$k = 9.0 \times 10^9 \text{ N m}^2 / \text{C}^2$ $e = 1.60 \times 10^{-19} \text{ C}$

 $\epsilon_0 = 8.85 \text{ x } 10^{-12} \text{ C}^2 / \text{ N m}^2$

Coulomb's law: $F = k q Q / r^2$

(unlike charges attract, like charges repel)

Electric field from a point charge : $E = k q / r^2$

(towards -, away from +)

Force on a charge in an electric field : $\mathbf{F} = q\mathbf{E}$

Potential energy of two charges : U = k q Q / r

Electric potential : V = k q / r

Potential energy of a charge in an electric potential : U = qV

Uniform field between two parallel plates a distance d apart : E = V / d

Accelerating a charge through a potential difference : $qV = 1/2 \text{ mv}^2$

Circuits

Capacitance of a parallel-plate capacitor : $C = \kappa \varepsilon_0 A / d$

Charge on a capacitor : Q = CV

Energy in a capacitor : $U = 1/2 \text{ CV}^2$

Resistance : $R = \rho L / A$

 $(\rho = resistivity, L = length, A = cross-sectional area)$

Ohm's Law : V = IR

Current : $I = \Delta Q / \Delta t$

Resistors in series : $R = R_1 + R_2 + R_3 + ...$

Resistors in parallel : $1/R = 1/R_1 + 1/R_2 + 1/R_3 + ...$

Electric power : $P = VI = I^2 R = V^2 / R$

1 Watt = 1 J / s

PROBLEM 1 - 20 points

A point object with a positive charge +Q is placed on the x-axis at x = -d. A second point object of unknown charge is placed at an unknown location on either the x-axis or the y-axis.

The potential energy associated with the charges is $U = +\frac{2kQ^2}{d}$

The potential at the origin due to the charges is $V = +\frac{4kQ}{d}$

The net electric field at the origin due to the two charges points in the negative x direction. Assume the electric potential is zero at infinity.

[8 points] (a) Before solving for the unknown charge and location answer these questions.

(i) What is the sign of the unknown charge?

[] positive [] negative [] can not be determined

How do you know?

(ii) Where is the unknown charge located?

[] positive x-axis [] negative x-axis [] positive y-axis [] negative y-axis

How do you know?

[8 points] (b) Determine the value (sign and magnitude) of the unknown charge and state its location.

[4 points] (c) What is the magnitude of the electric field at the origin?

PROBLEM 2. [20 points] - Light bulbs

The bulbs in the circuit are identical.

(1) [6 points] In the circuit on the left, rank bulbs 1-6 in order of **decreasing** brightness. Briefly explain your answers.

(2) [6 points] If each bulb has a resistance of 12 ohms, what is the equivalent resistance of the circuit on the left?

- (3) [8 points] When bulb 1 is removed, leaving a break in the circuit....
 - a) The brightness of bulb 3 _____

[] increases [] decreases [] stays the same

Briefly explain your answer:

b) The brightness of bulb 6 _____

[] increases [] stays the same

Briefly explain your answer:

PROBLEM 3 – 20 points

same

same

iv) The current through C:

Three resistors are connected as shown in a circuit with a 12 volt battery. The resistances are: For resistor A, $R_A = 4 \Omega$ For resistor B, $R_B = 3 \Omega$ For resistor C, R_C is an unknown value [3 points] (a) Which resistor has the most current passing through it? [] A []B []C [It depends on the value of R_C Briefly justify your answer: [5 points] (b) Rank the resistors based on the potential difference across them, from largest to smallest. [] A > B > C[] A > B = C [] B > C > A [] B = C > A[It depends on the value of R_C Briefly justify your answer: [8 points] (c) If R_C, the resistance of resistor C, is increased, what happens to the currents through the different elements in the circuit? i) The current through the battery: [] increases [] decreases [] stays the same ii) The current through A: [] increases [] decreases [] stays the same [] increases [] decreases [] stays the iii) The current through B:

[4 points] (d) If the current through the battery is 2.0 amps, what is R_C , the resistance of resistor C?

[] increases

[] decreases

[] stays the