

p2=(ex+c2-c3)/6

p3=(2ex-c2)/6

Eigensystem pl]

Eigensystem [p2]

Eigensystem [p3]

The class matrices are

Cs

O O O = = O
O O O = O =
O O O O = =
|

—

o O O O
N O O O O O
O O O = ==
O OO = ==
O OO = ==
O O O O O O
O O O O O O
w O O O o O
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1 1 1
111,000
33 3 8 8 8 Eigenvalues: 1,1,0,0,0,0
Wp = g g g 0 0 0 Eigenvectors :  {0,0,0,0,0,1},{1,1,1,0,0,0},{0,0,0,0,1,0},
O O O O O O {07070517070}7{_15071707070}3{_15170707030}
00 000 1
000000
8 8 8 8 8 8 Eigenvalues:  0,0,0,0,0,0
@p = 00000 0 Eigenvectors :  {0,0,0,0,0,1},{0,0,0,0,1,0},{0,0,0,1,0,0},
000000 {0,0,1,0,0,0},{0,1,0,0,0,0},{1,0,0,0,0,0}
000000
2 1 1 3 .
gl _2§ _§ 0 0 0 Figenvalues : 1,1,1,1,0,0
3 5 3 000 Eigenvectors :  {0,0,0,1,0,0},{0,0,0,0,1,0},
@p_|"3 -5 35 000 L1 0,0,0,0
4 0O 0 0 100 NG )
0 0 0 010 {ﬁ,—ﬁ,\fOOO}
0O 0 0 0 0 0 {—Z5 —5 —25,0.0,0},{0,0,0,0,0,1}

Selecting the eigenvectors corresponding to eigenvalue of unity, we
obtain the following symmetry-adapted vectors:

mp. [L1 1000
00000 1

@ None
1 1
N ] 0 0 0 0
1 1 2
G % V6 \/; 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

6.5 The point group Ds;, has elements:
Ea 037 0325 Ula U23 Ug,Uh, 01, 02, 0'378378:;1

If we consider the CO3 2~ as an example of a AB3 molecule, we will
simplify the problem by treating the four p,-orbitals on the C and
O atoms separately, since they do not interact with the remaining
orbitals. That leaves us with a Hilbert space of dimension 9. The Rep
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engendered on this space is:

© oo o "o o
o oo 01"2 ﬂ_o_O o
o oY~ 1"20 oo o
o 01"2 ﬂ_o_O oo o
o oo oo o 1__2
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6.2 Solutions

Table 6.3. Character Table for Dsy,
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1 0 0 O 0 0 0 0 0
0 0 0 O 0 0 0 0 0
0 0 0 O 0 0 0 0 0
0 0 0 O 0 0 0 0 0
1 1 1 1 1
Wp= |0 000 5 iAo owE T
SO AN SR I
0000 -5 75 1 "5 0
1 1 1 1 1
S
0000 =5 75 = ~n3 o
Figenvalues : 1,1,0,0,0,0,0,0,0
Eigenvectors :  {0,0,0,0,-2,v3,1,—3,1},{1,0,0,0,0,0,0,0,0},{0,0,0,0,%,0,0,0, 1},
{0,0,0,0,-%,0,0,1,0},{0,0,0,0,4,0,1,0,0}, {0,0,0,0,4,1,0,0, 0},
{0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,0}, {0, 1,0,0,0,0,0,0,0}
0O 0 O 0 0 0 0 0 0
0O 0 O 0 0 0 0 0 0
0O 0 O 0 0 0 0 0 0
1 1 1 1 1
000 5 0 -5 35 ~5 ~u4
@p _ 10 0 0 0 0 0 0 0 0
1 1 1 1 1
0O 0 O ng 0 —41% Zl —41% _11
SO A S R
000 -390 25 —1 75 1
Figenvalues : 1,0,0,0,0,0,0,0,0
Eigenvectors : o,o,o,—%,o,%,q,%@},{0,0,0,@,0,0,0,0,1},{0,0,0,%,0,0,0,1,0},
0,0,0,—?,0,0,I,0,0},{0,0,0,%,O,1,0,0,0},{0,0,0,0,1,0,0,0,0},
{0,0,1,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0}, {1,0,0,0,0,0,0,0,0}
0O 0 O 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
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2 1 1 1 1
©)p 000 3 0 6 T2/3 6 2V3
o U T R SR S
1 1 2 1 1
b0 - 5, & AR
O T N A R
coo & TR W5
0O 0 O m G _m 6 0 3
Figenvalues : 1,1,1,1,1,1,0,0,0
Eigenvectors :  {0,0,0,2,10,0,0,1 ,{0,0,0,%,—@,0,0,1,0},{0,0,0,—%%,0,1,0,0},
0,0,0,%,%2,1,0,0,0},0,0,1,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0},

anaoa_ga_%a @7_%507 1}5{070705_1 @7_%5_§5 150}3{17050707070707030}
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Symmetry-adapted vectors
c c Cc ot ot 0o 0 0 0O

S Px Py Px Py Px Py DPx Py

<1>r-_100000000
0000 -2 V31 -3 1
2. | _2 L L
<>r._oooﬁoﬁ1ﬁ1}
10 0 0 00 0 0
001 0 0 0000
¥3 1
op, 000 % 3 0001
000 L 80010
000 - L 0100
o oo L ¥ 100 0

6.6 The carbon atom does not permute with any of the hydrogens under
the operations of 7;. Thus, we find that the carbon s-state engenders
the identity Irrep (VT while the p-state manifold engenders the vector
Irrep ®)T, given in table 6.4.

The Rep engendered by the 1s-states of the four hydrogen atoms
is just the permutations generated by the operations of 7; on the
these atoms. We start by generating the permutations among the
four tetrahedral apecies where the hydrogen atoms reside. For the
sake of completeness we will also generate the vector Rep of 7y.

Program

Generators : Cy,, Caz, Oxy, C3¥*

<<Combinatorica

g=24;NG=5;

L={ Range [4],{2,1,4,3},{3,4,1,2},{1,2,4,3},{2,3,1,4} }

R = {{{1,0,0},{0,1,0},{0,0,1}},{{-1,0,0},{0,-1,0},{0,0,1}},{{1,0,0},{0,-1,0},{0,0,-1} },
{{0,-1,0},{-1,0,0},{0,0,1}},{{0,0,1},{1,0,0}.{0,1,0} } };

Array [ Rot ,{3,3}];

Do [B = R[[i]]; Rot [i]= B, {i,1, NG };
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f: = Permute [L[[i]],L[[j]]]; nel = NG ;
While [ TrueQ [ Length [L] <g],
For [i=2,i < g,i++,
For [j=2,j < ( Length [L]+1),j++,
Switch [ FreeQ [L,f], True ,
AppendTo [L,f]; nel ++; Rot [ nel ]= Rot [i]. Rot [j]
II}; Print [L;
Print ["Rotation Matrices of Group Elements: ")
Do [
Print ["R(",i,") = *,MatrixForm[Rot[i]],",",
" R(",i+1,") = ",MatrixForm[Rot[i+1]],",",
" R(",i+2,") = ", MatrixForm [ Rot [i+2]],",",
" R( ",i+3,") = ", MatrixForm [ Rot [i+3]]
I,
{i,1,g-3,4}
I;
X = 0* IdentityMatrix [4]; Perm = {};
Do[ AppendTo [ Perm , X ], {i,1,g}];
Do [B=X;
Do |
B [G.L{Gilll=1, (1.4}
J; Perm [i]l+ = B, {i,Lig}
I;
Do |
Print |
"P(",i,") = ",MatrixForm|Perm[[i]]],",",
" P(",i+1,") = " ,MatrixForm[Perm[[i+1]]],",",
" P(",i+2,") = ", MatrixForm[Perm[[i+2]]],",",
" P(",i+3,") = ",MatrixForm[Perm([i+3]]]
], {i,1,e-3,4}
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NM = {{1},{5,8,10,12,18,20,22,24},{2,3,6},{9,11,13,15,17,23}, {4,7,14,16,19,21} };
xi = {{1,1,1,-1,-1},{2,-1,2,0,0},{3,0,-1,1,-1}, {3,0,-1,-1,1} };
Class ={};

Do |

Cls =X;

Do |

Cls+ = Perm|[NM[[i]], {1, Length [NM[[]}
| s AppendTo [ Class , Cls |, {i,1,5}

J;
Do [ Print [ MatrixForm [ Class [[i]]]],{i,1,5}];
Pr = Class|[1]];
Do [ Pr+ = Class([i]],{i,2,5}];Pr =Pr/24;
Print[ MatrixForm[ Pr ]]; Eigensystem[ Pr |
Pr2 = xi[[1,1]]* Class[[1]];
Do [ Pr2+ = xi [[L]]* Class [[i]],{i,2,5}]; Pr2 = Pr2/24;
Print [ MatrixForm [ Pr2 ]]; Eigensystem [ Pr2 ]
Pr3 = xi [[2,1]]* Class [[1]};
Do [ Pr3+ = xi[[2,i]]* Class [[i]],{i,2,5}]; Pr3 = Pr3/12;
Print [ MatrixForm [ Pr3 ]]; Eigensystem [ Pr3 ]
Pr4 = xi [[3,1]* Class [[1]};
Do [Pr4+ = xi [[3,i]]* Class [[i]],{i,2,5}]; Pr4 = Pr4/8;
Print [ MatrixForm [ Pr4 ]]; Eigensystem [ Pr4 ]
Pr5 = xi [[4,1]]* Class [[1]};
Do [Pr5+ = xi [[4,i]]* Class [[i]],{i,2,5}]; Pr5 = Pr5/8;
Print [ MatrixForm [ Pr5 ]]; Eigensystem [ Pr5 |

Group Permutations:

{{1,2,3,4},{2,1,4,3},{3,4,1,2},{1,2,4,3},{2,3,1,4},{4,3,2,1},{2,1, 3,4}, {1,4,2,3},
{3,4,2,1},{4,1,3,2},{4,3,1,2},{3,2,4,1},{2,4,1,3},{1,3,2,4},{3,1,4,2},{4,2,3,1},
{2,3,4,1},{3,1,2,4},{3,2,1,4},{2,4,3,1},{1,4,3,2},{4,2,1,3},{4,1,2,3},{1,3,4,2}}
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Rotation Matrices of Group Elements:

1 —1 1
R(1) "\ R ° N R
E L S 7 UL IEG R I
0 1 ? 0 0 1 o 0
1 —1
Ry (Y R(6) OO\ mey (Y
cmvz = |10 o B U N
3 01 0 v 0 -1 4 0
—1 1
O O\ raoy (0 0O R(11)
52 = 1 0 0 ,Cngz = -1 0 0], 932 =
* 0 0 -1 s 0 -1 0 *
-1 0 0 1 0 0 1
1 14 1
Réggi)’): 0 0—1,}2(>: 001,}2(5>: 0
* 0 1 0 vz 0 1 vz 0
1 1
R(17) 00 rR(18)  [° R19) [°
S3y = 0 -1 0 ac2myz = 0 0 1}, o =
4 -1 0 0 3 1 0 v
—1 —1
I I R(22) 0 R(23)
o = -1 0, e 0 0 1), =
4 1 0 0 3 -1 0 v
Permutation Matrices for the Hydrogen Atoms:
1 000 010 0 0
010 0 1 00 0 0
PQ) = 0010’P(2)_ 0001’P(3)_ 1
00 0 1 00 1 0 0
010 0 00 0 1 0
001 0 001 0 1
P() = 1000’P(6)_ 0100’P(7)_ 0
00 0 1 1 00 0 0

— O

o O

— O

OO'

= =)
oo o
== =)
oo o
oo~ O
===
o~ oo

oo o
o oo
- o o o
c oo
o oo
- o oo
== =)



51

6.2 Solutions
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1 000 2 2 2 2
. 01 00 . 2 2 2 2
Classmatriz(l) = 00 1 0 , Classmatriz(2) = 9 9 9 9>
00 01 2 2 2 2
0 1 1 1 0 2 2 2
. 1 01 1 . 2 0 2 2
Classmatriz(3) = 11 0 1 , Classmatriz(4) = 9 9 0 2
1110 2 2 20
31 11
) 1 3 11
Classmatriz(b) = 101 3 1
1 1 1 3
11 1 1
i 1 1 1
) S
R E A
i 1 1 1
11 1 1
i 1 1 1

Figenvalues : 1,0,0,0
Eigenvectors : {1,1,1,1},{-1,0,0,1},{-1,0,1,0},{—1,1,0,0}

0000
@y _ [00 00
000 0
0000

Figenvalues : 0,0,0,0
Eigenvectors :  {0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}

0000
@y _ [0 0 00
0000
0000

Figenvalues : 0,0,0,0
Eigenvectors : {0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}
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0 0 0 O
0 0 0 O
p —
4 0 0 0 O
0 0 0 O
Figenvalues : 0,0,0,0
Eigenvectors :  {{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}
3 1 1 1
1 1 1 1
103 1 1
op- |74 4 St
1 T 1 1 1
1 1 1 3
1 1 1 1

Figenvalues : 1,1,1,0
Eigenvectors : {-1,0,0,1},{-1,0,1,0},{—1,1,0,0},{1,1,1,1}

Symmetry-adapted vectors

Wr: 111 1]

6.7 (* Csy Cox, I7%)

< <Combinatorica
g=24; NG =4;
L = { Range [12],{6,1,2,3,4,5,12,7,8,9,10,11},{7,12,11,10,9,8,1,6,5,4,3,2},{10,11,12,7,8,9,4,5,6,1,2,3} };
R = {{{1,0,0},{0,1,0},{0,0,1}},{{1/2,5qrt(3] /2,0}.{-Sart(3]/2,1/2,0},{0,0,1}},

{{1,0,0},{0.-1,0},{0,0,-1} },{{-1,0,0},{0,-1,0},{0,0,-1} } } ;Array[Rot,{3,3}];
Do [B = R[[i]]; Rot [i] = B,{i,1, NG }];
f:= Permute [L{[i]],L[[j]]]; nel = NG ;
While [ TrueQ [ Length [L]<g],

For [i=2,i<g,i++,
For [j=2,j<( Length [L]+1),j++,
Switch [ FreeQ [L,f], True , AppendTo [L,f];
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nel ++; Rot [ nel | = Rot[i]. Rot [j];be=R][[i]].R{[j]];
AppendTo[R,be]JJ;
Print [L];
Print ["Rotation Matrices of Group Elements: "]
Do|
Print["R(",i,") = ",MatrixForm[Rotfi]],",",
" R(",i+1,") = " ,MatrixForm[Rot[i+1]],",",
" R(",i+2,") = ", MatrixForm[Rot[i+2]],",",
" R(",i+3,") = ", MatrixForm[Rot[i+3]]

I,
{i,1,g-3,4}
J; X=0* IdentityMatrix [6]; Perm = {}; Do AppendTo [ Perm ,X],{i,Lg};
Do [B=X;
Do |
Switch (L{i )7, True B, L{N=1, False , cb =L{{LJl-6:B0, cb =1}, (1,6}
]; Perm [[i]]+=B,{i,1,g}
I;
(* Transformation of s-orbitals *)
Do |
Print [*P(",i,") = ",MatrixForm[Perm([i]]],",",
" P(",i+1,") = ", MatrixForm[Perm|[[i+1]]],",",
" P(",i+2,") = *, MatrixForm{Perm[[i+2]]],",",
" P(",i+3,") = ",MatrixForm[Perm|[i+3]]]
], {i,1,g-3,4}
IE
]'s pz={};
(* Transformation of p,-orbitals *)
Do[pp=Perm [i]]*R][[i,3,3]];AppendTo[pz,pp|,{i,1,8}];
Do[
Print["Ppz(",i,") = *,MatrixForm[pz[il]],",",
" Ppz(",i+1,") = ",MatrixForm(pz([i+1]]],",",
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" Ppz(",i+2,") = ", MatrixForm[pz[[i+2]]],",",

" Ppz(",i+3,") = ",MatrixForm[pz[[i+3]]]

], {i,1,g-3,4}

IE

NM ={{1},{2,14}, {5,11}, {8}, {3,9,15},{6,12,17}, {4}, {7,18},{10,16}, {13}, {19,21,23}, {20,22,24} };

xi = {{1,1,1,1,-1-1,1,1,1,1,-1,-1},{1,-1,1,-1,1-1,1,-1,1,-1,1,-1}, {1,-1,1,-1,-1,1,1,-1,1,-1,-1,1},
{2,1,-1,-2,0,0,2,1,-1,-2,0,0}, {2,-1,-1,2,0,0,2,-1,-1,2,0,0}, {1,1,1,1,1,1,-1,-1,-1,-1,-1-1},
{1,1,1,1,-1,,1,-1,-1,-1,-1,1,1},{1,-1,1,-1,1,-1,-1,1,-1,1,-1,1},{1,-1,1,-1,-1,1,-1,1 -1,1,1,-1},
{2,1,-1,-2,0,0,-2,-1,1,2,0,0}, {2,-1,-1,2,0,0,-2,1,1,-2,0,0} };

Class = {};

Do |

Cls =X;

Do [ Cls+ = Perm [ NM [[i,j]]]],{j,1, Length [ NM {[i]]]}

| ; AppendTo [ Class , Cls |,{i,1,12}

I;

Do[ Print [ MatrixForm [ Class [[i]]]],{i,1,12}];

Pr = Class [[1]];

Do [Pr + = Class [[i]],{i,2,12}];Pr = Pr/24; Print [ MatrixForm [Pr ]]; Eigensystem [Pr |

Do |

Pr2 = xi [[i,1]]* Class [[1]];

Do [ Pr2 + = xi [[i,j]]* Class [[j]],{j,2,12}]; Pr2 = xi [[i,1]]* Pr2 ;

Pr2 = Pr2/24; Print [ MatrixForm [ Pr2 ]]; Print [ Eigensystem [ Pr2 ]],{i,1,11}

]

Claspz={};

Do|

Clpz=X;

Do[Clpz-+=pal[NM[[i 1], {1 LengthNMI]]

| ;AppendTo|Claspz,Clpz],{i,1,12}

I;

Do[

Print["Clpz(",i,") = " ,MatrixForm[Claspz[[i]]],",",
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" Clpz(",i+1,") = " ,MatrixForm|Claspz[[i+1]]],",",
" Clpz(",i+2,") = ", MatrixForm[Claspz[[i+2]]],",",
" Clpz(",i+3,") = ",MatrixForm|Claspz[[i+3]]]
], {i,1,9,4}
I3
Pr =Claspz[[1]];

Do[Pr +=Claspz|[i]],{i,2,12}];Pr =Pr /24;Print[MatrixForm[Pr ]|;Eigensystem[Pr ]
Do[

Pr2=xi([i, 1]]*Claspz[[1]];
Do[

Pr2+=xi([i,j|]]*Clasp[[j]],{j,2,12}
|;Pr2=Pr2*xi[[i,1]];Pr2=Pr2/24;Print[MatrixForm[Pr2]]; Print[Eigensystem [Pr2]],{i,1,11}]

Group Permutations:

{{1,2,3,4,5,6,7,8,9,10,11,12}.{6,1,2,3,4,5,12,7,8,9,10,11},{7,12,11,10,9,8,1,6,5,4,3,2},
{10,11,12,7,8,9,4,5,6,1,2,3}.{5,6,1,2,3,4,11,12,7,8,9,10},{8,7,12,11,10,9,2,1,6,5,4,3},
{9,10,11,12,7,8,3,4,5,6,1,2} ,{4,5,6,1,2,3,10,11,12,7,8,9},{9,8,7,12,11,10,3,2,1,6,5,4},
{8,9,10,11,12,7,2,3,4,5,6,1},{3,4,5,6,1,2,9,10,11,12,7,8},{10,9,8,7,12,11,4,3,2,1,6,5},
{7,8,9,10,11,12,1,2,3,4,5,6}.,{2,3,4,5,6,1,8,9,10,11,12,7},{11,10,9,8,7,12,5,4,3,2,1,6},
{12,7,8,9,10,11,6,1,2,3,4,5},{12,11,10,9.8,7,6,5,4,3,2,1},{11,12,7,8,9,10,5,6,1,2,3,4},
{4,3,2,1,6,5,10,9,8,7,12,11},{3,2,1,6,5,4,9,8,7,12,11,10},{2,1,6,5,4,3,8,7,12,11,10,9},
{1,6,5,4,3,2,7,12,11,10,9,8},{6,5,4,3,2,1,12,11,10,9,8,7},{5,4,3,2,1,6,11,10,9,8,7,12} }

Rotation Matrices of Group Elements:
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Since the s-orbital engenders the identity Irrep, the s-orbitals of

both species engender the site permutation matrices.

Site Permutations:
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6.2 Solutions

Class matrices:
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i _1 _1 i _1 _1
3 6 6 3 6 6
_1 i _1 _1 1 _1
6 3 6 6 3 6
1 1 1 1 1 1
R s B I
3 "6 6 3 6 6
_1 i _1 _1 1 _1
6 3 6 6 3 6
1 1 1 _1 _1 1
6 6 3 6 6 3
Figenvalues: 1,1,0,0,0,0
Eigenvectors : {-1,0,1,-1,0,1},{-1,1,0,—-1,1,0},{1,1,0,0,0,1},
{0,-1,0,0,1,0},{-1,0,0,1,0,0},{1,1,1,0,0,0}
1 11 11 1
6 6 6 6 6 6
101 11 11
"6 6 6 6 6 6
i _1 i _1 1 _1
Op—-|5 & 8 & b 8
"6 6 6 6 6 6
1 11 11 1
6 6 6 6 6 6
11 11 11
"6 6 6 6 6 6
Figenvalues: 1,0,0,0,0,0
Eigenvectors : {-1,1,-1,1,—-1,1},{1,0,0,0,0,1},{-1,0,0,0, 1,0},
{1,0,0,1,0,0},{-1,0,1,0,0,0},{1,1,0,0,0,0}
1 1 1 1 11
3 6 6 3 6 6
1 1 1 1 1 1
6 3 6 6 3 6
101 1 1 1 1
p _ | 76 6 3 6 6 3
L 1 1 1 1 _1
3 6 6 3 6 6
1 1 101 1 1
"6 3 6 6 3 6
i _1 _1 _1 1 1
6 6 3 6 © 3

Figenvalues: 1,1,0,0,0,0
Eigenvectors : {1,0,-1,-1,0,1},{-1,-1,0,1,1,0},{-1,1,0,0,0, 1},
{0,1,0,0,1,0},{1,0,0,1,0,0},{1,-1,1,0,0,0}

The missing Irreps have null projection operators. The symmetry-
adapted vectors for the s-orbitals are

A (Or) 11111

e (er) [

-1 0 1
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6.2 Solutions

0
J, Ppz(3) = [

Rep engendered by the p, orbitals
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Figenvalues: 1,0,0,0,0,0
Eigenvectors : {-1,1,-1,1,—-1,1},{1,0,0,0,0,1},{-1,0,0,0, 1,0},
{1,0,0,1,0,0},{-1,0,1,0,0,0},{1,1,0,0,0,0}

1 1 1 1 1 1
3 6 ~6 3 6 ©
1 1 1 1 1 _1
6 3 6 6 3 6
1 1 1 1 1 _1
p-|78 & 1 § 8 3
3 76 6 3 6 6
1 1 1 1 1 1
6 "3 "6 ® 3 6
1 1 1 1 1 1
6 6 3 6 © 3
Figenvalues: 1,1,0,0,0,0
Eigenvectors : {1,0,-1,-1,0,1},{-1,-1,0,1,1,0},{-1,1,0,0,0, 1},
{07170707170}’{17070717070}7{17_171707070}
11 1 1 1 1
6 6 6 6 6 6
i 1 1 1 1 1
6 6 6 6 6 6
11 1 1 1 1
®p-3 £ 88§
6 6 6 6 6 6
i 1 1 1 1 1
6 6 6 6 6 6
i 1 1 1 1 1
6 6 6 6 6 6
Figenvalues: 1,0,0,0,0,0
Eigenvectors : {1,1,1,1,1,1},{-1,0,0,0,0,1},{-1,0,0,0, 1,0},
{_17050717070}3{_17071707070}3{_17170707030}
1 1 1 1 1 1
3 "6 6 3 6 6
1 1 1 1 1 1
6 3 6 6 3 ' ®
1 1 1 1 1 1
2p _ |6 "6 3 6 6 3
1 1 1 1 1 1
3 "6 6 3 6 6
_1 1 1 _1 1 _1
6 3 6 6 3 6
1 _1 1 1 _1 1
6 6 3 6 6 3

Figenvalues: 1,1,0,0,0,0
Eigenvectors : {-1,0,1,-1,0,1},{-1,1,0,-1,1,0},{1,1,0,0,0,1},
{0,-1,0,0,1,0},{-1,0,0,1,0,0},{1,1,1,0,0,0}
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The symmetry-adapted vectors are

Group action and symmetry projection operators

Bog
1 0 -1
Fag [—1 -1 0
Agy : 11 1 1 1 1]
1 0 -1
Bz [1 -1 0
Rep engendered by p., py:
1 0 1 V3
Ry (1) = (O 1), Rey(@) = [ 2, 2
-2 2
_1 B 1
Rxy(3) = | & * | Rw6) =| 25
2 2 2
1 B 1
Rxy(9)=| & * |, Rxy(10) = ( %K
-2 3 2
x g
Rxy(13) = 0 1) Rxy(14) = 73 1
2 2
L V3 1
Rxy(17) = | /5 % | Rxy(18) = NG
2 T2 2
1 _V3 1
Rxy(21) = _2\/_5 _i , Rxy(22) = (O
2 2

The corresponding Rep engendered by the full set of p;, p, of the
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6.2 Solutions

benzene molecule is
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6.2 Solutions
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The missing Irreps have null projection operators. The symmetry-
adapted vectors for the p,, p,-orbitals are
p T Yy T2 Y2 T3 Ys T4 Ys Ts Ys Te Ys

A (Or):[2 0 1 V3 -1 —VB -2 0 -1 V3 1 V3]
A (P) [0 2 VB 1 VB -1 0 -2 —VB -1 -3 1]

-3 1l 9 0 0 -1 ¥ L1 0001
5 (O -1 8 0 0 -1 0 L ¥ o010
Qg( )'_§ 10 -1 0 0 ¥ -1 0100
Lo 1 0 0 0 -3 ¥ 100 0

Boo (10) i [0 =2 V3 1 =V 1 0 -2 V3 1 -3 1]
Bl opo001 ¥ 1 90001

5 (anp L ¥ o010 3 =¥ 0010

2“()—§§0100—§§0100
LB 1000 3 ¥ 1000
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Table 6.5. Character Table for Dgy,
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Construction of the irreducible
representations

7.1 Exercises

7.1 In chapter 2 or 3 it was found that the matrix

5

diagonalized the matrix C’g Use the inverse process to “undiagonal-
ize” the set of six matrices found in example 7.2 and show that this
similarity transformation produces a set of six matrices that form an
Irrep of the group Cs, which differs from (2.3) only in having opposite

signs for the elements of the matrices o1, 02, o3.

7.2 Solutions
4.1

81



8.1

8.2

8.3

8.4

8.5

8

Product groups and product representations

8.1 Exercises

Show that if Ho C Hy; C G, and Hy < G is an invariant subgroup of
G, then it is also an invariant subgroup of Hs, i.e. Ho < Hy. If Hy is
the largest invariant subgroup of G, i.e. maximal in G, it is called the
normalizer of Hs in G.
Show that the converse of problem 1 does not necessarily hold, and
give an example where it is not true.
Prove that the number of pairs of inequivalent conjugate Irreps of a
finite group is equal to the number of pairs of reciprocal classes.

Determine the subgroups of Dy, and identify the invariant ones. De-
rive the factor groups of its invariant subgroups.

Determine the subgroups of the symmetric group S4, and identify the
invariant subgroups among them. Derive the corresponding factor
groups.

8.6 Construct the character table of Dy from that of Dy.

8.7 Generalize the previous problem for the point-groups D,,;, and Cyp,.
8.8 Subduction of representations

Consider the vector Irrep of O(3), namely =0T~

(i) Now select among the infinitely uncountable set of operators those
that correspond to Cy,, which comprise 4- and 2-fold rotations about
the z-axis, the two reflections planes xz and yz, and in the two
vertical diagonal reflection planes intersecting with the zy plane
through the lines = y and « = —y, respectively.

(ii) Show that this set of matrices forms a group isomorphic to Cyy, i.e.
they form a faithful representation of Cy,.

82
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(iii) Decompose this representation in terms of the Irreps of Cy4,, and

8.9

8.10

8.11

8.12

8.13

8.14

8.15

obtain the corresponding reduction coefficients (U=1T'~ | L),

This procedure is known as subduction, and will discussed in the fol-
lowing chapter.

Symmetrization of a second-rank tensor

Consider a second-rank tensor associated with a 3-dimensional sys-
tem with Cy,, symmetry. Use the fact that the O(3) Irrep of the tensor
is given by U=UT~ ® (U=DT~  and obtain its CG-series in terms of
the Irreps of Cyy.

What would be the outcome of the second-rank tensor symmetrization
had the symmetry of the system been D, rather than Cy4,?

Repeat the symmetrization of the second-rank tensor if the symmetry
of the system is Csy.

Consider the tetrahedral point-group 23 (7'), which contains 4-axis 3-
fold oerations {C%, C5 "'}, i = 1 — 4, and 3 2-fold axes, U bisecting
opposite edges of the tetrahedron.

(i) Show that it has one invariant subgroup, and determine the
corresponding factor group.

(ii) Show that 23 (7) can be constructed from the outer-product
of the invariant subgroup with its factor group.

(iii) Construct its character table with the help of the above results.

Consider the self-direct-product of the 3-dimensional Irrep T of 23 (7),
with generators

00 1 -1 0 0
ca = (1 0 0); cz=(0 -1 0
01 0 0 0 1

23 has the character table

(i) Determine the CG series.
(ii) Determine the CGCs.

Derive the steps that lead to CGCs given in Example 8.17 for the

Irreps T and G)T" of Cs,.

Derive the results given in Example 8.18 for the CGCs ( 5: q ),
i

o =1,2,3,4, of Cao.
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8.1

8.2

8.4

Product groups and product representations

8.2 Solutions

A normal subgroup Hs of G satisfies the condition
RHoR™' =MHy, YREG

By definition, all the elements of the subgroup H; are also elements
of G, hence

SHaS™' = Hy, VS €H;

which is the condition that Ho <1 Hi.
Here the normal subgroup H, of H; satisfies the condition

SHaS™' = Hy, VS €H;
But, it does not necessarily satisfy the condition
RH;R™' =Hy, YVREG

since not every R is to be found in H;. The group 7 contains the
subgroup Dy which is invariant in 7 it is comprised of F and three
two-fold rotations. Dy contains three invariant subgroups, each com-
prised of E and one two-fold rotations, however, these subgroups are
not invariant in 7.

We write the elements of Dy as F, Cy, le, Co, Uy, Uy, Uy, Uparag-
Dy is of order 8; hence, it has subgroups of index 2 and 4:

Cy: E,Cy Oy, Cpt

Subgroups of index 2 : { Dy :  E, Cs, U,, U, [4pt]Subgroups of index 4 :

Dg . E, CQ, ny, Ujfg

All subgroups of index 2 are normal subgroups with factor groups

Dy

— = C4, U, C

2 4 4
Dy

— = Dy, U, D
DQ 2, 2
Dy d d
D_S :D2,C4D2

are

Cy :
Cy :
Cy :
Cy :
Cy :

E, C;
E, U,
E, U,
E, U,
E, Usy
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8.5 We write the elements of Sy as
(1)(2)(3)(4), (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (124),

(132), (134), (142), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432)

S, is of order 24, thus, it has subgroups of index 2, 3, 4, 6, 8, and 12.

Subgroups of index 2 :7 : (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (123), (124), (132), (134),
(142), (143), (234), (243)

Subgroups of index 3 :7 : (1)(2)(3)(4), (1234), (1432), (13)(24), (13), (12)(34), (24), (14)(23)

Subgroups of index 4 :4 subgroups isomorphic to Ss, groups of permutations of 3 of the 4 objects

3 subgroups isomorphic to the cyclic group Cq4
Vi = (1)(2)3)(4), (12)(34), (13)(24), (14)(23)
8.6 The character table of Dy is

Subgroups of index 6 : {

Table 8.1. Character table of Dy

E Cy Cy U Ug

A1 1 1 1 1
Ay 1 1 1 -1 -1
B 1 -1 1 1 -1
B, 1 -1 1 -1 1
E 2 0 20 0

Since
Dy = Dy ® G

and C, has the character table we obtain the character table of as

Table 8.2. Character table of C;
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Table 8.3. Character table of Dyy

E Cy Co U Ug I Sy on o 04

A, 1 1 1 1 1 1 1 1 1 1
Ay 1 1 1 -1 -1 1 1 1 -1 -1
B, 1 -1 1 1 -1 1 -1 1 1 -1
By 1 -1 1 -1 1 1 -1 1 -1 1
E, 2 0 -2 0 0 2 0 -2 0 0
A, 1 1 1 1 1 -1 -1 -1 -1 -1
Ay, 1 1 1 -1 -1 -1 -1 -1 1 1
B, 1 -1 1 1 -1 -1 1 -1 -1 1
By 1 -1 1 -1 1 -1 1 -1 1 -1
E, 2 0 -2 0 0 2 0 2 0 0

8.7 For n even, the order of the group is g = 2n we set n = 2¢; then we
have:

(i) An n-fold rotation axis, with the n rotations falling into £ + 1
classes: {E}, {Ca}, {Cy, C71}, {C2, C2Y, ...

(ii) For the Dy groups, we have n 2-fold rotation axes lying in
a plane perpendicular to the n-fold axis, U-axes. They are
divided into two classes: one class is comprised of the U axes
that pass through the apices of an n-polygon and the second
class of the perpendicular bisectors of the polygon edges.

(iii) The generating relations are

c" =U?=E,C,U =UC;"!
For the Cpy, groups, we replace the n 2-fold axes by n o reflec-
tion planes.

In all, we have ¢ + 3 classes.

Both group types have the cyclic group C,, as an invariant subgroup
with index 2; its factor group is isomorphic with C;. C, has n 1-
dimensional Irreps of the form

(m)F(Cn) = ?mm/n . 0<m<n-1

Thus, if define a basis function ™)) for Irrep m, we can construct a 2-
dimensional Trrep by defining a partner basis function (™ ¢ = U (™y
and obtain

U(m)c - (m)n, (M)?7 _ (m)C, c, (m)C _ UC;I(?TL)T] — pi2mm/n (m)C
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Thus we engender the 2-dimensional Irrep of D,

m 67i2mﬂ'/n 0 m 0 1

There are £ — 1 such Irreps defined with 1 < m < ¢ — 1; the 2-
dimensional Reps engendered from m > ¢ — 1 are either equivalent or
reducible.

This leaves us with four 1-dimensional Irreps. We construct the
Irreps A, and Ay using the Irrep (OT of C, and the two Irreps of the
factor group C;, namely

To construct the remaining two Irreps we use the invariant subgroup
C,=E,C2Cp CS, ....Ch72
with index 4. Its factor group is isomorphic with Dy, with cosets
Ce, CpCyy, UCy, UgCy

Its has the four 1-dimensional Irreps shown in Table 8.4.

Table 8.4. Character table of the factor group

E C, U U

Wri,) 10111
@r4,) 11 -1 -1
®rB) 1 -1 1 -1
@rBy) 1 -1 -1 1

It is clear from Table 8.4 that the first two Irreps will just induce A;
and As we have just constructed, but with B; and Bs we can induce
the remaining Irreps as

Bi(C2) = Bi(U) =1, Bi(C2i41) = B1(Ua) = -1,
B1(Coi) = B1(Ug) =1, B1(C2i41) = B1(U) = —1,

The Irreps of Dy, can then be constructed using the Irreps of C; given
in Table 8.2.
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8.8 (i) The subduced Rep is

1 00 0 -1 0 0 1 0 -1 0 0
E=(010],ca=(1 0o o],c;'=(-1 0 0], Co=(0 -1 0},
0 0 1 0 0 1 0 0 1 0 0 1
-1 0 0 1 0 0 01 0 0 -1 0
oo=[0 1 0],0,=[0 =1 0],00y=[1 0 0],003=[|-1 0 0
0 0 1 0 0 1 0 0 1 0 0 1

(ii) Matrix multiplication can be used to show that the subduced

Rep is faithful
(iii) Examination of the matrices of (i) reveals that they all have the
same block-diagonal form, and that we can decompose these

matrices into

OPA): E=1,Ci=1,C;'=1,Co=1,0, =1, 0y =1, 04y =1, 04y = 1

10 0 -1y . 0 1 -1 0
e (o 1) o= ()= (G e (o 5)
B T L N

0 1 0 -1 10 -1 0

8.9 We learned from problem 8.8 that the vector Rep
U=D1= | €y = IT(4)) @ OT(E)
Thus,
U=Dr- g G=Ur- = (<1>r(A1) ® <5>r(E)) ® ((1)F(A1) ® <5>r(E))
=20r4;)) @ Or(4y) @ OBy @ WI(By) @ 20T(E)

where we have used Chapter 8 Table 8.4.
8.10 Since D is isomorphic with C4, they should have the same CG series.

8.11 The subduced Rep is

100 12 L& 0 12 L 0
E=1010]|,C=| ¥ —1/2 0|,C3'= |- —1/2 0f,

00 1 0 0 1 0 0 1

-1 0 0 —1/2 - 0 12 L 0
or=(0 1 0f,00=|-¥3 1/2 0],03=| L 1/2 0

0 01 0 0 1 0 0 1
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and using Table 8.2 of Chapter 8, we get
=Dp- g U=Lp- = 2(1)F(A1) e (2)F(A2) o 3(3)F(E)
8.12 Group Permutations:

{{]" 2’ 3’ 4}’ {2’ ]"4’ 3}’ {3’ 2’ ]" 4}’ {4’ 3’ 2’ ]‘}’ {2’ 3’ ]"4}’ {3’ 2’4’ ]‘}’
{]" 4’ 2’ 3}’ {4’ ]" 3’ 2}’ {3’ ]" 2’ 4}’ {4’ 2’ ]" 3}’ {]" 3’4’ 2}’ {2’4’ 3’ ]‘}’

Rotation Matrices of Group Elements:

10 0 1 0 0 10
R _ (o 1 o], B®O -0 -1 o), B® - (0 1
E 00 1) U o o 1) U 0 0

R(5) 0 0 1 R(6) 0 0 -1 R(7) 0 0
civE = 10 0], oy = 10 0}, o = -1 0
3 0 1 0 3 0o 1 0 3 0 -1
R(9) 0 1 0 R(10) 0 1 0 R(11) 0 -1
2ayz = |0 0 , gz = |0 0 =1), ez =10 0
C C
3 1 0 0 3 -1 0 O 3 1 0

It has four classes

¢ = {E},

Co = {{2,3,1,4},{3,2,4,1},{1,4,2,3},{4,1,3,2}}
Cs = {{3,1,2,4},{4,2,1,3},{1,3,4,2},{2,4,3,1}}
Cs = {{2,1,4,3},{3,2,1,4},{4,3,2,1}}

The normal subgroup is

Table 8.5. Character table of T /N

N {123V {321}V

Wr 1 1 1
@r 1 w w?
Gr 1 w? w
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N = {{1,2,3,4},{2,1,4,3},{3,2,1,4},{4,3,2,1}
with factor group

T
N
isomorphic to C3 with the character table in Table 8.5.

= '/\/'7 {27 37 17 4}'/\/" {37 17 27 4}'/\/'

Since 7 has four classes, it has four Irreps, and since > u di =12
we must have three 1-dimensional and one 3-dimensional Irreps. The
mapping defined in Table 8.5 gives the three 1-dimensional Irreps as

Table 8.6. Character table of T

E U C3 C3t

Wr 1 1 1 1
@r 11 w W
Gr 1 1 W w
@Wr 3 -1 o0 0

8.13 The characters of the outer products are

E U C3 C3t

Wre@®Wr 9 1 0 0

It is then straightforward to obtain the frequencies:
(4@4|1) = (4®4]2) = 4®4]3) =1, (Ux44) =2
The CG series is
WP @ Wr = WO g @r g G g2@r

(* Generators: Ca,, C3”* *)

<<Combinatorica

g=12;NG=3;

L={Range[4],{2,1,4,3},{2,3,1,4}};
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R={{{1,0,0},{0,1,0},{0,0,1} },{{-1,0,0},{0,-1,0},{0,0,1}},{{0,0,1},{1,0,0},{0,1,0} } };
Array[Rot,{3,3}];

Do[B=R{[[i]];Rot[i]=B,{i,1,NG}};
f:=Permute[L([i]],L[[j]]];nel=NG;
While[TrueQ[Length[Llig],
For[i=2,ijg,i-++,
For[j=2,jj(Length[L]+1),j++,
Switch[FreeQ[L,f],

True,AppendTo[L,f];nel++;

Rot[nel|=Rot[i].Rot[j];

be=R|[[i]].R[[j]];AppendTo[R,bc]

I);Print{L];

Print["Rotation Matrices of Group Elements: "]

Do|

Print[*R(",i,") = *,MatrixForm[Rot[i]],",",

" R("i+1,") = " MatrixForm[Rot[i-+1]],",",

" R(",i+2,") = ", MatrixForm[Rot[i+2]],",",

" R(",i+3,") = ",MatrixForm[Rot[i+3]]

],

{i,1,g-3,4}

I;
NM={{1},{2,9,12},{3,4,5,10},{6,7,8,11} };w = (-1/2+i V3/2);
xi={{1,1,1,1},{1,1,w,w?}, {1,1,0? w},{3,-1,0,0} };
Outpr={};
Do[ Rnu=R([[i];

vx=KroneckerProduct[Rnu,Rnu];
AppendTo[Outpr,vx],{i,1,g}];
Do|

Print["OP(",i,") = ",MatrixForm[Outpr|[i]]],",",

" OP(",i+1,") = " MatrixForm[Outpr([i+1]]],",",

" OP(",i+2,") = ", MatrixForm[Outpr[[i+2]]],",",
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{{1’27374}’{27]"4’3}’{273’1’4}’{]‘74’2’3}’{372’4’1}’{371’2’4}’

Product groups and product representations

" OP(",i+3,") = ", MatrixForm|[Outpr[i+3]]]

], {i,1,g-3,4}

I3

X=0*IdentityMatrix[9];Class={};

Do[Cls=X;
Do|Cls-+=Outpr{[NMJ[.jl]], {j,1, Length[NM[[]]}
| ;AppendTo|Class,Cls|,{i,1,4}

I;
Do[Print[MatrixForm[Class[[i]]]],{i,1,4}];
Do|

Pr2=xi[[i,1]] *Class[[1]];

Do|

Pr2-+=xi[[i,j]]*Class[[j]],{j,2,4}

|;Pr2=Pr2*xi[[i,1]];Pr2=Pr2/12;Print[MatrixForm[Pr2]]; Print[N[Eigensystem[Pr2]]],{i,1,4};

{2747371}’{173’4’2}’{374’1’2}’{47]"3’2}’{4’2’1’3}’{473’2’1}}

Rotation Matrices of Group Elements:
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(=N eNolololoNoloNol
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&
=
—
=)

{1,0,0,0,1,0,0,0,1},{-1,0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,0,1,0},
{0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,0},{-1,0,0,0,1,0,0,0,0},
{0,0,0,1,0,0,0,0, 0}, {0,0,1,0,0,0,0,0,0}, {0,1,0,0,0,0, 0,0, 0}

1,0,0,0,0,0,0,0,0.

Eigenvalues :
Eigenvectors :

|
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. 2 .
L 00 0 3(-1+5) 0 0 0 i(-1+2F)
0 000 0 000 0
0 000 0 000 0
0 000 0 000 0
@qp _ i iv3\?
P=|5(-3+%F) 000 L 00 0 §(-3+2%)
0 000 0 000 0
0 000 0 000 0
0 000 0 000 0
. 2
4 ) 000 Y(3+) 000 3
Eigenvalues: 1,0,0,0,0,0,0,0,0
Eigenvectors : {1 + 22 0,0,0, -1 — 22 0,0,0,1}, {2 — 2£2,0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,0, 1,0},
{0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,0}, {3 + 42,0,0,0,1,0,0,0,0},
{0,0,0,1,0,0,0,0, 0}, {0,0,1,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0,0}
. . 2
L 000 F(-3+58) 0 0 0 i(-f+2F)
0 000 0 000 0
0 000 0 000 0
0 000 0 000 0
2
@ =13(-1+5%) 0 0 0 L 00 0 3(-1+57)
0 000 0 000 0
0 000 0 000 0
0 000 0 000 0
. . 2
L(-2+58) 0 0 0 F(-4+3F) 0 0 0 L
Eigenvalues: 1,0,0,0,0,0,0,0,0
Eigenvectors : {—1 — 24 0,0,0, -1 + 22 0,0,0,1}, {2 + 2£2,0,0,0,0,0,0,0, 1}, {0,0,0,0,0,0,0, 1,0},
{0,0,0,0,0,0,1,0,0}, {0,0,0,0,0,1,0,0,0}, {2 — 22 ,0,0,0,1,0,0,0,0},
{0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,0}, {0, 1,0,0,0,0, 0,0, 0}
00000O0O0GO0O
01000000 O
00100000 O
000100000
@Wp—-1o 00000000
00000T100 0
00000010 0
00000O0O0T10
00000O0GO0GO0O
Eigenvalues: 1,1,1,1,1,1,0,0,0

Eigenvectors :  {0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,1,0,0}, {0,0,0,0,0,1,0,0,0},
{0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0, 0}, {0,1,0,0,0,0,0, 0,0},
{0,0,0,0,0,0,0,0,1},{0,0,0,0, 1,0,0,0,0},{1,0,0,0,0,0,0,0,0}
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Wr=1 000100 0 1]
@r - [1_ . ,
r=[1—i¥ 000 3+i% 00 0 -
Or = [t+if 000 - 00 0 -
0 0 0 0 0 0 0 1 0]
@Wr; =10 00 000100
0 000010 0 0
M 0 0 1 00 0 0 0]
@Wry =10 01 000000
01 00000 O0 O

8.14 The CGCs can be calculated with the aid of the following relations

v | o o | v
(fn) (1)
2

v | o
G

Remembering that the Irreps of Cs, are

=8

il Z TR Tw(R) T, (R)
9 Rreg

dy
el Z (#)F“.(R) (U)Fkk(R) (U)anm(R)
9 rec

Table 8.7. Irreps of Csy

Wr@;) 11 1
@rdy) 1 -1
OrE) 2 0 -1

and that the matrices of ®)T (E) are

ey om0 D)= (5 k)
o= (i a) o (s 200) o - (L )
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8.2 Solutions

We obtain for )T (Ay)

4
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1
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3
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+

3
1
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3
1
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3
1

1
~10+0
6[++

)

2
1
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2 33
1 21

33
12

(

33
ik

(:

1
2

3]
8_
3
8

_ +

1o o (00
_ +

1o o (00
_ +

™00 o oo T
! + T2
o o
+ + L= <
o =

8.15 The CG series is

Wr e Ar ¢ GOr ¢ @r,

(5®5)F
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is comprised of 1-dimensional Irreps only. The matrices for Irrep )T
are

OIr(E) [(1) ﬂ <5>r(02x)—[(1) _01
)L (Cy,) = [‘01 (1)} <5>r(02z)—[_01 _01
orea= |5 . erem=[1 Y
- 2 e[ 3]

Following the procedure and notation of the previous problem, we
obtain

2
55| 1 55| 1 1 1
’(11‘1) _’(22‘1>’ —g[1+1+1+1+0+0+0+0]_2
55| 1 1|55 1
== G, G _
(11‘1)(1‘12> 82 [T =0
55| 1 1|55\ 1 sz 1 I
(11‘1)(1‘22>—82 Tl = g 0+0+040+1+1+1+1] = 5
511y _ 1 (10
ik |1 ) 2 \0 1
2 2
55 | 2 55 | 2 1
’(11‘1> _’<22‘1> = S A+1+1414+04+0+0+0] =
5512 ) (2155 ) _ L~ @p e, op _
(11‘1)(1‘12>—82 [y YT =0
55 | 2 2|55 1 1
_iIN e @p - -
(11‘1>(1‘22> 82 [y, T 8[0+0+0+0+1+1+1+1]
512\ _ 1 /1 0
ik |1) 2 \0 -1
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Induced representations

9.1 Exercises

9.1 Show explicitly that the set of matrices M* in (??) obeys the group
multiplication table for Cs,.

9.2 Carry out all the steps to assure yourself that the results of (9.33)
are correct. Show explicitly that the set of matrices obeys the group
multiplication table for Cg,,.

9.3 Prove (9.30).

9.4 Consider the symmetric group Sy of order 24; it has 5 classes and 2
normal subgroups, as was determined in problem 4.5. Use the normal
subgroup isomorphic to 7 to induce Irreps of Sy.

9.5 Consider the isomorphic point-groups Cay, and Day,.

(i) Show that their order is 4n.
(ii) Show that D4 and Dg have 5 and 7 classes.
(iii) Generalize these results by showing that for an arbitrary n
there correspond n + 3 classes and hence n + 3 Irreps.
(iv) Describe the nature of the different classes.
(v) Show that the Irrep dimension sum-rule uniquely determines
the dimensionality of the Irreps.
(vi) Determine the invariant subgroup of either Cay,, or Day,.
(vii) Use this normal subgroup and its factor group to construct the
group Irreps.

9.6 Consider the C(2p,41)y and Dap41 type point-groups.

(i) Show that their order is 4n + 2.
(ii) Show that they have n + 2 classes.
(iii) Describe the nature of the different classes.

100
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(iv) Show that the Irrep dimension sum-rule uniquely determines
the dimensionality of the Irreps.

(v) Determine the invariant subgroup of either Ca,,, or Day,.

(vi) Use this normal subgroup and its factor group to construct the
group Irreps.

The proper cubic point-group 432 (O) contains the tetrahedral point-
group 23 (7)) as a normal subgroup. From the 4 Irreps of 23, derived
in problem 8.12 of chapter 8, construct the Irreps of 432.

Use the Irreps of the normal subgroup C4 <1 D4 to induce the latter’s
Irreps.

9.2 Solutions

Just carry out matrix multiplication to verify the group properties.

Parts (i) through (ii) have were covered in Problem 8.7.
(iv) Since we have n + 3 classes, the number of Irreps is also n + 3.
We write the Irrep dimension sum-rule as

n+3
dn =1+ d2
p=2

For n = 1 the Irrep sum rule required that all Irreps be 1-dimensional.
For larger n the sum-rule does not allow for Irreps of dimension greater
than 2. The sum rule is then uniquely satisfied with four 1-dimensional
Irreps and n — 1 2-dimensional Irreps.

Parts (v) and (vi) were also solved in Problem 8.7.
We have

=C=TeUsT

NG

where
UsT = 6Uqg, 6Cy4
The Irreps of Cs are given in Table 8.2.

(i) WA (A) is self-conjugate, hence, L = O, L; = C;. We can
induce two Irreps of O from the Irrep A, namely,
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Table 9.1. Character table of T

E U €3 C3t

A WA 1 1 1 1
B (NN 1 1 w w?

{ GA 1 1 w? w
T WA 3 1 0 0

E 604 302 803 6Ud

Wr ) 11 1 1 1
@Tr(4y) 1 -1 1 1 -1

(ii) Next, we find that Irreps T and ®)T of T form a two-pronged
orbit under conjugation by elements of O, for example, we get

(2)A( Ty Cmyz ; ) (2)A (nyZ) _ w . (B)A (Cyzm)

Thus, they have L7 =7, L5 = E. We need to determine the
ground Rep matrices with respect to Lr1 = 7 for the generators
of O =ET & UyT, namely, C3Y%, Cop, UjY.

vy — ((ECSUE  ECEUURY Y\ (BA(CE) 0
( 3 )_ U;yCZyZE U;ycgyZU;Cy - 0 (B)A(Cﬂﬁyz)
-5 2)
ECQI ECQZUZy ) <(2)A (CQI) 0 )
M (Cay) = o) =
(C2a) (Ud VO B UVCo,UTY 0 BIA (Cap)
N1
—\o
M (UFY) = EU;“JE EUU N\ 0 @A (E)
d 7 \UteE UYUYUTY ) T \BIA(E) 0
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(iii) The Irrep T contains the matrices

1 0 0 0 0 1
WA(Ca) = [0 =1 0 |, WA@C) =11 0 0
0o 0 -1 0 1 0

Under the conjugation with U;" we obtain

Ty Ty Ty TYZ 7T0Y YZT
U Cop UTY = Cy,, UM C5VZUTY = C

or
-1 0 0
WA UTY Cou UY) =D A(Cy) =0 1 0 |,
0 0 —1
B 0 1 0
WAU 3 Uiy = WA (CYY =0 0 -1
-1 0 0

We see that the characters of the conjugate Irrep are the same
as of WA itself. Hence, WA is self-conjugate, and
Lir=0, Lr=Cs.

Now, we determine the matrix representative of U;Y, say U
that satifies

WA (Cyy) = UTTWA(Cop) U
(4)A (Cgii) _ U71 (4)A (Cgii) U
U = (U =1

which yields

o

Ty _
U,” =

o = O
o O =
o
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Crystallographic Symmetry and
Space-Groups

10.1 Exercises

Use the integers 1, 2, 3, etc. to label each of the lattice points in
Fig. 12a whose x-coordinates are such that z > 0. Perform the space-
group operation (C; ’t) on each of these numbered lattice points and
label the resulting lattice points by 1’, 2°, etc. Find the new origin
such that the space group operations (C; ’t) just carried out can be
described as pure rotations about the new origin.

Show that body-centered and face-centered tetragonal lattices are
equivalent.

Derive the a-holohedry matrices of the generators Cy,, Cagy., J of the
face-centered cubic structure.

Sketch the unit cell of figure 10.13 as viewed along the screw axis.
With the use of the solid and open circles to distinguish atoms in
the basal plane from those in the mid-plane, identify the glide plane.
What is the Seitz operator that takes atom 1 to the position of atom
27

Show that for the 2-dimensional space-group p2mg
(Ux"l') (Uy’T) r = (ngy’7+ UIT) r = —r.

Show explicitly that (am ’T) (ay’-r) is its own inverse.

Explain the difference between the crystallographic point-groups 3m
and m3. Explain why that m3 (7},) is not holohedral despite the fact
that it contains a center of inversion.

Explain the reason that no face-centered lattices appear in the tetrag-
onal system.

104
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10.8 Show that monoclinic I (body-centered) lattices are possible, but not
new; that is, show that 2C' is not a distinct lattice but that 24 and
2B are.

10.9 Use the reasoning presented in §5.2.1 to demonstrate that symmetry
operations involving improper rotations cannot be accompanied by a
nonprimitive translation 7, except 2(Sz).

10.10 Discuss the reasons for the classification of the point-groups Cs;, and
Se among the hexagonal and trigonal systems.

10.11 Write down an explicit form of the following Seitz operators:

(i) a c-glide plane at x,1/4, z,
(ii) a 27 axis along [0, y, 1/4]
(iii) an m-glide plane at z,0, 2
(iv) a 4o axis along [1/4,0, z].

Discuss the action of the following sequence of symmetry operations:

i. (a) followed by (b),

ii. (c) followed by (d)

on the point (x,y,z). Repeat the argument when the sequence of
operations are reversed.

10.12 Enumerate all n-glide plane operators that appear in the space-group
P4nc(C§,), #104. Show that there are two types of non-primitive
translations, namely, (b + c)/2 and (a+ b+ ¢)/2. Discuss the action
of these glide planes on a point z,y, z.

10.13 Write down the Seitz operator form for the symmetry operations ef-
fecting the following mappings:

(z,9, 2) - (1/2—=2,1/2—2,1/2+ 2)

(z,9, 2) — (1/242,1/2—y,+2)

(1442, 1/4+y,1/44+2) — (1/2+=x,y,1/2+ 2)
(y—2,9,2/3—2) = (y—z,—x,1/3+2)

10.14 Discuss the action of the operations of the non-symmorphic space-
group P% %% of the rutile structure, presented in §6.5.2, on a wave-
function ¥ (x, y, 2).
10.15 What are the crystallographic point-groups and the site-symmetry of
the (a) Wyckoff position for the following space-groups: P4m2, P4c2, P3ml, R3c,
and 1237



106 Crystallographic Symmetry and Space-Groups

10.16

10.17

10.18

Consider the space-group Pban. Write out all the essential symmetry
operations with respect to a fized origin taken at

(i) the intersection of the 2-fold axes,
(ii) a center of inversion.

The matrices representing an n-glide plane operation normal to a, and
an a-glide plane operation normal to b are

10 0 0 1 0 0 1/2

0 1 0 1/2 01 0 0

0 0 1 1/2f" 0 01 0

0 00 1 0 00 1

Determine the nature and orientation of the symmetry operator aris-
ing from the combination of the two operators given.
Consider a crystallographic point-group rotation operation R € P C
SO(3). Next, consider a unit sphere centered about the origin; the
axis of rotation of R intersects the sphere at two points, its poles of
rotation. Each element of SO(3) has two such poles.

We consider two poles p; and ps as equivalent if they are related
through some R € P by

p2 = Rpi.

This definition allows us through the action of IP to define a stabilizer
G, C PP of a pole p as

P = Gpp.

(i) Expand P in terms of cosets of G,,.

(i) How many poles are equivalent to p, in other words, what is
the size of the equivalence class of p?

(iii) Enumerate the subgroups of P conjugate to G,.

(iv) How many elements of PP there are in the union of all conjugate
subgroups of G, other than the identity?

(v) Excluding the identity, show that equating the number of non-
identity elements P to the total number of non-identity ele-
ments in all the equivalence classes of poles leads to the relation

2 (-5) =% (-5)

where p is the order of P, m is the total number of distinct
equivalent pole classes, and g, the order of G,,.
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(vi) The above relation can be used to determine all possible finite
subgroups of SO(3):
(a) Show that the limits of co and 2 that can be imposed
on p lead to the inequalities

2> 20— (1fp) > 1, 1>(1-(1/g") > 1/2.
(b) Show, by considering the inequality
P22

that the only possible values m can assume are 2 and 3.
(¢) Show that the case of m = 2 leads to cyclic point-groups.
(d) Show that for the case of m = 3, the relation

1 1 1 2
— == =14+ >1
ni no ns N
with ny > ne > ng, requires that ng = 2.
(e) Show that the inequality nqy > mno > ng would then
require that no takes on the values 2 and 3 only.
(f) What values can ny assume for ng = ng = 2? Show that
the corresponding groups are D,,.
(g) Repeat part (iv) for ng = 3. What are the corresponding
point-groups?
10.19 The perovskite structure, with the formula ABX3 (A and B are
cations and X anions) belongs to the space-group Pm3m (O}. The
unit cell coordinates of orbit representative atoms are:

A oat (1/2,1/2,1/2)
B: at (0,0,0)
X: at (1/2,0,0)

(i) Identify the corresponding Wyckoff positions, and determine
the new coordinates if the origin is moved to the A cation site.

(ii) Determine the appropriate space-subgroup and its type that
emerge when:

(a) The A and B cations are displaced, by differing amounts,
along the [001] direction.

(b) The A and B cations are displaced, by differing amounts,
along the [110] direction.

(¢) The A and B cations are displaced, by differing amounts,
along the [111] direction.
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d) neighboring coplanar anion octahedra are rotated in op-
g g
posite directions about their z-axes.

10.20 Determine the Wyckoff positions for the space-group P23 (T!). (B&
C).

10.21 Both the graphite and wurtzite (AB) structures belong to the space-
group P 63mc (Cg,). Their unit cell coordinates are given in the table

below.
Graphite Wurtzite
(0,0,0) (0,0,1/2) A (1/3,2/3,0) (2/3,1/3,1/2)
(1/3,2/3,0) (2/3,1/3,1/2) B (1/3,2/3,u) (2/3,1/3,u+1/2)

Determine their respective Wyckoff positions.

10.2 Solutions

10.1
10.2 If we first consider a face-centered lattice we write its basis vectors as
a. a. a. c. a, c.,
81:§X+§y, 82:§X+§Z, a3:§y+§z
Rotation by 7/4 about the c-axis yields
N 1 S/ 1 PNVRIRS 1 S/ 1 VY -
X =—=X +—4=Y, = ——=X +—=Y, = Z
2 2y Y 2 2y
Thus,
a(lA,_i_lA/)_i_a( 1A/+1A/> 1ot
a = — — X e - —X ——— = a
1 B 5 23’ B \/5 23’ y
a (1 <4 1 4 Cy a’A,+a’A,+cA,
a =—-|—=x'"+— -7 = —x"4+— e/
272\ 3Y ) T2 2 2Y T3
a 1 < 1, 4 Cy a A,+a’A,+cA,
a3 = - | ——%X'"+ — -7z = ——=%x'"+—= -z
ST\ T T RY )T 2 2Y T3
where o’ = a/v/2.
10.3 The primitive basis of the fcc lattice is
a . . a . . a . .
al:i(x'i_Y)a a2:§(x+z)a a3:§(y+z)
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Under the action of C4. we obtain

% 0 1 0\ [¥ 3/
vl = (-1 0 of [3] = |-¥
A 0O 0 1 7/ 7!
Thus,
a; = 5 (y-%) 0 -1 1
ay =2y +2) = |0 0 1
ay = & (—x' +2) -1 0 1
Under the action of C5Y* we obtain
% 01 0\ [y 3/
yl =10 0 1 7z = |%
A 1 0 0 X/ z'
Thus,
al = 5 (y+72) 0 0 1
ay =2y +x)p = |1 00
ay = % (2 +%) 010

As for the action of J, it is easy to show that it engenders the matrix

-1 0 0
0O -1 0
0 0 -1
(ax"r) (Uy"r) r = (Uxay"r—l—ax‘r) r

But

TH0o,T = (E—l—ax)-r = (8 g)

N | —

which is a primitive lattice vector. Hence,

-1 0
(axay’-r—l-axT) r = (02’0) r = ( 0 _1> r—= —r
The crystallographic point group 3m is just Cs, which contains the
six operations F, Cs, C?jl, o1, 02, 03.
On the other hand, m3 is the tetrahedral group 7y, it contains
the operations: E, 4Cs, 4C5', 3U, I, 455,455 ", 304. Although m3
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contains the inversion operation it is a subgroup of the full cubic group
Oy which also contains the inversion operation and is the holohedral
point group.

10.7 It was shown in problem 10.2 that a face-centered F-lattice is equiv-
alent to a body-centrered I-lattice. Since the I-lattice has a smaller
volume than the F-lattice, the latter is usually ignored.

10.8 The monoclinic structure has a Co, holohedry. The 2-fold axis of
rotation is usually taken along the c-direction. This, in turn, requires
that the c-axis be perpendicular to the a- and b-axes, and that the o,
lies in the ab-plane. The only restriction on the a-b angle is that it
should be different from /2.

o
C
Fig. 10.1. Trans-
b formation of a 2C
monoclinic lattice
a to a P monoclinic
a’ lattice.

Now, a 2C-structure can be simply reduced to a P-structure replac-
ing, say the a primitive basis vector by a’ that connects the lattice
point at the origin to the C-centered lattice point, as shown in figure
10.1; this changes the magnitude of a and the a-b angle, but the new
structure still satisfies the monoclinic conditions and has a smaller
primitive cell volume.

This is not the case for 24 or 2B centering. If we try to construct
a P-lattice by introducing basis vectors that connect the origin-point
to the A- or B-centered point we lose the monoclinic conditions. Yet,
we know that the lattice posses a 2-fold axis of symmetry. Thus, we
conclude that this lattice system has an orthorhombic unit cell which
contains multiple primitive cells.

The body-centered configuration can be easily transformed to a 2B
centered lattice as shown in figure 10.2.

10.9 As was shown in Chapter 1, only the improper rotations Ss, Ss, Sy
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°
\ -
(o] o

Fig. 10.2. Trans-
formation of an I-

) Q ¢ monoclinic lattice
to a 2B mono-
clinic lattice.

10.10

10.11

and Sg are allowed in crystalline structures. It was also shown that
they have the form

Sy =1, S3=1IC5"', Sy =1IC;', S =1IC;"
Now, we consider the case
(Sslm)° = (E]0)
T| +IC’ngH +C§1TH +1Cor +C3m +1CsT = 0
which gives
E+I)Ty =0xT1) =0

Consequently, we can choose 7| = 0.

Although the point group Csy, has only a 3-fold proper rotation axis,
it contains improper rotations of Ss; type. Such operations can be
written as

Sy = 0,03 = 10,Cs = IC5!

which involve a 6-fold axis of rotation.

By contrast, the point group 6 Sg does not contain a 6-fold axis of
proper rotation, but instead contains improper rotatation of the Sg
type which have the form

Se = 0, Cs = 102Cs = IC3 !
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10.12 The space group P4nc contains the operations

1 00 0 -1 0 0 0 0 -1 0 0 0
E=(0 10 0|,cc=[0 -1 0 o0f,ca=(1 0 0 o], c2=1[-1
00 10 0 0 1 0 0 0 1 0 0
-1 0 0 1/2 1 0 0 1/2 01 0 1/2
oco=10 10 1/2),0,=[0 =1 0 1/2], 00, =11 0 0 1/2|, 04y =
0 0 1 1/2 0 0 1 1/2 00 1 1/2

The choice of the nonprimitive translation vector = = (%, %, %) is
based on having a common origin. However, the glide planes o, and oy,
coincide with the yz and zz planes, respectively. Hence the component
of T perpendicular to these planes can be removed by an origin shift.

This leads to
11 1 1
x Oa_a_ ) _707_
(U 2 2) (Uy 2 2)
10.13

10.14 In the rutile structure example Of §6.5.2, we were given the coset
representatives of the symmetry operations as

(E[0), (C2[0), (Usy[0), (Usy[0). (1]0), (0n]0) . (024[0), (o[0)

(Calr), (Ca[r)s (Uslr), (Uylr), (Sal7), (Si|7)s (ou[7), (o0lT)

where the nonprimitive vectors 7 = (a; + as + ag) /2 are associate

with the origin taken at the center of the unit cell, namely, (1/2,1/2,1/2),

or at (0,0,0). These points comprise the Wyckoff (a)-position.

The action of these operations on the wavefunction ¥(z,y, z) can

be written as

(£]0) (Z]0) (C2[0) (ox|0)
U (z,y, z), v(Z,7,2), U (Z,7g,z), U(z,y,Z).
(04|0) (Uay|0) (0xy0) (Usy|0)
U(y,z, z), U(y,z,2), V(y,,z2), U (g,zz).
(Uy]7) (U=]7)
1 1 1 1 1 1
\I/(E—x,i—ky,i—z), \I/(§+a:,2 y,5—2>
(oy[7) (2] T)

0

1/2
1/2
1/2

|
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1 1 1 1 1 1
\I’(§+$7§—%§+2’>7 ‘I’(E—%E‘FZLE‘FZ)-

(Sal7) (Cs'|r)
1 1 1 1 1 1
(S:7) (Cal7)

10.15 The following table shows Wyckoff (a)-position and its site-symmetry
for the space-groups listed:

Space-group  Point-group =~ Wyckoff (a)-position  Site-symmetry

Pidm2 4m2 (0,0,0) 4m2
P4c2 4m2 0,0 L 0,0 3 222
c m - - .
3 74 3 3 74
P31m 31lm (0,0,z) 3m.
- 111 333
_ e T P
R3c sm (4’4’4) ’ (4’4’4) 5

_ 1 3
3 0,0,-— 0,0,— 32
m (774)7(774)

P23 23 (0,0,0) 23.
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10.16 We obtain for the stated choices of origin:
(i) Origin at the intersection of the 2-fold axes

1 000 -1 0 0 0 -1 0 0
E=10100],C.=[0 -1 0 0],0,=]0 1 0
00 10 0 0 10 0 0 -1
-1 0 o % 10 o 1% 1 0
I={0 -1 0 %],0.=]01 0 i|,0p=[0 -1
0 0 -1 0 00 -1 0 0 0
(ii) A center of inversion
1 000 -1 0 o0 1% -1 0 0
E=10100|,C=f(0 -1 0 4|, U0,=10 1 0
00 10 0 0 1 0 0 0 -1
-1 0 0 0 10 o 1% 1 0
I={0 -1 0 Of,c.=(01 0 %|,0o=1]0 -1
0 0 -1 0 00 -1 0 0 0
10.17 The two operations can be written as
11 1 11 1
010, =, = 0y|=,0,0 | = (0404(|0,=,= | +0z(=,0,0
111
= C —_——, =, =
( 2z 25 25 2)

1018 (i) P = V% R,G,.
(ii) The number of equivalent poles is equal to the index of G, in

P; thus, the size of the equivalence class C,, of pole m is

p

Cm = —
m
9p

(iii) For every p; = R;p1 there corresponds a conjugate subgroup
Gp. = RiGp, R;l'
(iv) The order of P can be expressed as
p = g;n Cm

Moreover, there are g;* — 1 and p — 1 non-identity elements in
Gp,. and P, respectively. Thus, in total we have

XE: em (95" = 1)

m=1

o O N

O D= =

S O N

O OO

N——

O v O
\_/

O Nk O

O NI =

N——
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non-identity elements, where ¢ is the number of distinct pole
classes. Now, since each rotation element has two poles, we get

or

2(1-%) = ze: (1-%) (10.1)

m=1
For p = oo, the lhs of (10.1) becomes equal to 2, while for p = 2
it is equal to 1. Since p < oo, i.e. finite, we obtain

2> 2(1—1> > 1 (10.2)

p
and since p > g¢,' > 2 and g;" < oo, we get
1 1
1>(1——>2— (10.3)
g 2
We have
¢ ¢
2 1 2 1
2= =¢— — = - = — — (-2
Loy botos Loy

¢ must be greater than 1, since for ¢ = 1, inequality (10.2
requires that the lhs of (10.1) be > 1, while inequality (10.3
requires that the rhs be < 1. Again, for 4 < ¢ inequality (10.2
requires that the lhs of (10.1) be < 2, while inequality (10.3
requires that the rhs be > 2. Hence ¢ can assume only the
values 2 and 3.

For ¢ = 2 we have

e =

2 1 n 1

P 95 93
1 1 1 1
But since — > —, and — > -,
g;D p gp p

gp=9p =D >2

In this case there are two inequivalent poles, each has the point
group P as its stabilizer. Since every rotation has two poles,
we recognize these groups as cyclic rotation point groups C,,.
The crystallographic point groups among them are n=2, 3, 4,
and 6.
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(viii) For £ =3, (10.1) gives
2 1 1

1+ = —+

— +
P 95 G

1
—~>1 (10.4)
9p
Assuming g} > g2 > g5, and setting g5 > 3 we find that
1 1 1
—+t s+t 1
9 9 9
which contradicts (10.4); hence, gg must be equal to 2.
(ix) For £ =3 and gj = 2 we obtain
1 1 1 2

— 4+ = >-+=
g9 95 2 p

For g} > g2, g2 > 4 we find that

1 n 1 < 1 < 1 n 2
g9 952 2 p
hence gg can only assume the values 2 and 3.
(x) Setting g7 = g = 2, we obtain

p = 29; >4, g; =234, ..

Here, the stabilizer of pole pq, g; is a cyclic group. A second
pole, po, of the rotation axis is in the pole equivalence class
of p1, since it can be obtained from p; by a 2-fold rotation in
either G2 or G3. There g, poles in each of the inequivalent pole
classes corresponding G2 and G. It is now obvious that the
point group P is one of the dihedral point groups.

(xi) For g2 =3, g5 = 2 we have

129;
6 — g,

= p=

Thus, setting

(a) g, = 3, we obtain p = 12. This is just the tetrahedral
point group 7 of order 12. It contains 3 pole classes :
2 with 4 poles of 3-fold rotations and 1 with 6 poles of
2-fold rotations.

(b) g, = 4, we obtain p = 24. This is the octahedral point
group O of order 24. It has 3 pole classes : one contains 6
poles of 4-fold rotations, the second has 8 poles of 3-fold
rotations, and the third has 12 poles of 2-fold rotations.
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(c) g; = 5, we obtain p = 60. This is the icosahedral point
group of order 60.

10.19.(a) The Wyckoff positions occupied by the perovskite atoms are
A :(1/2,1/2,1/2) is the (b) Wyckoff position,
B: (0, 0, 0) is the (a) Wyckoff position,
C:(1/2,0,0) is the (d) Wyckoff position,

10.19.(b) The emerging space subgroups are

(i) For A at (0, 0, u) and B at (1/2, 1/2, 1/2+w) the structure be-
comes noncentrosymmetric. It has a 4-fold rotation symmetry
only about the z-axis, and thus tetragonal symmetry emerges.
Moreover, since u # w the structure does not possess 2-fold
symmetry axes or a mirror plane normal to the z-axis. Thus,
the point group symmetry reduces to C4y, and since the prim-
itive cell basis vectors are left invariant the subgroup is the
t-equal Pdmm (C},).

(ii) For A at (u, u, 0) and B at (1/2+w, 1/2+w, 1/2) the 4-fold
symmetries are completely lost. The only rotational symmetry
left is a 2-fold axis along the [110]-direction, plus two mirror
planes: a 0, and a 0zz. Thus, the space subgroup is the sym-
morphic and t-equal C2mm (C3%)

(iif) For A at (u, u, u) and Bat (1/2+w, 1/24+w, 1/24+w) R3m (C3,)

(iv) For A at (u, 0, 0) and B at (1/2+w, 1/2,1/2)

10.20 The Wyckoff positions for the space group P23 are given in the fol-
lowing table

Table 10.2: Wyckoff Positions of Space Group P23 (Tl)

Multiplicity Wyckoff Site Coordinates
Letter ~ Symmetry

(XaYaZ)a (_Xa_YaZ)a (_XaYa_Z)a (Xa_Ya_Z)
12 .] 1 (Zaan)a (Za_Xa_Y)a (_Za_X7Y)3 (_Zaxa_Y)
(YaZaX)a (-y,Z,—X), (y,—Z,—X), (_Ya_ZaX)
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Table 10.2: Continued

(x,1/2,1/2),(-x,1/2,1/2),(1/2,x,1/2)

6 i 2
(1/2,x,1/2),(1/2,1/2,%),(1/2,1/2,-x)
(x,1/2,0),(-x,1/2,0), (0,x,1/2),
6 h 2
(0,-x,1/2),(1/2,0,x),(1/2,0,-x)
(x,0,1/2),(-x,0,1/2),(1/2,x,0), (1/2,-x,0),
6 g 2
(0,1/2,x),(0,1/2,-x)
(x,0,0), (-x,0,0), (0,x,0),
6 f 2
(0,-x,0), (0,0,x), (0,0,-x)
4 e 3. (x,%,X), (-x,-x,%), (-X,X,-X), (X,-X,-X)
3 d 222.. (1/2,0,0), (0,1/2,0), (0,0,1/2)
3 c 222.. (0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0)
1 b 23. (1/2,1/2,1/2)

1 a 23. (0,0,0)
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10.21 The Wyckoff positions for graphite and wurtzite are given in the table

below.
System Atomic Positions Wyckoft Position
Graphite (0,0,0) (0,0,1/2) (a)
(1/3.2/3,0)  (2/3,1/3,1/2) (b)
Wartzite (1/3:2/3.0)  (2/3,1/3,1/2) (b)

(1/3,2/3,u) (2/3,1/3,u+1/2) (b)
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Space groups: Irreps

11.1 Exercises
11.1 Show that the action of a space-group operation (R|w) on a planewave
exp(ik . r), leads to
(Rlw) exp(ik - r) = exp(iRk - (r —w)).
11.2 The choice of coset representatives is not unique. Show that if we
replace the coset representative C; by o2 we find, for example,

0 0 0 o
0 0 E 0

*(OF) —
M (Cf) = E 0 0 0
0 o 0 0

Because we have used nonstandard coset representatives that do not
form a group, the modified ground representation contains a mix of
matrix elements from Pa. Nonetheless, the set of matrices obtained,
M* ( R), still obey the group multiplication table for Cy,.

11.3 Show that Tk is a normal subgroup of Sk and of T.

11.4 Consider the 2-dimensional square net; show that

(i) The translation subgroup of the wave vector Tx is a subset of
all translation vectors (mgza, mya) € T that satisfy the condi-
tion

Ta = {(E’(mla,mya)}; miak = 2nm, and Vm,.
with cosets of Sz
TA) (E’(maa O))Tﬁa (Uv’(maa O))Tﬁa m 7£ my

which form the quotient group Ox.

120
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(ii) The translation subgroup of the wave vector Ty is the subgroup
Ty = {(E’(mla,mza)}; (my1 + mgo)ak = 2nm.
with cosets of Sy
Ty, (E’(ma, m'a))Tg, (Ud’(ma, m'a))Ts; m+m'a# mp+ms

which form the quotient group Qs.
(iii) The translation subgroup of the wave vector Ty is the sub-
group
Tar {(E’(mla,mga)}; my + mso even,

{(Blto)}.

with cosets of Gy

(Rix|(0,0))Tar, (Ri|(a,0))Tar, (Rix|(0, a))Tas
which form the quotient group Q.

11.5 Consider the 2-dimensional space-group pdmm presented in §11.2.2.1.
Determine:

(i) the two 4-dimensional Irreps for the ¥ line.
(ii) the 2-dimensional Irrep of for the M-point.

11.6 Consider the 2D symmorphic space-group p 6mm.

(i) Determine its reciprocal lattice basis and determine the relative
orientation of its Brillouin zone, shown in figure, to its Wigner-
Seitz cell.

(ii) For wavevectors at: T', A, ¥, M, and K, determine:

(a) the star of the wavevector.

(b) The wavevector point-subgroup.

(¢) The corresponding point-subgroup Irreps.
(d) The corresponding ground Rep.

11.7 Repeat part (b) of the previous problem for the space-group P d3m,
and the symmetry points I', A, A, %, X, L, W, and K.
11.8 Use Herrings method to obtain the Irreps of the rutile structure,
P4—22—13, at the X-point.
mnm

11.9 Consider the space-group P23 (T'). Determine the star of kr and
ks, their ground Reps and the Irreps of their little groups.
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11.10

11.11

11.12

11.13

11.14

11.15

11.16

11.17

11.18

The translation group of the wave vector Ty is the subgroup
Ty = {(E’(mla,mga)}; moka = (2n —mq)7. (11.1)
with cosets of Gy
Ty, (E|(ma,0))Ty, (Ca|(ma,0)Ty; m # my

which form the quotient group Qy.
The translation group of the wave vector Ty, is the subgroup

Ty = {(E’(mla,mya)}; my even and Vm,. (11.2)
with cosets of Gx

Tx, (E|(a,0)Tx, (C2|(a,0))Tx, (0](a,0))Tx, (07|(a, 0)Tx
(11.3)
which form the quotient group Qs.

Show that (??) can be generalized for the case of the more general
space-group operator (R’t).

Given two vectors, k and t, and a rotation operator R with inverse
R™!, show that the angle between the vectors Rk and t equals the
angle between the vectors k and R~*t. Thus

k-R 't =Rk-t.

Show that in two dimensions, the glide and a two-fold screw axis are
identical.

Find the elements of the point-group P for the two-dimensional non-
symmorphic crystal of figure. 4. Show that the elements of P actually
form a group. Show that the point-group is not a subgroup of the
space-group because of the existence of a glide plane.

Find the elements of the little-group of the wave vector, Sk, for the
nonsymmorphic crystal of figure. 4, for each of the k-values (labeled
by T', A, ---) in figure. 11b.

Find the elements of the point-group Py, for the nonsymmorphic crys-
tal of figure. 4, for each of the k-values (labeled by T', A, ---| in figure
7b.

Consider the space-groups associated with the fcc lattice.

(i) Determine the stars of k at the X, L, W points on the surface
of the BZ.
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(ii) The diamond structure belongs to the space-group Fd3m. Use
Herrings method to obtain the corresponding Irreps at the
above points.

(iii) Repeat problem for the hep structure at the BZ surface points
M, K, A.

11.2 Solutions
4.1
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12.2

12.3

12.4

12

Time-reversal symmetry: color groups and
the Onsager relations

12.1 Exercises

Demonstrate that the time-reversal operator commutes with the in-
version operator and all proper rotation operators. [Hint: write the
rotation operator in terms of the angular momentum J.]

Use Table 7 to generate the elements of the following double point-
groups, and then determine their Irreps:

(i) D3.

2 2
Consider the crystallographic point-groups = —, n=1,2,4and
mm m
6.

(i) Enumerate all subgroups of index 2 in each of these point-
groups.

(ii) Determine the corresponding dichromatic groups.

CoFy has the rutile structure in its paramagnetic phase, with gray
4
space-group P = 1. In the antiferromagnetic phase, the spins align
mnm
along the z-axis with the corner spins pointing opposite to the spin at
the center of the unit cell.

(i) Determine the appropriate dichromatic space-group associated
with that phase, and identify its unitary subgroup. [Refer to
Example 12.5]

(ii) Discuss the changes that occur to the Wyckoff site-symmetries

4
of P—2 listed in chapter 10 §6.5.2.
mnm

124
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(iii) Identify the Brillouin zone of the unitary space-subgroup, and
compare its high-symmetry points and lines with those of the
4o
mnm

primitive tetragonal zone associated with P

12.5 Consider the composite dichromatic/translation operator Ca;, where
a;, ¢ = 1,2 is a translation basis vector.

(i) Simplify the product

2
IT ean™,
i=1
for (3=, m;) even and odd, bearing in mind that € = E, and
that the two operators commute.

(ii) Since the elements R of the lattice holohedry also commute
with C, namely R C = C R, show that

RCt; R = Cto, ty, to € T.

(iii) Show that the basis sets (Cai, a2) and (Cay, Caz) produce
equivalent lattices

12.6 Determine the translation vectors 7T that produce each of the 2-
dimensional dichromatic lattices of figure 4.

12.7 Write down the Seitz operator that would represent a dichromatic
screw axis operation involving an n-fold rotation. Use this form to
determine the allowed values of n for dichromatic nonsymmorphic
space-groups.

12.8 Use the Irreps of ©32, obtained in problem 2 above, to derive the
Colrreps of ® 3m and to identify the extra degeneracies associated
with each.

12.9 Consider a Co?* ion in a CoO crystal. The free ion has a *F con-
figuration, that is L = 3, S = 3/2. In the crystal it has octahedral
site-symmetry. Derive the ensuing splitting when:

(i) we neglect the spin angular momentum,

(ii) we include the spin angular momentum.
12.10 In their high temperature paramagnetic phase, CoFs and NiFs be-
4
long to the grey group P —21. Below their respective Néel tem-
m

nm
peratures they become antiferromagnetic; CoO has the dichromatic

group P —2—, while NiFy exhibits additional weak ferromagnetism
mnm

and has the dichromatic group Pnnm. The free ions Ni2+ and Co2*
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have ground state configurations 2 Fy and *Fy /2, respectively. Discuss
the ensuing crystal field splittings for each of these crystals.

12.2 Solutions
4.1



13.1

13.2

13.3

13.4

13

Tensors and Tensor Fields

13.1 Exercises

Consider the case where the symmetry point-group of a system pos-
sesses two conjugate inequivalent Irreps ! E and 2E. A basis for such
a pair is usually given in the form x; £ ix2. Now, suppose that the
system exhibits a phenomenon where two of its physical properties,
(21, x2) and (y1, y2), form two bases for such a pair of Irreps, namely,
x1 £ ix9 and y; &£ iy, which in turn are related by tensors

Y1 + ’Ly2 = 3:($1 + iCCQ), Yy — ’Ly2 = 3:* (.Il - ’LCCQ)
(i) Determine the tensor that relates the physical vectors X =

[€1, x2] and Y = [y1, y2].

(i) What happens when that tensor is intrinsically symmetric?

Consider the wurtzite structure with 6mm (Ce,) point-group symme-
try. Determine the number of independent parameters in:

(i) The polarization tensor.

(if)

(iii) The Hall tensor.
)

(iv) The elasticity tensor.

The piezoelectric tensor.

Determine the nonvanishing components of the piezoelectric tensor
for a crystal with point-group symmetry 2 (C2). How would you ex-
trapolate your results to crystals with P = 222 (D5)?

Quartz crystals are commonly used as piezoelectric transducers. It
has P = 32 (Ds).

127
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(i) Follow the procedure of Example 13.7 to show that its piezo-
electric tensor has the form

P11 —p11 0 pug 0 0
0 0 0 0 —p1a  —2p11
0 0 0O O 0 0

(ii) Determine the electric field orientation that can produce ex-
pansion/contraction along the zi-axis.

13.2 Solutions
4.1



14.1

14.2

14.3

14.4

14.5

14.7
14.8

14.9

14

Electronic Properties of Solids

14.1 Exercises

Derive an expression for the electron energy band dispersion of a
monovalent bce metal, such as Na, using only first-neighbor terms
in (77).

Describe the motion in real space of free electrons in each of the eight
free electron states just referred to.

Verify that the free-electron energy bands of Fig. 12.4 are correct.
Show that the X point in Figure 13.4 occurs at 27/a and not at 7/a,
as it does for a one-dimensional crystal. What is the reason for the
difference?

Show that the eigenfunction coefficients, Cx_g, for wave functions
at the W point of the Brillouin zone for the fcc lattice, using the
eigenvalues of are as given in table 1.

Verify (?7) and (?7).

Solve for the eigenvalues and eigenfunctions at the X point. Identify
the splittings. Find the symmetrized wave functions. etc. Do the L
point? We already have the G vectors. Choose an energy?

Show that the matrix element of UESKRZ between plane waves is
KKRZ 47TRC Jl/ (K/Rc)
;= ’ 20+1 Ly — Kk ¥+
VPS,GG VGG + [9) ( + ) K jl(K/Rc)

l
x ji(|k — G|Re) ji(|k — G'|R.) Pi(cosfgar), (14.1)

and that the term in square bracket in (2.6.40) can be written as
—(1/w)[Rju(kR)]™* tani, (14.2)
in terms of the modified phase shift 7; defined by
cotm, = cotm — ni(kRe)/ji(kRe), (14.3)
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The proof follows readily from (2.6.31) by using the Wronskian iden-
tity 22(jn’ — j'n) = 1.

14.2 Solutions
4.1
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Dynamical Properties of Molecules, Solids
and Surfaces

15.1 Exercises

15.1 NaCl belongs to the space group Fm3m (O7). The Na™-Cl~ bond
has Cy, symmetry, while the Na-Na and CI-Cl bonds mm. Determine
the forms of the force constant matrices corresponding to these two
bond-types.

15.2 The rigid ion model: One of the early models for the dynamics of
alkali halides, proposed by Born, considers an interionic potential of
the form

7. Zre2
(I)(IQ/Q/V) = 76 + Gppr e*br _ (I)(C)(T) +(I)(R)(T)
T

where the last term is the short-range Born-Mayer type nearest-neighbor
repulsive potential. Consider, here, the case of NaCl, Nat!(k = 1)
and C17!(k = 2), with Z; = 1 and Z5 = —1.

(i) Show that the energy per primitive cell is given by
o2
) = —a— + 600
To
where 79 = 2.1A is the nearest-neighbor distance in NaCl, and
+1
Poj

o =
J
is the Madelung constant. The (+) sign involve even neighbors
and the (-) sign odd ones, and po; = 79;/70.

(ii) The equilibrium value 7¢ is obtained by setting %ﬁr) =0.
Writing ’
1 4o 2
1de 0 _ < p
r dr o 2rg
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132 Dynamical Properties of Molecules, Solids and Surfaces

where 213 = v, is the primitive cell volume, use the equilibrium
condition to express B in terms of «.

(iii) Calculate « for NaCl with the aid of a simple program.

(iv) Given that the pressure is expressed as

p_ 0P 1 00
 Ou. 612 Or’
show that the comressibility xp is given by
1 oP 1 2 3 ¢? 1
—_— = V| = — —2ae—3+—Ae—3 = — [A+258],
KB OV, o 187 L 127§
where we set
d2p(R) e2
dr? Va
ro

Express A in terms of a and xp.
(v) Given that kg = 4.16 x 10~*2cm?/dyne, and the value you
obtained for «, evaluate A

15.3 (i) Derive expressions for the force constants
3@ oy D?®W) (0k; 1K)
o8 \gr') 0z 0z

in terms of A and B defined in Exercise 15.1.

(ii) Obtain an expression for R,g(kk’|q), the short-range contri-
bution to the dynamical matrix. Remember that because the
ionic sites have inversion symmetry, all R,3(kx’|q) are real.

(iii) Use the Ewald summation method to evaluate Cog(kr’|q) for
q = [00€], i.e. the A-direction.

(iv) Show that as £ — 0

8me? 4me?
C'10) = S, Cn(k]0) = Cuy (k]0) = =5
v) Show that the corresponding optic modes are
g
2 2 2 2
9 e 8me 9 e 4me
pwr, UO( +2B) + 30 HT UO( +2B) 300

(vi) Use the expressions you obtained for R and C to otain the
phonon dispersion curves along the A-direction for NaCl, in
the rigid ion model.

15.4 Phonon dispersion curves in diamond: Diamond belongs to the
nonsymorphic space group Fd3m.



(i)

(if)

(vii)

(viii)
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As we demonstrated in Appendix 1, the macroscopic electric
field is associated with a dipole-moment array that arises from
atomic displacements. We may express the polarization density
as

P =Y Ak -ullx)
Ik

where, as usual, u(lx) is the displacement from equilibrium
position R(lk). Diamond has two atoms per primitive cell
([000], a/4[1,1,1]). Use the property of invariance under ar-
bitrary dispacement, together with S = (I|7) to show that
diamond has no macroscopic polarization associated with its
dq = 0 modes.

The nearest-neighbor (nn) bond [000] — a/4[1, 1, 1], second-nn
bond [000]—a/2[1, 1, 0] and third nn bond [000]—a/4[—1, —1, —3]
have bond-symmetry groups 3m, mm and m, respectively. De-
rive the corresponding symmetry adapted force-constant ma-
trices.

Use appropriate coset representatives to obtain force-constant
matrices belonging to the remaining orbit members of each
bond.

Construct the dynamical matrix in terms of the force-constant
matrices obtained above.

Show that the acoustic and optical modes at the I'-point, i.e.
q = 0, have I'j; and F;% symmetries of Oy, the factor group
of OF. Construct the symmetry-adapted vectors using the cor-
responding projection operators. (Note that in this case the
symmetry-adapted vectors are actually the eigenvectors!)

The group of the wavevector along the A-direction (q = [g, 0, 0])
is SA = 4mm ® 7, and the corresponding character table is
given in table 15.1. Use table 15.1 to obtain compatibility re-
lations between I' and A. Show that the eigenvalue problem
reduces to two 1 X 1 and two 2 X 2 matrices, and determine the
coresponding eignevalues.

Repeat the above steps for the ¥ and A directions.

Use the longwavelength limit of the expression you obtained
for the dynamical matrix, to derive the relations between the

elastic constants and force-constants of diamond. (Use the re-
lations developed in §15.3.4.3)
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4.1

Dynamical Properties of Molecules, Solids and Surfaces

Table 15.1. Character table of SA

A1 Ay Ay A A

(E|0) 1 1 1 1 1
(U:]0) 1 1 1 1 1
(CiaCillr) ¢ —¢ ¢ ¢ 0
(oy,0:|T) ¢ ¢ ¢ —=¢ 0
(0yz, 052|0) 1 -1 1 -1 0

¢ = exp[—iqa/4].

15.2 Solutions
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Experimental measurements and selection
rules

16.1 Exercises

16.1 LiNbO3 belongs to the space group R3c(CS,), #161; its generators
are (C3|0), (oq|7), with 7 = (1/2,1/2,1/2). It has two formulas per
primitive cell. The primitive lattice basisis (2/3,1/3,1/3), (—=1/3,1/3,1/3),

Table 16.1. The positions of the 10 atoms in the rhombohedral
primitive cell

Atom  positions

Nb (0,0,w), (0,0,§+w)

Li (0,0, +w"), (0,0, 2+ w')

O  (F-vu-vg) (b-ug-ug), (C3tu—z+vg),
(-3 —v,—ugg), (w—gtu-vg), (3-utvgtog)

w = 0.0186, w’ = —0.0318, u = 0.0492, v = 0.0113.

(—1/3,—-2/3,1/3) with respect to hexagonal axes: a = 5.15A, ¢ =
13.86A. The atomic positions in the rhombohedral primitive cell are
given in table 16.1.

(i) Determine the symmetries of the phonon modes at the I'-point.
(ii) Determine the symmetries of the acoustic modes at the I'-point.
(iii) Determine the Raman active modes.

)

(iv) Derive the inelastic neutron scattering selection rules for g
along a 3-fold axis.
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16.2 The rutile family includes FeFo and MgFs. It belongs to the space-
group P4y /mnm (DL, #136); its generators are (U, |T), (C4|7), (1]0),
with 7 = (a/2,a/2,¢/2).

(i) Determine the symmetries of the phonon modes at the I'-point.
(ii) Determine the symmetries of the acoustic modes at the I'-point.
(iii) Determine the Raman active modes.
(iv) Derive the inelastic neutron scattering selection rules for g
along the A- and Y-directions.

16.3 Repeat exercise 16.2 for o Hgls, which belongs to the space group
P4y /nme, (D}D), #137); its generators are (U, |T), (C4|7), (I|7), with
7 =(a/2,a/2,¢/2). The primitive cell contains two formulas with po-
sitions given in table 16.2

Table 16.2. The positions of the 6 atoms in the primitive cell

Atom  positions

Hg (07070)7 (%7%7%)
I (0,5:u), (=3:0,=u), 0O+u3,5+4u), (=5.0,5-v)
u = 0.14.

16.2 Solutions
4.1
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17.2

17.3

17.4

17

Landau’s Theory of Phase Transitions

17.1 Exercises
Consider systems that belong to the Bravais class P4mm:

(i) Determine the points in the Brillouin zone that satisfy the
Lishitz condition.
(ii) Derive the corresponding Py.

Consider a crystal with cubic symmetry. It was shown in table 15.9
that the two elastic strain components

N o< 2633 —€1 — €225 & X €1 — €22,

form a basis for the cubic Irrep I'ys.

Show that third-degree invariants of this Irrep do not vanish; and
hence, these two strain components cannot drive a second-order phase
transition to a t-equal tetragonal structure [?].

Determine the integrity basis of the 3-dimensional Rep of the dihedral
point-group Dg, with Rep matrix generators

1 0 0 /2 —V3/2 0
Co=10 -1 0]; Co=|[Vv3/2 1/2 0
0 0 -1 0 0 1

Gadolinium molybdate, Gda(Moy)s, undergoes a phase transition from
a P42;m to a Pba2 space-group symmetry at 160°C. It involves the
poin-group change 42m = mm2. It also involves a reduction in
translational syymetry From a P-tetragonal Ty with basis a1, ag, ag
(along 4-fold symmetry axis), to another P-tetragonal T with aj =
a; —ap, aj, = aj +ap, aj = ag, with To: T = 2, giving S : S = 4.

(a) Identify *k.
(b) Derive the Irreps of *k.
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(¢) Determine the corresponding kernel and image groups.

(d) Enumerate the possible low-symmetry space-groups, and identify
the Irrep corresponding to the phase transition in Gda(Moy)s.

(e) Use the integrity basis for Cy4 to construct AP

(f) We notice that Ps of the electric polarization tensor, and £12 the
shear component of the strain tensor are invariant under the point-
group operations of Pba2. This suggests that the emerging low-
symmetry phase can support ferroelectricity and a shear distortion.
Write down a A®’ in these variables as secondary OPs (SOP), as
well as Ad,, the terms coupling the primary and secondary OPs.

(g) Describe the procedure of obtaining the minima of A®.

17.5 Determine the possible magnetic arrangement associated with the
point-group 4mm, 4mm, 4mm, dmm.

17.2 Solutions
4.1
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Incommensurate Systems and
Quasi-Crystals

18.1 Solutions
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