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Chapter 14 – Thermal Physics: A Microscopic View 
 
 The main focus of this chapter is the application of some of 
the basic principles we learned earlier to thermal physics. This will 
give us some important insights into what temperature means, and 
into how systems behave on a microscopic level. 
 

Consider the balloons in the photograph. What is it that 
keeps the balloons inflated? What would happen to the balloons if 
we changed the temperature? These questions, and others, will 
concern us in this chapter. Photo credit: Oleg Prikhodko 
/iStockPhoto. 

 

 14-1 The Ideal Gas Law 
Let’s say you have a certain number of moles of ideal gas 

that fills a container. Such a system is 
shown in Figure 14.1.  

 
Figure 14.1: A container of ideal gas. 

 
If you know the absolute 

temperature of the gas what is the 
pressure? The answer can be found from the ideal gas law, which 
you may well have encountered before. 

 
The ideal gas law connects the pressure P, the volume V, and the absolute temperature T, 

for an ideal gas of n moles: 
 
PV n RT= ,    (Equation 14.1: The ideal gas law) 
 
where 8.31 J/(mol K)R = is the universal gas constant. 

 
 
First of all, what is a mole? It is a not a cute, furry creature that you might find digging 

holes in your backyard. In this context it represents an amount, and we use the term mole in the 
same way we use the word dozen. A dozen represents a particular number, 12. A mole also 
represents a particular number, 236.02 10× , which we also refer to as Avogadro’s number, NA. 
Thus, a mole of something is Avogadro’s number of those things. In this chapter we generally 
want to know about the number of moles of a particular ideal gas. A toy balloon, for instance, has 
about 0.1 moles of air molecules inside it. Strangely enough, the number of stars in the 
observable universe can also be estimated at about 0.1 moles of stars. 

 
In physics we often find it convenient to state the ideal gas law not in terms of the 

number of moles but in terms of N, the number of atoms or molecules, where AN n N= . Taking 
the ideal gas law and multiplying the right-hand side by NA / NA gives: 
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A
A A

R RPV nN T N T
N N

= = . 

 
The constant R / NA  has the value 231.38 10  J/Kk −= × and is known as Boltzmann’s 

constant. Using this in the equation above gives: 
 
PV N kT= .            (Eq. 14.2: Ideal gas law in terms of the number of molecules) 
 
Under what conditions is the ideal gas law valid? What is an ideal gas, anyway? For a 

system to represent an ideal gas it must satisfy the following conditions: 
1. The system has a large number of atoms or molecules. 
2. The total volume of the atoms or molecules should represent a very small 

fraction of the volume of the container. 
3. The atoms or molecules obey Newton’s Laws of motion; and they move about 

in random motion. 
4. All collisions are elastic. The atoms or molecules experience forces only when 

they collide, and the collisions take a negligible amount of time. 
 
The ideal gas law has a number of interesting implications, including – 
 
Boyle’s Law: at constant temperature, pressure and volume are inversely related; 
 
Charles’ Law: at constant pressure, volume and temperature are directly related; 
 
Gay-Lussac’s Law: at constant volume, pressure and temperature are directly related.  
 

An aside – Thinking about the rms average. 
In the next section we will work with the rms (root-mean square) average speed of a set 

of gas molecules. To gain some insight into the root-mean-square averaging process, let’s work 
out the rms average of the set of numbers -1, 1, 3, and 5. The average of these numbers is 2. To 
work out the rms average, first square the numbers to give 1, 1, 9, and 25. The next step is to find 
the average of these squared values, which is 9. Finally, we take the square root of that average to 
find that the rms average is 3. 

 
Clearly this is a funny way to do an average, since the average is 2 while the rms average 

is 3. There are two reasons why the rms average is larger than the average in this case. The first is 
that squaring the numbers makes everything positive – without this negative values cancel 
positive values when we add the numbers up. The second is that squaring the values weights the 
larger numbers more heavily (the 5 counts five times more than the 1 when doing the average, but 
52 counts 25 times more than 12 when doing the rms average.)  Note that we will discuss rms 
average values again later in the book when we talk about alternating current. 

 
Related End-of-Chapter Exercises: 1, 2, 6 - 8. 

 
Essential Question 14.1: A container of ideal gas is sealed so that it contains a particular number 
of moles of gas at a constant volume and an initial pressure of iP . If the temperature of the 
system is then raised from 10°C to 30°C, by what factor does the pressure increase? 
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Answer to Essential Question 14.1: It is tempting to say that the pressure increases by a factor of 
3, but that is incorrect. Because the ideal gas law involves T, not T∆ , we must use temperatures 
in Kelvin rather than Celsius. In Kelvin the temperature is raised from 283K to 303K. Finding the 
ratio of the final pressure to the initial pressure shows that pressure increases by a factor of 1.07: 

/ 303 1.07
/ 283

f f f

i i i

P nRT V T K
P nRT V T K

= = = = . 

 

14-2 Kinetic Theory 
We will now apply some principles of physics we learned earlier in the book to help us to 

come to a fundamental understanding of temperature. Consider a cubical box, measuring L on 
each side. The box contains N identical atoms of a monatomic ideal gas, each of mass m. 

 
We will assume that all collisions are elastic. This applies to collisions of atoms with one 

another, and to collisions involving the atoms and the walls of the box. The collisions between the 
atoms and the walls of the box give rise to the pressure the walls of the box experience because 
the gas is enclosed within the box, so let’s focus on those collisions. 

 
Let’s find the pressure associated with one atom because of its collisions with one wall 

of the box. As shown in Figure 14.2 we will focus on the right-hand wall of the box. Because 
the atom collides elastically, it has the same speed after hitting the wall that it had before hitting 
the wall. The direction of its velocity is different, however. The plane of the wall we’re 
interested in is perpendicular to the x-axis, so collisions with that wall reverse the ball’s x-
component of velocity, while having no effect on the ball’s y or z components of velocity. This 
is like the situation of the hockey puck bouncing off the boards that we looked at in Chapter 6. 
 
Figure 14.2: An atom inside the box bouncing off the right-hand wall of the box. 

 
The collision with the wall changes the x-component of the ball’s velocity from xv+ to 

xv− , so the ball’s change in velocity is 2 xv−  and its change in momentum is 2 xp mv∆ = −v , where 
the negative sign tells us that the change in the atom’s momentum is in the negative x-direction.. 

 
In Chapter 6 we learned that the change in momentum is equal to the impulse (the 

product of the force F
v

and the time interval t∆  over which the force is applied). Thus:  

wall on molecule
2 xmvF

t
−

=
∆

v
.  (Equation 14.3: The force the wall exerts on an atom) 

 
The atom feels an equal-magnitude force in the opposite direction (Newton’s Third Law):  

molecule on wall
2 xmvF

t
+

=
∆

v
.  (Equation 14.4: The force the atom exerts on the wall) 

 
What is this time interval, t∆ ? The atom exerts a force on the wall only during the small 

intervals it is in contact with the wall while it is changing direction. It spends most of the time not 
in contact with the wall, not exerting any force on it. We can find the time-averaged force the 
atom exerts on the wall by setting t∆  equal to the time between collisions of the atom with that 
wall. Since the atom travels a distance L across the box in the x-direction at a speed of xv in the x-
direction is takes a time of / xL v  to travel from the right wall of the box to the left wall, and the 
same amount of time to come back again. Thus: 
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2

x

Lt
v

∆ = .  (Equation 14.5: Time between collisions with the right wall) 

 
Substituting this into the force equation, Equation 14.4, tells us that the magnitude of the 

average force this one atom exerts on the right-hand wall of the box is: 
2

molecule on wall
2 2

2 /
x x x

x

mv mv mvF
t L v L

= = =
∆

. (Eq. 14.6: Average force exerted by one atom) 

 
To find the total force exerted on the wall we sum the contributions from all the atoms: 

2
2

on wall
x

x
mv mF v

L L
= =∑ ∑ .  (Equation 14.7: Average force from all atoms) 

The Greek letter ∑ (sigma) indicates a sum. Here the sum is over all the atoms in the box. 
 
If we have N atoms in the box then we can write this as: 

2

on wall
xvNmF

L N

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ .   (Equation 14.8: Average force from all atoms) 

 
The term in brackets represents the average of the square of the magnitude of the x-

component of the velocity of each atom. For a given atom if we apply the Pythagorean theorem in 
three dimensions we have 2 2 2 2

x y zv v v v+ + = . Doing this for all the atoms gives: 
2 2 2 2
x y zv v v v+ + =∑ ∑ ∑ ∑ , 

 
and there is no reason why the sum over the x-components would be any different from 

the sum over the y or z-components – there is no preferred direction in the box. We can thus say 

that 2 23 xv v=∑ ∑  or, equivalently, 2 21
3xv v=∑ ∑ . 

 
Substituting this into the force equation, Equation 14.8, above gives: 

2

on wall 3
vNmF

L N

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ .   (Equation 14.9: Average force on a wall) 

 
The term in brackets represents the square of the rms average speed. Thus: 

2
on wall 3 rms

NmF v
L

= .   (Equation 14.10: Average force on a wall) 

 
By multiplying by 2 and dividing by 2, we can transform Equation 14.10 to: 

2
on wall

2 1 2
3 2 3rms av
N NF mv K
L L
⎛ ⎞= =⎜ ⎟
⎝ ⎠

, (Eq. 14.11: Force connected to kinetic energy) 

The term in brackets is a measure of the average kinetic energy, avK , of the atoms. 
 

Related End-of-Chapter Exercises: 1, 2, 6 - 8. 
 

Essential Question 14.2: Why is the rms average speed, and not the average velocity, involved in 
the equations above? What is the average velocity of the atoms of ideal gas in the box? 
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Answer to Essential Question 14.2: The average velocity of the atoms is zero. This is because the 
motion of the atoms is random, and with a large number of atoms in the box there are as many, on 
average, going one way as the opposite way. Because velocity is a vector the individual vectors 
tend to cancel one another out. The average speed, however, is non-zero, and it makes sense that 
the faster the atoms move the more force they exert on the wall. 
 

14-3 Temperature 
Let’s pick up where we left off at the end of the previous section. Because pressure is 

force divided by area, we can find the average pressure the atoms exert on the wall by dividing 
the average force by the wall area, L2. This gives: 

 
on wall

3
2
3 av

F NP K
A L

= = .   (Equation 14.12: Pressure in the gas) 

 
Now we have a factor of L3, which is V, the volume of the cube. We can thus write 

Equation 14.12 as: 
2 .
3 avPV N K⎛ ⎞= ⎜ ⎟

⎝ ⎠
   (Equation 14.13: The product PV) 

 
Compare Equation 14.13 to Equation 14.2, the ideal gas law in the form PV N kT= . 

These equations must agree with one another, so we must conclude that: 
  
2
3 avK kT= , 

 
or, equivalently, 
 

3
2avK kT= . (Equation 14.14: Average kinetic energy is directly related to temperature) 

 
This is an amazing result – it tells us what temperature is all about. Temperature is a 

direct measure of the average kinetic energy of the atoms in a material. It is further amazing that 
we obtained such a fundamental result by applying basic principles of physics (such as impulse, 
kinetic energy, and pressure) to an ideal gas. Consider now the following example. 

 
EXAMPLE 14.3 – Two containers of ideal gas 

Container A holds N atoms of ideal gas, while container B holds 5N atoms of the same 
ideal gas. The two containers are at the same temperature, T. 

(a) In which container is the pressure highest? 
(b) In which container do the atoms have the largest average kinetic energy? What is that 

average kinetic energy in terms of the variables specified above? 
(c) In which container do the atoms have the largest total kinetic energy? What is that 

total kinetic energy in terms of the variables specified above? 
 
SOLUTION 
(a) We don’t know anything about the volumes of the two containers, so there is not 

enough information to say how the pressures compare. All we can say is that the product of the 
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pressure multiplied by the volume is fives times larger in container B than in container A, because 
PV is proportional to the product of the number of atoms multiplied by the absolute temperature. 

 
(b) The fact that the temperatures are equal tells us that the average kinetic energy of the 

atoms is the same in the two containers. Applying Equation 14.14, we get in each case: 
3
2avK kT= . 

 
(c) The total kinetic energy is the average energy multiplied by the number of atoms, so 

container B has the larger total kinetic energy. Container B has a total kinetic energy of: 
3 155 5
2 2B avK NK N kT NkT= = = . 

 
Related End-of-Chapter Exercises: 29, 30, 44, 53. 
 
Absolute zero 

Another interesting concept contained in the ideal gas law is the idea of absolute zero. 
Let’s say we seal a sample of ideal gas in a container that has a constant volume. The container 
has a pressure gauge connected to it that allows us to read the pressure inside. We then measure 
the pressure as a function of temperature, placing the 
container into boiling water (100 °C), ice water (0 °C), 
and liquid nitrogen (–196 °C). The pressures at these 
temperatures are 129 kPa, 93.9 kPa, and 26.6 kPa, 
respectively. Plotting pressure as a function of 
temperature results in the graph shown in Figure 14.7. 
We find that our three points, and other points we care to 
measure, fall on a straight line. Extrapolating this line to 
zero pressure tells us that the pressure equals zero at a 
temperature of –273 °C (also known as 0 K). 

 
Figure 14.3: A graph of pressure as a function 

of temperature for a constant-volume situation. 
Extrapolating the graph to zero pressure shows that 
absolute zero corresponds to a temperature of –273 °C. 

 
Based on the previous section we would conclude that the pressure drops to zero at 

absolute zero because the atoms or molecules have no kinetic energy. This is not quite true, 
although applying ideas of quantum mechanics is necessary to understand why not. If the atoms 
and molecules stopped completely we would be able to determine precisely where they are. 
Heisenberg’s uncertainty principle, an idea from quantum mechanics, tells us that this is not 
possible, that the more accurately we know an object’s position the more uncertainty there is in 
its momentum. The bottom line is that even at absolute zero there is motion, known as zero-point 
motion. Absolute zero can thus be defined as the temperature that results in the smallest possible 
average kinetic energy. 

 
Essential Question 14.3: At a particular instant compare the kinetic energy of one particular atom 
in container A to that of one particular atom in container B. Which atom has the larger kinetic 
energy? The two containers are at the same temperature, and there are five times more atoms in 
container B than in container A. 
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Answer to Essential Question 14.3: There is no way we can answer this question. The ideal gas 
law, and kinetic theory, tells us about what the atoms are doing on average, but they tell us 
nothing about what a particular atom is doing at a particular instant in time. Atoms are 
continually colliding with one another and these collisions generally change both the magnitude 
and direction of the atom’s velocity, and thus change the atom’s kinetic energy. We can find the 
probability that an atom has a speed larger or smaller than some value, but that’s about it. 

 

14-4 Example Problems 
 
EXPLORATION 14.4 – Finding pressure in a cylinder that has a movable piston 

A cylinder filled with ideal gas is sealed by means of a piston. The piston is a disk, with a 
weight of 20.0 N, that can slide up or down in the cylinder without friction but which is currently 
at its equilibrium position. The inner radius of the cylinder, and the radius of the piston, is 
10.0 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure 
is 101.3 kPa. Our goals for this problem are to determine the pressure inside the cylinder, 
and then to determine what changes if the temperature is raised from 20°C to 80°C. 

 
Step 1: Picture the scene. A diagram of the situation is shown in Figure 14.3. 
 
Figure 14.4: A diagram of the ideal gas sealed inside a cylinder by a piston that is free to 
move up and down without friction. 
 
Step 2: Organize the data. The best way to organize what we know in this case is to draw a free-
body diagram of the piston, as in Figure 14.4. Three forces act on the piston: the force of gravity; 
a downward force associated with the top of the piston being exposed to atmospheric pressure; 
and an upward force from the bottom of the piston being exposed to the pressure in the cylinder. 

 
Figure 14.5: The free-body diagram of the piston, showing the forces acting on it. 

 
Step 3: Solve the problem. The piston is in equilibrium, so let’s apply Newton’s Second 
Law, 0F ma∑ = =

v v , to the piston. Choosing up to be positive gives: 
. 

0atmPA mg P A+ − − = , where A is the cross-sectional area of the piston. 
 
Solving for P, the pressure inside the cylinder, gives: 

2 2
20.0 N 101300 Pa 101900 Pa

(0.100 m)
atm

atm
mg P A mgP P

A rπ π
+

= = + = + = . 

 
The pressure inside the cylinder is not much larger than atmospheric pressure. 
 

Step 4: The temperature of the gas inside the piston is gradually raised from 20°C to 80°C, 
bringing the piston to a new equilibrium position. What happens to the pressure of the gas, and 
what happens to the volume occupied by the gas? Be as quantitative as possible. 

To answer the question about pressure we can once again draw a free-body diagram of 
the piston. However, the fact that the piston has changed position to a new equilibrium position in 
the cylinder changes nothing on the free-body diagram. Thus, the pressure in the cylinder is the 
same as it was before. The fact that the temperature increases, however, means the volume 
increases by the same factor. Since the pressure is constant we can re-arrange the ideal gas law to: 
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constantP T
nR V

= = . 

This tells us that    fi

i f

TT
V V

= . 

 
Re-arranging to find the ratio of the volumes, and using absolute temperatures, gives: 

(273 80)K 1.20
(273 20)K

f f

i i

V T
V T

+
= = =

+
. 

 
The volume expands by 20%, increasing by the same factor as the absolute temperature. 
 

Key Idea for a cylinder sealed by a movable piston: When ideal gas is sealed inside a cylinder 
by a piston that is free to move without friction, the pressure of the gas is generally determined by 
balancing the forces on the piston’s free-body diagram rather than from the volume or 
temperature of the gas.                            Related End-of-Chapter Exercises: 10-27. 

 
EXAMPLE 14.4 – Comparing two pistons 

The two cylinders in Figure 14.5 contain an identical number of moles of the same type 
of ideal gas, and they are sealed at the top by identical pistons that are free to slide up and down 
without friction. The top of each piston is exposed to the atmosphere. One piston is higher than 
the other. (a) In which cylinder is the volume of the gas larger? (b) In which piston is 
the pressure higher? (c) In which piston is the temperature higher? 

 
Figure 14.6: The cylinders contain the same number of moles of ideal gas, but the 
piston in cylinder 2 is at a higher level. The pistons are identical, are free to slide up 
and down without friction, and the top of each piston is exposed to the atmosphere. 

 
SOLUTION 

(a) Cylinder 2 has a larger volume. Note that the volume in question is not the volume of 
the molecules themselves, but the volume of the space the molecules are confined to. In other 
words, it is the volume inside the cylinder itself, below the piston. 

 
 (b) Despite the fact that the piston in cylinder 2 is at a higher level than the piston 

in cylinder 1, the pressure is the same in both cylinders is the same. This is because the 
free-body diagrams in Figure 14.6 applies to both pistons. The pressure in both cylinders 
exceeds atmospheric pressure by an amount that is just enough to balance the pressure 
associated with the downward force of gravity acting on the piston. The pressure is equal in 
both cases because the pistons are identical.  

 
Figure 14.7: The free-body diagram applies equally well to both pistons. 
 

(c) Applying the ideal gas law tells us that the temperature is larger in cylinder 2, since 
T = PV/nR and the only factor that is different on the right-hand side of that equation is the 
volume. In this case the absolute temperature is proportional to the volume. 

 
Related End-of-Chapter Exercises: 10-27. 

 
Essential Question 14.4: Piston 2 in Figure 14.6 could be the same piston as piston 1, but just at a 
later time. What could you do to move the system from the piston 1 state to the piston 2 state? 
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Maxwell-Boltzmann distribution, T = 120 K
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Maxwell-Boltzmann distribution, T = 300 K
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Answer to Essential Question 14.4: All we need to do is to increase the temperature of the piston. 
Based on our analysis in Exploration 14.4, raising the absolute temperature by 20% moves the 
piston from the state labeled Piston 1 to that labeled Piston 2. 

 

14-5 The Maxwell-Boltzmann Distribution; Equipartition 
We come now to James Clerk Maxwell, the Scottish physicist who determined that the 

probability a molecule in a container of ideal gas has a particular speed v is given by: 
 

2
3/ 2

2 /(2 )( ) 4
2

Mv RTMP v v e
RT

π
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (Equation 14.15: Maxwell-Boltzmann distribution) 

where M is the molar mass (mass of 1 mole) of the gas. 
 
This distribution of speeds is known as the Maxwell-Boltzmann distribution, and it is 

characterized by three speeds. These are, in decreasing order: 
 

3
rms

RTv
M

= ;   (Equation 14.16: the rms speed) 

 
8

av
RTv
Mπ

= ;   (Equation 14.17: the average speed) 

 
2

prob
RTv
M

= .  (Equation 14.18: the most probable speed) 

 
Plots of the Maxwell-Boltzmann distribution are shown in Figure 14.8 for two different 

temperatures and two different monatomic gases, argon and helium. Table 14.1 shows the speeds 
characterizing the distributions. At low temperatures the molecules do not have much energy, on 
average, so the distribution clusters around the most probable speed. As temperature increases the 
distribution stretches out toward higher speeds. The area under the curve stays the same (it is the 
probability an atom has some velocity, which is 1) so the probability at the peak decreases. 

 Figure 14.8: Maxwell-Boltzmann distributions at 
two different temperatures, 120 K and 300 K, for monatomic argon gas (in dark blue, with a 
molar mass of 40 g) and monatomic helium gas (in pink, with a molar mass of 4 g). 
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 Table 14.1: The various speeds 
characterizing the Maxwell-Boltzmann 
distribution of speeds for monatomic 
argon gas, and for monatomic helium gas, 
at temperatures of 120 K and 300 K.  
 
The Equipartition Theorem 

Earlier we applied basic principles of mechanics to find that (3/ 2)avK NkT= . If we 
multiply by a factor of N, the number of atoms in the ideal gas, the equation becomes: 

int
3 3
2 2avE NK NkT nRT= = = .         (Eq. 14.19: Internal energy of a monatomic ideal gas) 

 
Equation 14.19 gives the total energy associated with the motion of the atoms in the ideal 

gas. This is known as the internal energy. The equipartition theorem states that all contributions 
to the internal energy contribute equally. For a monatomic ideal gas there are three contributions, 
coming from motion in the x, y, and z directions. Each direction thus contributes (1/ 2)NkT  to the 
internal energy. Each motion contributing to internal energy is called a degree of freedom. Thus: 

1 1the energy from each degree of freedom
2 2

Nkt nRt= = . (Equation 14.20) 

 
Consider a diatomic ideal gas, in which each molecule consists of two atoms. At low 

temperatures only translational kinetic energy is important, but at intermediate temperatures (the 
range we will generally be interested in) rotation becomes important. As shown in Figure 14.9, 
rotational kinetic energy is important for rotation about two axes but can be neglected for the 
third axis because the rotational inertia is negligible for rotation about that axis. With five degrees 
of freedom, each counting for (1/ 2)NkT , the internal energy of a diatomic ideal gas is: 

int
5 5
2 2

E NkT nRT= = . (Eq. 14.21: Internal energy of a diatomic ideal gas) 

 
Figure 14.9: A diatomic molecule is modeled as two balls connected by a 
light rod. In addition to translating in three dimensions the molecule can 
rotate about axes 1 or 2, for a total of five degrees of freedom. There is no 
contribution to the internal energy from rotation about axis 3 because the 
molecule has negligible rotational inertia about that axis. 

 
At high temperatures energy associated with the vibration of the atoms becomes 

important and there are two additional degrees of freedom (one associated with kinetic energy, 
one with elastic potential energy) to bring the coefficient in front of the NkT to 7/2. 

 
Polyatomic molecules, at intermediate temperatures, have six degrees of freedom, 

translational kinetic energy in three dimensions, and rotational kinetic energy about three axes. 

int
6 3 3
2

E NkT NkT nRT= = = .         (Eq. 14.21: Internal energy of a polyatomic ideal gas) 

 
Related End-of-Chapter Exercises: 10-27. 
 
Essential Question 14.5: Two containers have identical volumes, temperatures, and the same 
number of moles of gas. One contains monatomic ideal gas while the other has diatomic ideal 
gas. Which container has a higher pressure? In which does the gas have more internal energy? 

 
rmsv (m/s) avv (m/s) probv (m/s) 

Argon, T = 120 K 273 252 223 
Argon, T = 300 K 432 398 353 
Helium, T = 120 K 865 797 706 
Helium, T = 300 K 1367 1260 1116 
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Answer to Essential Question 14.5: To find the pressure we can apply the ideal gas law, in the 
form P = nRT/V. Since all the factors on the right-hand side are the same for the two containers 
the pressures must be equal. When applying the ideal gas law we do not have to worry about what 
the molecules consist of. We do have to account for this in determining which container has the 
larger internal energy, however. The internal energy for the monatomic gas is int (3/ 2)E nRT= , 
while for the diatomic gas at room temperature it is int (5 / 2)E nRT= . The monatomic ideal gas 
has 3/5 of the internal energy of the diatomic ideal gas. 

 

14-6 The P-V Diagram 
In Chapter 15 one of the tools we will use to analyze thermodynamic systems (systems 

involving energy in the form of heat and work) is the P-V diagram, which is a graph showing 
pressure on the y-axis and volume on the x-axis. 

 
EXPLORATION 14.6 – Working with the P-V diagram 

A cylinder of ideal gas is sealed by means of a cylindrical piston that can slide up and 
down in the cylinder without friction. The piston is above the gas. The entire cylinder is placed in 
a vacuum chamber, and air is removed from the vacuum chamber very slowly, slowly enough 
that the gas in the cylinder, and the air in the vacuum chamber, maintains a constant temperature 
(the temperature of the surroundings).  
 
Step 1: If you multiply pressure in units of kPa by volume in units of liters what units do you 
get? 

3 3 3 31 kPa 1 liter (1 10  Pa) (1 10  m ) 1 Pa m 1 Nm 1 J.× = × × × = = =  
Thus the unit is the MKS unit the joule. This will be particularly relevant in the next 

chapter, when we deal with the area under the curve of the P-V diagram. 
 

Step 2: Complete Table 14.2, giving the pressure and 
volume of the ideal gas in the cylinder at various 
instants as the air is gradually removed from the 
vacuum chamber. 

 
Table 14.2: A table giving the pressure and volume for 
a system of ideal gas with a constant temperature and a 
constant number of moles of gas. 

 
Using the ideal gas law we can say that PV = nRT = constant. In state 1 Table 14.2 tells 

us that the product of pressure and volume is 120 J. Thus the 
missing values in the table can be found from the equation 
PV = 120 J. In states 2 and 5, therefore, the gas occupies a 
volume of 1.5 liters and 4.0 liters, respectively. In states 3, 4, 
and 6, the pressure is 60 kPa, 40 kPa, and 20 kPa, respectively. 
 
Step 3: Plot these points on a P-V diagram similar to that in 
Figure 14.10, and connect the points with a smooth line. 
Note that such a line on a P-V diagram is known as an 
isotherm, which is a line of constant temperature. 
 
Figure 14.10: A blank P-V diagram. 

State Pressure (kPa) Volume (liters)
1 120 1.0 
2 80  
3  2.0 
4  3.0 
5 30  
6  6.0 
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The P-V diagram with the points plotted, and the 
smooth line drawn through the points representing the 
isotherm, is shown in Figure 14.11. 

 
Figure 14.11:  The P-V diagram corresponding to the points 
from Table 14.2. The smooth curve through the points is an 
isotherm, a line of constant temperature. 

 
Step 4: Repeat the process, but this time the absolute 
temperature of the gas is maintained at a value twice as large 
as that in the original process. Sketch that isotherm on the 
same P-V diagram. 
 

If the absolute temperature is doubled the constant that P V× must also double, from 120 
J to 240 J. Starting with the original points we plotted we can 
find points on the new isotherm by either doubling the 
pressure or doubling the volume. Several such points are 
shown on the modified P-V diagram in Figure 14.12, and we 
can see that this isotherm, at the higher temperature, is further 
from the origin than the original isotherm. This is generally 
true, that the higher the temperature the further from the origin 
is the isotherm corresponding to that temperature. 

 
Figure 14.12: A P-V diagram showing two different 
isotherms. The isotherm in green, farther from the origin, has 
twice the absolute temperature as the isotherm in blue. 

 

Key Ideas about P-V diagrams: The P-V diagram (the graph of pressure as a function of 
volume) for a system can convey significant information about the state of the system, including 
the pressure, volume, and temperature of the system when it is in a particular state. It can be 
helpful to sketch isotherms on the P-V diagram to convey temperature information – an isotherm 
is a line of constant temperature.        Related End-of-Chapter Exercises: 47-52. 

 
 

Essential Question 14.6: An isotherm on the P-V diagram has the shape it does because, from the 
ideal gas law, we are plotting pressure versus volume and the pressure is given by: 

nRTP
V

= . 

 
For a particular isotherm the value of nRT is constant, so an isotherm is a line with a 

shape similar to the plot of 1/V as a function of V. Let’s say we now have two cylinders of ideal 
gas, sealed by pistons as in the previous Exploration. Cylinder A, however, has twice the number 
of moles of gas as cylinder B. We plot a P-V diagram for cylinder A, and plot the isotherm 
corresponding to a temperature of 300 K. We also draw a separate P-V diagram for cylinder B, 
and we find that the same points we connected to draw the 300 K isotherm on cylinder A’s P-V 
diagram are connected to form an isotherm on cylinder B’s P-V diagram. What is the temperature 
of that isotherm on cylinder B’s P-V diagram? 
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Answer to Essential Question 14.6: 600 K. An isotherm is a line connecting all the points 
satisfying the equation PV nRT= = a particular constant that depends on n and T. Since we’re 
talking about the same line on both P-V diagrams we have A A B BPV n RT n RT= = . Solving for the 
temperature in cylinder B gives: 

2 2 2(300K) 600KA A A B
B A A A

B B B

n RT n nT T T T
n R n n

= = = = = = . 

 
In this sense, then, the P-V diagrams for different ideal gas systems are unique, because 

the temperature of a particular isotherm depends on the number of moles of gas in the system.  
 
 
Chapter Summary 

 
 Essential Idea regarding looking at thermodynamic systems on a microscopic level 

We can apply basic principles of physics to a system of gas molecules, at the microscopic 
level, and get important insights into macroscopic properties such as temperature. Temperature is 
a measure of the average kinetic energy of the atoms or molecules of the gas. 

 
 

 The Ideal Gas Law 
The ideal gas law can be written in two equivalent forms. 
 
In terms of n, the number of moles of gas , PV n RT= ,  (Equation 14.1)    
where 8.31 J/(mol K)R = is the universal gas constant. 
 
In terms of N, the number of molecules, PV N kT= ,   (Equation 14.2) 

where 231.38 10  J/Kk −= × is Boltzmann’s constant. 
 
 

 What Temperature Means 
 

3
2avK kT= . (Equation 14.14: Average kinetic energy is directly related to temperature) 

 
As Equation 14.14 shows, temperature is a direct measure of the average kinetic energy 

of the atoms or molecules in the ideal gas. 
 
 

 The Maxwell-Boltzmann Distribution 
The Maxwell-Boltzmann distribution is the distribution of molecular speeds in a 

container of ideal gas, which depends on the molar mass M of the molecules and on the absolute 
temperature, T. The distribution is characterized by three speeds. In decreasing order, these are 
the root-mean-square speed; the average speed; and the most-probable speed. These are given by 
equations 14.16 – 14.18: 

 
3

rms
RTv
M

= ;   8
av

RTv
Mπ

= ;   2
prob

RTv
M

= .  
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 A Cylinder Sealed by a Piston that can Move Without Friction 
 A common example of an ideal gas system is ideal gas sealed inside a cylinder 
by means of a piston that is free to move without friction. When the piston is at its 
equilibrium position the pressure of the gas is generally determined by balancing the 
forces on the piston’s free-body diagram, rather than from the volume or temperature of 
the gas. The diagram at right illustrates this idea for a cylinder sealed at the top by a 
piston of area A. The combined forces directed down, the force and gravity and the force 
associated with atmospheric pressure acting on the top of the piston, must be balanced by 
the upward force associated with the gas pressure acting on the bottom of the piston. 
 
 The Equipartition Theorem 
 The equipartition theorem is the idea that each contribution to the internal energy (energy 
associated with the motion of the molecules) of an ideal gas contributes equally. Each 
contribution is known as a degree of freedom. 
 

1 1The energy from each degree of freedom
2 2

Nkt nRt= = . (Equation 14.20) 

A monatomic ideal gas can experience translational motion in three dimensions. With 
three degrees of freedom the internal energy is given by: 

int
3 3
2 2avE NK NkT nRT= = = .         (Eq. 14.19: Internal energy of a monatomic ideal gas) 

At intermediate temperatures molecules in a diatomic ideal gas have two additional 
degrees of freedom, associated with rotation about two axes. 

int
5 5
2 2

E NkT nRT= = . (Eq. 14.21: Internal energy of a diatomic ideal gas) 

Molecules in a polyatomic ideal gas can rotate about three axes. 

int
6 3 3
2

E NkT NkT nRT= = = .         (Eq. 14.21: Internal energy of a polyatomic ideal gas) 

 

 The P-V Diagram 
A graph of pressure versus volume (a P-V 

diagram) can be very helpful in understanding an ideal 
gas system. We will exploit these even more in the 
next chapter. The ideal gas law tells us that the product 
of pressure and volume (which has units of energy) is 
proportional to the temperature of a system. Lines of 
constant temperature are known as isotherms. The 
diagram at right shows two isotherms, the one in blue 
having half the absolute temperature of the one in 
green. 
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