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18-3 Circuit Analogies, and Kirchoff’s Rules 
Analogies can help us to understand circuits, because an analogous system helps us build 

a model of the system we are interested in. For instance, there are many parallels between fluid 
being pumped through a set of pipes and charge flowing around a circuit. There are also useful 
parallels we can draw between a circuit and a ski hill, in which skiers are taken to the top of the 
hill by a chair lift and then ski down via various trails. Let’s investigate these in turn. 

 
A particular fluid system is shown in Figure 18.5. The fluid is enclosed in a set of pipes, 

and a water wheel spins in response to the flow. The fluid circulates through the system by means 
of a pump, which creates a pressure 
difference (analogous to potential 
difference in the circuit) between 
different sections of the system. 

 
Figure 18.5: Fluid flows through a set 
of pipes like charges flow through a 
circuit. 

 
The pump in the fluid system is like the battery in the circuit; the water is like the charge; 

and the water wheel is like the light bulb in the circuit. The large pipes act like the wires, one pipe 
carrying water from the pump to the water wheel, and another carrying the water back to the 
pump, much as charge flows through one wire from the battery to the light bulb, and through a 
second wire back to the battery. The pressure difference in the fluid system is analogous to the 
potential difference across the resistor in the circuit.  

 
EXPLORATION 18.3 – Analogies between a circuit and a ski hill 

A basic ski hill consists of a chair lift, like that 
shown in Figure 18.6, that takes skiers up to the top of the 
hill, and a trail that skiers ski down to the bottom. A short 
and wide downward slope takes the skiers from the top of 
the lift to the top of the trail, and another takes the skiers 
from the bottom of the trail to the bottom of the lift. 

 
Figure 18.6: A chair lift taking skiers up a hill. Photo credit: 
PhotoDisc/Getty Images. 

 
Step 1 – Identify the aspects of the circuit that are 
analogous to the various aspects of the ski hill. In 
particular, identify what for the ski hill plays the role of the battery, the flowing charge, and 
the resistor. The chair lift is like the battery in the circuit, while the skiers are like the charges. 
The chair lift raises the gravitational potential energy of the skiers, and the skiers dissipate all that 
energy as they ski down the trail (which is like the resistor in the circuit) to the bottom. Similarly, 
the battery raises the electric potential energy of the charges, and that energy is dissipated as the 
charges flow through the resistor.  
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Step 2 – Does the analogy have limitations? Identify at least one difference between the ski hill 
and the electric circuit. What happens when the chair lift / battery is turned off? On the ski hill 
the skiers keep skiing down to the bottom, but in the circuit if a switch is opened the net flow of 
charge stops. This difference stems from the fact that with the ski hill the potential difference is 
imposed by something external to the system, the Earth’s gravity, while in the circuit the battery 
provides the potential difference. Another difference is that in the circuit the charges are identical 
and obey basic laws of physics, while on a ski hill the skiers are not identical, and make choices 
regarding when to stop for lunch or to enjoy the view, and which route to take down the hill.  
 
Step 3 - Let’s use our ski hill analogy to understand two basic rules about circuits, which we will 
make use of throughout the rest of the chapter. Figure 18.7 shows one ski trail dividing into two, 
trails A and B. The same thing happens in a circuit, with one path dividing into paths A and B. 
What is the relationship between N, the total number of skiers, and NA and NB, the number of 
skiers choosing trails A and B, respectively? What is the analogous relationship between the 
current I in the top path in the circuit, and the currents IA and IB in paths A and B? 

 
Figure 18.7: (a) One trail splits temporarily into two on the ski hill; 
(b) one path splits into two in the circuit. 

 
We do not lose or gain skiers, so some skiers choose trail A 

and the rest choose B, giving A BN N N= + . The skiers come back 
together when the trails re-join, and N skiers continue down the trail. 
Similarly, a certain number of charges flow through the top path in 
the circuit, and the charges take either path A or path B through the 
circuit before re-combining. The rate of flow of charge is the current, 
so we can say that A BI I I= + . This is the junction rule. 

 
Step 4 - Figure 18.8 shows various points on a ski hill and in a circuit. For a complete loop, 
say from point 3 back to point 3, if we add up the changes in gravitational potential as we move 
around the loop, what will we get? If we do the 
analogous process for the circuit, adding up the 
electric potential differences as we move around a 
complete loop, what will we get? 

 
Figure 18.8: Equivalent points marked on a ski hill 
and on a circuit. 

 
In both cases we get zero. There is as much 

up as down on the ski hill, so when we return to the 
starting point the net change in potential is zero. The 
same applies to the circuit. This is the loop rule. 

 
Key Ideas for Analogies: Analogies, particularly the gravitation-based ski-hill analogy, can give 
us considerable insight into circuits. In this case we used the analogy to come up with what are 
known as Kirchoff’s Rules. The Junction Rule – the total current entering a junction is equal 
to the total current leaving a junction. The Loop Rule – the sum of all the potential differences 
for a closed loop is zero.                 Related End-of-Chapter Exercises: 38 and 39. 

 
Essential Question 18.3: In Figure 18.7, let’s say the resistance of path A is larger than that of 
path B. Which current is larger? What is the blanket statement summarizing this idea? 
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Answer to Essential Question 18.3: If path A has a larger resistance then path B we would expect 
the current in path A to be smaller than that in path B, much as we might expect more skiers to 
choose trail B if it is an easier trail than trail A. The blanket statement about this is – current 
prefers the path of least resistance. 
 
18-7 Series-Parallel Combination Circuits 

In many circuits some resistors are in series while others are in parallel. In such series-
parallel combination circuits we often want to know the current through, and/or the potential 
difference across, each resistor. Let’s explore one method for doing this. This method can be used 
if the circuit has one battery, or when multiple batteries can be replaced by a single battery. 

 
EXPLORATION 18.7 – The contraction/expansion method of circuit analysis 

Four resistors are connected in a circuit with a battery with an emf of 18 V, as shown in 
Figure 18.14.  The resistors have resistances 1 2 3 44.0 , 5.0 , 7.0 ,  and 6.0R R R R= Ω = Ω = Ω = Ω . 
Our goal is to find the current through each resistor. 

 
Figure 18.14: A series-parallel combination circuit with one battery 
and four resistors. 

 
Step 1 – Label the currents at various points in the circuit. This can 
help determine which resistors are in series and which are in 
parallel. This is done in Figure 18.15(a). The current passing through 
the battery is labeled I. This current splits, with a current I1 through 
resistor R1, and a current I2 through resistor R2. The current I2 goes on to pass through R3, so R2 
and R3 are in series with one another. The two currents re-combine at the top right of the circuit, 
giving a net current of I directed from right to left through resistor R4 and back to the battery. 

 
Step 2 – Identify two resistors that are either in series or in parallel with one another, and 
replace them by a resistor of equivalent resistance. Resistors R2 and R3 are in series, so they can 
be replaced by their equivalent resistance of 12.0 Ω (resistances add in series), as shown in Figure 
18.15(b). Is this the only place we could start in this circuit? For instance, are resistors R1 and R2 
in parallel? To be in parallel, both ends of the resistors must be directly connected by a wire, with 
nothing in between. The left ends of resistors R1 and R2 are directly connected, but the right ends 
are not, with resistor R3 in between. In fact, the only place to start in this circuit is with R2 and R3. 

 
Step 3 – Continue the process of replacing two resistors by an equivalent resistor until the 
circuit is reduced to one equivalent resistor. In the next step, shown in Figure 18.15(c), the two 
resistors in parallel, R1 and R23, are replaced by their equivalent resistance of 3.0 Ω. Finally, in 
Figure 18.15(d), the two resistors in series are replaced by their equivalent resistance, 9.0 Ω. 
 
Step 4 – Apply Ohm’s Law to find the total current in the circuit. With only one resistor we 
know both its resistance and the potential difference across it, so we can apply Ohm’s Law: 

18 V 2.0 A
9.0eq

I
R
ε

= = =
Ω

. 

 
Step 5 – Label the potential at various points in the single-resistor circuit. Choose a point as a 
reference. Here we choose the negative terminal of the battery to be V = 0. The other side of the 
battery is therefore +18 volts. Wires have negligible resistance, so 0V IR∆ = = across each wire. 
Thus, all points along the wire leading from the negative terminal of the battery have V = 0, while 
all points along the wire leading from the positive terminal have V = +18 V. See Figure 18.15(e). 
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Figure 18.15: The various steps in the 
contraction/expansion method. 
 
(a) Labeling the current at various points can 
help identify which resistors are in series and 
which are in parallel. 

 
(b) R2 and R3 are in series, and can be replaced 
by one equivalent resistor, R23. 
 
(c) – (d) Resistors are replaced a pair at a time 
to find the circuit’s equivalent resistance. 
 
(e) Apply Ohm’s Law to find the total current.  
 
(f - h) Expansion reverses the steps. At each 
expansion step we find the current and 
potential difference for each resistor. 
 
Step 6 – Expand the circuit back from one resistor to two. Find the current through, and 
potential difference across, both resistors. Expansion reverses the steps of the contraction. In 
Figure 18.15(f) we replace the 9.0Ω resistor by the 3.0Ω and 6.0Ω  resistors, in series, it came 
from. When a resistor is split into two in series, the current (2.0 A in this case) through all three 
resistors is the same. We can now Ohm’s Law to find the potential difference. For the two 
resistors we get 3 6.0 VV IRΩ∆ = = and 6 12 VV IRΩ∆ = = . Thus the wire connecting the 
3.0Ω and 6.0Ω resistors is at a potential of V = +12 V. This is consistent with the loop rule, and 
the fact that the direction of the current through a resistor is the direction of decreasing potential. 
 
Step 7 – Expand the circuit back from two resistors to three. The 3.0Ω resistor is replaced by 
the 4.0Ω and 12.0Ω resistors, in parallel, that it came from, as shown in Figure 18.15(g). When 
one resistor is split into two in parallel, the potential difference across all three resistors is the 
same. That is 6.0 V in this case. We can then apply Ohm’s Law to find the current in each 
resistor, giving 1 / 6 V/4 1.5 AI V R= ∆ = Ω = and 2 / 6 V/12 0.5 AI V R= ∆ = Ω = . These add to the 
2.0 A through their equivalent resistor, as we expect from the junction rule.  
 
Step 8 – Continue the expansion process, at each step finding the current through, and 
potential difference across, each resistor. In this circuit there is one more step. This is shown in 
Figure 18.15(h), where the 12.0Ω resistor is split into the original 5.0Ω and 7.0Ω resistors. These 
resistors have the same current, 0.5 A, as the 12.0Ω resistor, and their potential differences can be 
found from Ohm’s Law and sum to the 6.0 V across the 12.0Ω resistor. 
 
Key ideas for the contraction/expansion method: One way to analyze a circuit is to contract the 
circuit to one equivalent resistor and then expand it back. In each step in the contraction two 
resistors that are either in series or in parallel are replaced by one resistor of equivalent resistance. 
In the expansion when one resistor is expanded to two in series all three resistors have the same 
current, while when one resistor is expanded to two in parallel all three resistors have the same 
potential difference across them.            Related End-of-Chapter Exercises: 15, 20, 21, 24. 
 
Essential Question 18.7: Check the answer above by comparing the power associated with the 
battery to the total power dissipated in the resistors. Why should these values be the same? 
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Answer to Essential Question 18.7: The power provided to the circuit by the battery can be found 
from ( ) ( )18 V 2.0 A 36 WP Iε= = × = .  The equation 2P I R=  gives the power dissipated in 

each resistor: ( ) ( )22
1 1 1 1.5 A 4.0 9.0 WP I R= = Ω = ; ( ) ( )22

2 2 2 0.5 A 5.0 1.25 WP I R= = Ω = ; 

( ) ( )22
3 2 3 0.5 A 7.0 1.75 WP I R= = Ω = ; and ( ) ( )22

4 4 2.0 A 6.0 24 WP I R= = Ω = , for a total of  
36 W. Thus, the power input to the circuit by the battery equals the power dissipated in the 
resistors, which we expect because of conservation of energy. 
  
 
18-8 An Example Problem; and Meters 

Let’s now explore a situation that involves many of the concepts from the last few 
sections, and allows us to discuss the role of a switch in a circuit. 

 
EXPLORATION 18.8 – Three bulbs and two switches 

Three identical light bulbs, A, B, and C, are placed in the 
circuit shown in Figure 18.16 along with two switches, 1 and 2, and 
a battery with an emf of 120 V (like a standard electrical outlet). 

 
Figure 18.16: A circuit with one battery, two switches, and three 
identical light bulbs. The switches are initially open. 

 
Step 1 – Are any bulbs on when the switches are both open? If so, which bulbs are on? If not, 
explain why not. For a bulb to glow a current must pass through it. For there to be a current there 
must be a complete circuit, a conducting path for charges to flow through from one terminal of 
the battery to the other. With switch 1 open there is not a complete circuit, so all the bulbs are off. 

 
Step 2 – Kirchoff’s loop rule is true even when the switches are open. How is this possible?  
This is possible because the potential difference across switch 1 is equal to the battery emf. If we 
define the wire connecting the negative terminal of the battery to the left side of switch 1 to be at 

0V = , all other parts of the circuit, including the right side of the switch, are at a potential of 
120 VV = + . There are no potential differences across the bulbs because there is no current. 

 
Step 3 – Complete these sentences. An open switch has a resistance of _________. A closed 
switch has a resistance of ________.  We generally treat an open switch as having a resistance of 
infinity. A closed switch acts like a wire, so we assume it has a resistance of zero. 

 
Step 4 – Rank the bulbs based on their brightness when switch 1 is closed and switch 2 is open. 
What is the potential difference across each bulb? Bulb C is off – because switch 2 is open there 
is no current in that part of the circuit. Thus, the circuit has bulbs A and B in series with one 
another and the battery. Because bulbs A and B are identical, and have the same current through 
them, they are equally bright. The ranking is A=B>C. Bulbs A and B share the emf of the battery, 
with a potential difference of 60 V across each bulb. Bulb C has no potential difference across it. 

 
Step 5 – What happens to the brightness of each bulb when switch 2 is closed (so both switches 
are closed)? What is the potential difference across each bulb? With switch 2 closed, charge 
flows through bulb C, so C comes on and is brighter than before. Bulbs B and C are in parallel, 
and have equal resistance, so half the current passes through B and half through C. Bulb B got all 
the current before switch 2 was closed, so you might think that bulb B is now obviously dimmer. 
However, closing switch 2 decreases the overall resistance of the circuit, increasing the current. 
So, bulb B only gets half the current, but the total current increases – which effect dominates? 
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Because all the current passes through bulb A, increasing the current in the circuit 
increases both the brightness of, and the potential difference across, bulb A. By the loop rule, 
increasing A’s potential difference means B’s potential difference decreases, so B’s current and 
brightness must also be less. To summarize, A and C get brighter, while B gets dimmer. B and C 
are now equally bright, and A is the brightest of all. Assuming the bulbs have the same resistance, 
A has 80 V across it, while B and C each have 40 V across them, as shown in Figure 18.17. 
 
Figure 18.17: Labeling 
the potential at various 
points helps us 
understand what happens 
to the bulbs when switch 
2 is closed. 
 
Key Ideas for Switches: We can treat an open switch as having infinite resistance, and a closed 
switch as having no resistance.                 Related End-of-Chapter Exercises: 47 – 49. 
 
Ammeters Measure Current 

A meter that measures current is known as an ammeter. Should an ammeter be wired in 
series or parallel? Should the ammeter have a small resistance or a large resistance? Does adding 
an ammeter to the circuit increase or decrease the current through the resistor of interest? 

 
Circuit elements that are in series have the same current passing through them. Thus, to 

measure the current through a resistor an ammeter should be placed in series with that resistor, as 
in Figure 18.18. Adding the ammeter, which has some resistance, increases the equivalent 
resistance of the circuit and thus reduces the current in the circuit. The resistance of the ammeter 
should be as small as possible to minimize the effect of adding the ammeter to the circuit. 

 
Figure 18.18: An ammeter, represented by an A inside a circle, is used to measure the 
current through whatever is in series with it. In this case that’s everything in the circuit. 

 
Voltmeters Measure Potential Difference 

A meter that measures potential difference is known as a voltmeter. Should a 
voltmeter be wired in series or parallel? Should it have a small or a large resistance? How does 
adding a voltmeter to a circuit affect the circuit? 

 
Circuit elements in parallel have the same potential difference across them. Thus, 

to measure the potential difference across a resistor a voltmeter should be placed in parallel 
with that resistor, as in Figure 18.19.  Connecting the voltmeter, which has some resistance, 
in parallel decreases the resistance of the circuit, increasing the current. The resistance of 
the voltmeter should be as large as possible to minimize the effect of adding the voltmeter. 

 
Figure 18.19: A voltmeter, represented by a V inside a circle, is used to measure the 
potential difference of whatever is in parallel with it. In this case that’s resistor R2. 
 
Related End-of-Chapter Exercises: 35, 58. 
 
Figure 18.20: The circuit for Essential Question 18.8. 
 
Essential Question 18.8: Can you add a 5.0 Ω resistor to the circuit in Figure 18.20 so that some 
current passes through it while the current through original resistors is unchanged? Explain. 
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