
 
Flowing fluids, such as the water flowing in the 
photograph at Coors Falls in Colorado, can 
make interesting patterns. In this chapter, we 
will investigate the basic physics behind such 
flow. Photo credit: Digital Vision.

It is interesting to think about how much 
physics is involved in the situation shown in 
the photograph. First of all, there is the 
influence of gravity, which makes the water 
flow down. Second, you can see the parabolic 
trajectories followed by the water as it is in 
free-fall at a number of different locations in 
the photograph. Third, there is the somewhat 
ghostly appearance of the water. This is caused 
by the photographer keeping the camera shutter 
open for an extended period as the picture was 
taken, with the motion of the water during this 
period causing a blurring.
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In this chapter on fluids, we will introduce some new concepts, but the main focus will be 
on how to incorporate fluids into the framework of forces and energy that we have examined in 
the earlier chapters. 

Although we will address basic issues related to flowing fluids, in the first half of this 
chapter our focus will be on static fluids. What determines whether something floats or sinks in a 
fluid? How can an object sink in one liquid, and yet float in a different liquid? How can a huge 
ocean liner float, when its mass is so huge, and being made from raw materials that would sink in 
water? Our study of fluids begins with us addressing questions such as these.
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9-1 The Buoyant Force
We should begin by defining what a 

fluid is. Many people think of a fluid as a 
liquid, but a fluid is anything that can 
flow. By this definition, a fluid can be a 
liquid or a gas. Flowing fluids can be rather 
complicated, so let’s start with static fluids – 
fluids that are at rest.

Let’s consider some experiments 
involving various blocks that float in a 
container of water. The blocks are 
represented in Figure 9.1, which shows how 
the masses of the blocks compare, and also shows 
the free-body diagrams of the blocks as they sit in 
equilibrium on a table. Starting from the left, the 
first, second, and fourth blocks are all made from 
the same material. The other two blocks are both 
made from different material.

Our first goal is to look at the 
similarities between the normal force (a force 
arising from contact between solid objects) and 
the force arising from the interaction between 
an object and a fluid that the object is completely 
or partly submerged in. Figure 9.2 illustrates how the blocks 
float when they are placed in the container of water. We have 
taken some liberties here, because in reality some of the blocks would tilt 45˚ and float as shown 
in Figure 9.3. Neglecting this rotation simplifies the analysis without affecting the conclusions.

EXPLORATION 9.1 – Free-body diagrams for floating objects
Sketch the free-body diagram of the blocks in Figure 9.2 as they float in the container of 

water. Note that each block is in equilibrium – what does that imply about the net force acting on 
each block? Because each block is in equilibrium, the net force acting on each block must be 
zero. 

What forces act on each block? As usual there is a downward force of gravity. Because 
each block is in equilibrium, however, the net force acting on each block is zero. For now, let’s 
keep things simple and show, on each block, one upward force that balances the force of gravity. 
The free-body diagrams are shown in Figure 9.4. Note that there is no normal force, because the 
blocks are not in contact with a solid object. Instead, they are supported by the fluid. We call the 
upward force applied by a fluid to an object in that fluid the buoyant force, which we symbolize 
as . 

Because the objects are only in contact with the fluid, the fluid must be applying the 
upward buoyant force to each block. Compare the free-body diagrams in Figure 9.1, when the 
blocks are in equilibrium on the table, with the free-body diagrams in Figure 9.4, when the blocka 
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Figure 9.1: A diagram of the blocks we will place 
in a beaker of water, and the free-body diagram 
for each block as it sits on a table.

Figure 9.2: A diagram of the blocks 
floating in the beaker of water.

Figure 9.3: We will ignore the fact that blocks that are submerged more than 50% 
tend to float rotated by 45˚ from the way they are drawn in Figure 9.2. Neglecting 
this fact will simplify the analysis without affecting the conclusions.



are in equilibrium while floating in the fluid. 
For a floating object, at least, there are a lot 
of similarities between the buoyant force 
exerted by a fluid and the normal force 
exerted by a solid surface.

Examine Figures 9.2 and 9.4 
closely. Even though the two blocks of mass 
2m are immersed to different levels in the 
fluid, they displace the same volume of fluid, so they experience equal buoyant forces. The 3m 
blocks displace 50% more volume than do the blocks of mass 2m, and they experience a buoyant 
force that is 50% larger. The block of mass m, on the other hand, displaces half the volume of 
fluid that the blocks of mass 2m do, and experiences a buoyant force that is half as large. We can 
conclude that the buoyant force exerted on an object by a fluid is proportional to Vdisp, the 
volume of fluid displaced by that object. We can express this as an equation (where means “is 
proportional to”),

. (Eq. 9.1: Buoyant force is proportional to volume of fluid displaced)

Key idea about the buoyant force: An object in a fluid experiences a net upward force we call 
the buoyant force, . The magnitude of the buoyant force is proportional to the volume of fluid 
displaced by the object.                 Related End-of-Chapter Exercise: 2.

The conclusion above is supported by the fact that if we push a block farther down 
into the water and let go, the block bobs up. The buoyant force increases when we push 
the block down because the volume of fluid displaced increases, so, when we let go, the 
block experiences a net upward force. Conversely, when a block is raised, it displaces less 
fluid, reducing the buoyant force and giving rise to a net downward force when we let go. 
Figure 9.5 shows these situations and the corresponding free-body diagrams.

Essential Question 9.1: Two objects float in equilibrium in 
the same fluid. Object A displaces more fluid than object B. 
Which object has a larger mass?
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Figure 9.4: Free-body diagrams for the blocks floating in 
equilibrium in the beaker of water. FB represents the buoyant 
force, an upward force applied on each block by the fluid.

Figure 9.5: In this case, the blocks are not at equilibrium. The block on the left has been 
pushed down into the water and released. Because it displaces more water than it does at 
equilibrium, the buoyant force applied to it by the water is larger than the force of gravity 
applied to it by the Earth and it experiences a net upward force. The reverse is true for the 
block on the right, which has been lifted up and released. Displacing less water causes the 
buoyant force to decrease, giving rise to a net downward force.

Figure 9.6: To be able to float, this large ship needs to 
displace a very large volume of fluid. This large volume 
of fluid is displaced by the part of the ship that is below 
the water surface, and which, therefore, is not visible to us 
in this photograph. Photo credit: Corbis Images.



Answer to Essential Question 9.1: Object A. When an object floats in equilibrium, the buoyant 
force exactly balances the force of gravity. Object A displaces more fluid, so it experiences a 
larger buoyant force. This must be because object A weighs more than object B.

9-2 Using Force Methods with Fluids

EXAMPLE 9.2 – A block on a string
A block of weight mg = 45 N has part of its volume submerged in a beaker of water. The 

block is partially supported by a string of fixed length that is tied to a support above the beaker. 
When 80% of the block’s volume is submerged, the tension in the string is 5.0 N.

(a) What is the magnitude of the buoyant force acting on the block?
(b) Water is steadily removed from the beaker, causing the block to 

become less submerged. The string breaks when its tension exceeds 35 N. 
What percent of the block’s volume is submerged at the moment the string 
breaks?

(c) After the string breaks, the block comes to a new equilibrium position 
in the beaker. At equilibrium, what percent of the block’s volume is 
submerged?

SOLUTION
As usual, we should begin with a diagram of the situation. A free-body 

diagram is also very helpful. These are shown in Figure 9.7. 

(a) On the block’s free-body diagram, we draw a downward force of 
gravity, applied by the Earth. We also draw an upward force of tension (applied 
by the string), and, because the block displaces some fluid, an upward 
buoyant force (applied by the fluid). The block is in equilibrium, so there 
must be no net force acting on the block.

Taking up to be positive, applying Newton’s Second Law gives:
.

Evaluating the left-hand side with the aid of the free-body diagram gives:
 .

Solving for the buoyant force gives: .

(b) As shown in Figure 9.8, removing water from the beaker causes the block 
to displace less fluid, so the magnitude of the buoyant force decreases. The 
magnitude of the tension increases to compensate for this. Applying Newton’s 
Second Law again gives us essentially the same equation as in part (a). We can use 
this to find the new buoyant force, . Just before the string breaks we have:

.
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Figure 9.7: A diagram and a free-
body diagram for the 45 N block 
floating in the beaker of water 
while partly supported by a string.

Figure 9.8: A diagram and free-
body diagram of the situation 
just before the string breaks.



Now, we can apply the idea that the buoyant force is proportional to the 
volume of fluid displaced. If a buoyant force of 40 N corresponds to a displaced 
volume equal to 80% of the block’s volume, a buoyant force of 10 N (1/4 of the 
original force) must correspond to a displaced volume equal to 20% of the block’s 
volume (1/4 of the original displaced volume).

(c) After the string breaks and the block comes to a new equilibrium 
position, we have a simpler free-body diagram, as shown in Figure 9.9. The 
buoyant force now, , applied to the block by the fluid, must balance the force 
of gravity applied to the block by the Earth. This comes from applying Newton’s 
Second Law:

.

Taking up to be positive, evaluating the left-hand side with the 
aid of the free-body diagram gives:

 , so .

Using the same logic as in (b), if a buoyant force of 40 N 
corresponds to a displaced volume equal to 80% of the block’s volume, 
a buoyant force of 45 N must correspond to a displaced volume equal 
to 90% of the block’s volume.

Related End-of-Chapter Exercises: 21, 36.

Let’s now extend our analysis to objects that 
sink. First, hang a block from a spring scale (a device 
that measures force) to measure the force of gravity 
acting on the block. With the block hanging from the 
spring scale, the scale reads 10 N, so there is a 10 N 
force of gravity acting on the block. A diagram and two 
free-body diagrams (one for the spring scale and one 
for the block) are shown in Figure 9.10.

Question: With the block still suspended from the spring 
scale, let’s dip the block into a beaker of water until it is 
exactly half submerged. Make a prediction. As we lower the 
block into the water, will the reading on the spring scale 
increase, decrease, or stay the same? Briefly justify your 
prediction.

Answer: The reading on the spring scale should decrease. This is because the spring scale no 
longer has to support the entire weight of the block. The more the block is submerged, the larger 
the buoyant force, and the smaller the spring-scale reading.

Essential Question 9.2: The spring scale reads 10 N when the block is out of the water. Let’s say 
it reads 6.0 N when exactly 50% of the block’s volume is below the water surface. What will the 
scale read when the entire block is below the water surface? Why?
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Figure 9.9: A diagram and free-
body diagram for the situation after 
the string breaks, when the block 
has come to a new equilibrium 
position in the beaker.

Figure 9.10: A diagram showing a block 
hanging from a spring scale, as well as 
free-body diagrams for the spring scale 
(which itself has a force of gravity of 3 N 
acting on it) and the block.



Answer to Essential Question 9.2: We can apply the idea that the 
buoyant force acting on an object is proportional to the volume of 
fluid displaced by that object. When the block is half submerged, 
the buoyant force is 4.0 N up because the buoyant force and the 
spring scale, which exerts a force of 6.0 N up, must balance the 
downward 10 N force of gravity acting on the block. When the 
block is completely submerged, it displaces twice as much fluid, 
doubling the buoyant force to 8.0 N up. The spring scale only has 
to apply 2.0 N of force up on the block to make the forces 
balance. Diagrams and free-body diagrams for these situations 
are shown in Figure 9.11.

9-3 Archimedes’ Principle

EXPLORATION 9.3 – What does the buoyant force depend on?
We know that the buoyant force acting on an object is proportional to 

the volume of fluid displaced by the object. What else does it depend on? Let’s 
experiment to figure this out. We’ll use a special beaker with a spout, as shown 
in Figure 9.12. In each case, we will fill the beaker to a level just below the 
spout, so that when we add a block to the beaker any fluid displaced by the 
block will flow down the spout into a second catch beaker. The catch beaker 
sits on a scale, so we can measure the weight of the displaced fluid. 
The fluid in the beaker will be either water or a second liquid, so we 
can figure out whether the fluid in the beaker makes any difference.

The blocks we will work have equal volumes but different 
masses. The weights of the blocks are 8 N, 16 N, and 24 N. Before 
we add a block to the beaker, we will make sure the beaker is filled to 
just below the level of the spout, and that the catch beaker is empty. 
If a block sinks in the fluid, we will hang it from a spring scale before completely submerging the 
block, so we can find the buoyant force from the difference between the force of gravity acting on 
the block and the reading on the spring scale. Also, the scale under the catch beaker is tared, 
which means that with the empty catch beaker sitting on it the scale reads zero and will read 
directly the weight of any fluid in the catch beaker.

The results of the experiments with water are shown in Figure 9.13, along with the 
corresponding free-body diagrams. In every case, the magnitude of the buoyant force acting on 
the block is equal to the weight of the fluid displaced by the block.

Does this only work with water? Let’s try it with the second fluid. The results are shown 
in Figure 9.13. Here we notice some differences - the 8 N block still floats buts displaces twice 
the volume of fluid it did in the water; the 16 N block now sinks; and the 24 N block still sinks 
but has half the buoyant force it had when it was in the water. Once again, however, the 
magnitude of the buoyant force on the block is equal to the weight of fluid displaced by the block.

Chapter 9 – Fluids  Page 9 - 6

Figure 9.11: The top diagrams show the situation and free-body 
diagram for a block suspended from a spring scale when the 
block is half submerged in water. The bottom diagrams are 
similar, except that the block is completely submerged.

Figure 9.12: The beaker with the spout, 
and the catch beaker sitting on the scale. 
The scale is tared so it will read directly 
the weight of fluid in the catch beaker.



 

With the second fluid, we see that the buoyant force the fluid exerts on an object is still 
proportional to the volume of fluid displaced. However, we can also conclude that displacing a 
particular volume of water gives a different buoyant force than displacing exactly the same 
amount of the other fluid. Some property of the fluid is involved here.

To determine which property of the fluid is associated with the buoyant force, let’s focus 
on the fact that the buoyant force is equal to the weight of the fluid displaced by the object:

.

If we bring in mass density, for which we use the symbol , we can write this equation 
in terms of the volume of fluid displaced. The relationship between mass, density, and volume is:

.  (Equation 9.2: Mass density)

Using this relationship in the equation for buoyant force gives:
 .  (Equation 9.3: Archimedes’ Principle)

Key Idea regarding Archimedes’ Principle: The magnitude of the buoyant force exerted on an 
object by a fluid is equal to the weight of the fluid displaced by the object. This is known as 
Archimedes’ principle.        Related End-of-Chapter Exercises: 4, 7.

Essential Question 9.3: How does the mass density of the second fluid in Exploration 9.3 
compare to the mass density of water?
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Figure 9.13: The figures on the left show the results 
of the experiments with water. On the right, we see the 
results of the experiment with the second fluid.



Answer to Essential Question 9.3: The second fluid has a density that is half that of water. We 
can see that because a particular volume of water has a mass that is twice as much as the mass of 
an equal volume of the second fluid.

9-4 Solving Buoyancy Problems
Archimedes was a Greek scientist who, legend has it, discovered the concept while taking 

a bath, whereupon he leapt out and ran naked through the streets shouting “Eureka!” Archimedes 
was thinking about this because the king at the time wanted Archimedes to come up with some 
way to make sure that the king’s crown was made out of solid gold, and was not gold mixed with 
silver. Archimedes’ realized that he could use his principle to determine the density of the crown, 
and he could then compare it to the known density of gold.

Using Equation 9.3, we can now explain the results of the block-and-two-fluid 
experiment above. The differences we observe between when we place the blocks in water and 
when we place them in the second fluid can all be explained in terms of the difference between 
the density of water and the density of the second fluid. In fact, to explain the results of 
Exploration 9.2 the second fluid must have half the density of water. The 10-N block, for 
instance, floats in both fluids and therefore the buoyant force is the same in both cases, exactly 
equal-and-opposite to the 10 N force of gravity acting on the block. Because the density of the 
second fluid is half the density of water, the block needs to displace twice the volume of fluid in 
the second fluid to achieve the same buoyant force. The 30-N block, on the other hand, displaces 
the same amount of fluid in each case. However, it experiences twice the buoyant force from the 
water as it does from the second fluid because of the factor of two difference in the densities.

What happens with the 20-N block is particularly interesting, because it floats in water 
and yet sinks in the second fluid. This raises the question, what determines whether an object 
floats or sinks when it is placed in a fluid? 

EXPLORATION 9.4 – Float or sink?
How can we tell whether an object will float or sink in a particular fluid? As we have 

considered before, when an object floats in a fluid the upward buoyant force exactly balances the 
downward force of gravity. This gives: .

Using Archimedes’ principle, we can write the left-hand side as: .

The factors of cancel (this tells us that it doesn’t matter which planet we’re on, or 

where on the planet we are), giving: .

If we write the right-hand side in terms of the density of the object, we get, for a floating 
object:

.

Re-arranging this equation leads to the interesting result (that applies for floating objects 
only): 

. (Equation 9.4: For floating objects)
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Equation 9.4 answers the question of what determines whether an object floats or sinks in 
a fluid – the density. If an object is less dense than the fluid it is in then it floats. An object that 
is less dense than the fluid it is in floats because the object displaces a volume of fluid smaller 
than its own volume – in other words, the object floats with part of it sticking out above the 
surface of the fluid. On the other hand, an object more dense than the fluid it is in must displace a 
volume of fluid larger than its own volume in order to float. This is certainly not possible for the 
solid blocks we have considered above. Thus, we can conclude that an object with a density 
larger than the density of the fluid it is in will sink in that fluid.

Key Ideas: Whether an object floats or sinks in a fluid depends on its density. An object with a 
density less than that of a fluid floats in that fluid, while an object with a larger density than that 
of a fluid will tend to sink in that fluid.          Related End-of-Chapter Exercises: 1, 13.

Equation 9.4 tells us that we can determine the density of a floating object by observing 
what fraction of its volume is submerged. For instance, if an object is 30% submerged in a fluid 
its density is 30% of the density of the fluid. Table 9.1 shows the density of various materials.

Material Density (kg/m3) Material Density (kg/m3)
Interstellar space 10-20 Planet Earth (average) 5500

Air (at 1 atmosphere) 1.2 Iron 7900
Water (at 4˚C) 1000 Mercury (the metal) 13600
Sun (average) 1400 Black hole 10-19

Table 9.1 The density of various materials.

What about an object that has the same density as the fluid it is in? This is 
known as neutral buoyancy, because the upward buoyant force on the object 
balances the downward force of gravity on the object when the object is 100% 
submerged. Because the net force acting on the object is zero it is in equilibrium at 
any of the positions shown in Figure 9.14. This is true as long as the fluid density 
does not change with depth, which is something of an idealization. 
Again we are using a model, with an assumption of the model being that  
a fluid is incompressible – its density is constant.

The general method for solving a typical buoyancy problem is 
based on the method we used in chapter 3 for solving a problem 
involving Newton’s Laws. Now, we include Archimedes’ principle. In 
general buoyancy problems are 1-dimensional, involving vertical 
forces, so that simplifies the method a little.

 A General Method for Solving a Buoyancy Problem
1. Draw a diagram of the situation.
2. Draw one or more free-body diagrams, with each free-body diagram showing all the 

forces acting on an object as well as an appropriate coordinate system.
3. Apply Newton’s Second Law to each free-body diagram.
4. If necessary, bring in Archimedes’ principle, .

5. Put the resulting equations together and solve.

Essential Question 9.4: Let’s say the four objects shown in Figure 9.14 have densities larger than 
that of the fluid. Can any of the objects be at equilibrium at the positions shown? Explain.
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Figure 9.14: A neutrally buoyant 
object (an object with the same 
density as the surrounding fluid) 
will be at equilibrium at any of the 
positions shown. All other objects 
will either float at the surface, or 
sink to the bottom.



Answer to Essential Question 9.4: Objects that are denser than the fluid they are in tend to sink 
to the bottom of the container. One object in Figure 9.14 already rests at the bottom, so it is in 
equilibrium. For the three higher objects, the force of gravity, acting down, is larger than the 
buoyant force that acts up. These three objects are not at equilibrium, and will sink to the bottom.

9-5 An Example Buoyancy Problem

EXAMPLE 9.5 – Applying the general method
Let’s now consider an object that sinks to the bottom of a beaker of liquid. The object is a 

block with a weight of 20 N, when weighed in air. The beaker it is to be placed in contains some 
water, as well as a waterproof scale that rests on the bottom of the beaker. This scale is tared to 
read zero, and let’s assume the scale is unaffected by any changes in the level of the water above 
it. The beaker itself rests on a second scale that reads 50 N, the combined weight of the beaker, 
the water, and the scale inside the beaker. When the 20-N block is placed in the beaker, it sinks to 
the bottom and comes to rest on the scale in the beaker, which now reads 5.0 N. This is known as 
the apparent weight of the block. Let’s assume g = 10 m/s2 to simplify the calculations.

(a) What is the magnitude and direction of the buoyant force applied on the block by the 
water?

(b) With the block now completely immersed in the water, what is the reading on the 
scale under the beaker?

(c) What is the block’s density and volume?

SOLUTION
Let’s begin with the first two steps in the general method, by drawing a diagram of the 

situation and a free-body diagram of the block. These are shown in Figure 9.15, where up is taken 
to be the positive direction. Note that three forces act on the block, one of which is the downward 
force of gravity. The 5.0 N reading on the scale is the magnitude of the downward normal force 
applied by the block on the scale. By Newton’s Third Law, the scale applies an upward 5.0 N 
normal force on the block. The third force acting on the block is the upward buoyant force 
applied on it by the water. 

(a) The block is in equilibrium (at rest with no 
acceleration), so we can apply Newton’s Second Law to 
determine the buoyant force acting on the block.

.

Looking at the free-body diagram to evaluate the left-
hand side gives:

.

Solving for the buoyant force gives:

, directed up.

(b) What is the reading on the scale under the beaker? The scale under the beaker 
supports everything on top of it, so with the block inside the beaker the scale under the beaker 
reads 70 N. This comes from adding the full 20-N weight of the block to the original 50 N, from 
the beaker, water, and scale inside the beaker.
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Figure 9.15: A diagram and free-body 
diagram for the block resting on the 
scale inside the beaker of fluid.



Doesn’t the water support 15 N of the block’s weight, via the buoyant force? Yes, it does. 
However, if the water exerts a force of 15 N up on the block, then by Newton’s third law the 
block exerts a 15 N force down on the water. The water passes this force along to the beaker, 
which passes it along to the scale under the beaker. Similarly, the block exerts a 5.0-N normal 
force down on the scale inside the beaker, and the scale passes this force along to the beaker, 
which passes it along to the scale under the beaker. Now matter how you look at it, adding a 20-N 
block to the beaker ends up increasing the reading on the scale under the beaker by 20 N.

(c) Let’s derive a general equation that tells us how the density of a submerged object is 
related to its weight mg and apparent weight Wapp. The apparent weight is numerically equal to 
the normal force experienced by the submerged object.

In part (a), we used Newton’s Second Law to arrive at an expression for the buoyant 
force acting on our submerged object, obtaining: .

Writing this in terms of the apparent weight gives: .

For a submerged object, the apparent weight is less than the actual weight. If we call f  
the ratio of the apparent weight to the actual weight, , we can write the previous 

equation, using , as:

.

Now, use Archimedes’ principle to transform the left-hand side of the equation:
.

Finally, write the object’s mass in terms of its density: .

The volume of fluid displaced by an object that is completely submerged is equal to its 
own volume, so we can cancel the factors of volume as well as the factors of g, leaving:

.

Solving for the density of the object, we can write the equation in various ways:

.

That applies generally to a completely submerged object. In our case, where we have 
, we find that the density of the block is:

 .

Related End-of-Chapter Exercises: 9, 18.

Essential Question 9.5: It is possible for small metal objects, such as sewing needles or Japanese 
yen, to float on the surface of water, if carefully placed there. Can we explain this in terms of the 
buoyant force?
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Answer to Essential Question 9.5: No. These metal objects are denser than water, so we expect 
them to sink in the water (which they will if they are not placed carefully at the surface). They are 
held up by the surface tension of the water. Surface tension is beyond the scope of this book but it 
is similar to how a gymnast is supported by a trampoline – the water surface can act like 
a stretchy membrane that can support an object that is not too massive.

9-6 Pressure
Where does the buoyant force come from? What is responsible, for instance, for 

the small upward buoyant force exerted on us by the air when we are surrounded by air? 
Let’s use a model in which the fluid is considered to be made up of a large number of 
fast-moving particles that collide elastically with one another and with anything 
immersed in it. For simplicity, let’s examine the effect of these collisions on a block of 
height h and area A that is suspended from a light string, as shown in Figure 9.16.

Consider a collision involving an air molecule bouncing off the left side 
of the block, as in Figure 9.17. Assuming the block remains at rest during the 
collision (the block’s mass is much larger than that of the air molecule), then, 
because the collision is elastic, the magnitude of the molecule’s momentum 
remains the same and only the direction changes: the component of the molecule’s 
momentum that is directed right before the collision is directed left after the collision. All 
other momentum components remain the same. The block exerts a force to the left on the 
molecule during the collision, so the block experiences an equal-and-opposite force to 
the right.

There are a many molecules bouncing off the left side of the block, producing a 
sizable force to the right on the block. The block does not accelerate to the right, 
however, because there is also a large number of molecules bouncing off the right side of 
the block, producing a force to the left on the block. Averaged over time, the rightward 
and leftward forces balance. Similarly, the forces on the front and back surfaces cancel 
one another.

If all the forces cancel out, how do these collisions give rise to the 
buoyant force? Consider the top and bottom surfaces of the cube. Because the 
buoyant force exerted on the cube by the air is directed vertically up, the 
upward force on the block associated with air molecules bouncing off the 
block’s bottom surface must be larger than the downward force on the block 
from air molecules bouncing off the block’s top surface. Expressing this as an 
equation, and taking up to be positive, we get:

.

The volume of air displaced by the block is the block’s entire volume, which is its area 
multiplied by its height: . Substituting  into the expression above gives:

.

This is the origin of the buoyant force – the net upward force applied to the block by 
molecules bouncing off the block’s bottom surface is larger in magnitude than the net downward 
force applied by molecules bouncing off the block’s upper surface. This is a gravitational effect – 
the buoyant force is proportional to g. One way to think about this is that if the molecules at the 
block’s top surface have a particular average kinetic energy, to conserve energy those at the 
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Figure 9.16: A block of 
height h and area A 
supported by a light string.

Figure 9.17: A magnified 
view of a molecule bouncing 
off the left side of the block.



block’s bottom surface should have a larger kinetic energy because their gravitational potential 
energy is less. Thus, molecules bouncing off the bottom surface are more energetic, and they 
impart a larger average force to the block than the molecules at the top surface. 

Dividing both sides of the previous equation by the area A gives:

.    (Equation 9.5)

Using the symbol P for pressure, we can write Equation 9.5 as:

 . 

We can write this equation in a general way, so that it relates 
the pressures of any two points, points 1 and 2, in a static fluid, where 
point 2 is a vertical distance h below the level of point 1. This gives:

 .    (Equation 9.7: Pressure in a static fluid)

As represented by Figure 9.18, only the vertical level of the point matters. 
Any horizontal displacement in moving from point 1 to point 2 is irrelevant.

EXPLORATION 9.6 – Pressure in the L
Consider the L-shaped container in Figure 9.19. Rank points A, B, and C in 

terms of their pressure, from largest to smallest.

Because pressure in a static fluid depends only on vertical position, points B 
and C have equal pressures, and the pressure at that level in the fluid is 
higher than that at point A. The fact that there is a column of water of height 
d immediately above both points A and C is irrelevant. The fact that C is 
farthest from the opening is also irrelevant. Only the vertical position of the 
points matters.

Essential Question 9.6: Water is placed in a U-shaped tube, as shown in Figure 9.20. 
The tube’s left arm is open to the atmosphere, but the tube’s right arm is 
sealed with a rubber stopper. Rank points A, B, and C based on their 
pressure, from largest to smallest. 
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Figure 9.18: The pressure 
difference between two points is 
proportional to the vertical distance 
between them. Pressure increases 
with depth in a static fluid.

Key ideas: In a static fluid the pressure at any point is determined by that 
point’s vertical position. All points at the same level have the same pressure, 
and points lower down have higher pressure than points higher up.     
Related End-of-Chapter Exercises: 10, 51.

Figure 9.19: A container 
shaped like an L that is filled 
with fluid and open at the top.

Figure 9.20: A U-shaped water-
filled tube that is sealed at the 
top right by a rubber stopper.

The name for the quantity of force per unit area is pressure. 

 or .  (Equation 9.6: Pressure)

 The MKS unit for pressure is the pascal (Pa). .



Answer to Essential Question 9.6: A>B>C. Point A, being the lowest of the three points, has the 
highest pressure. Point C, being the highest of the three points, has the lowest pressure.

9-7 Atmospheric Pressure
At sea level on Earth, standard atmospheric pressure is 101.3 kPa, or about Pa, a 

substantial value. Atmospheric pressure is associated with the air molecules above sea level. Air 
is not very dense, but the atmosphere extends upward a long way so the cumulative effect is large. 
The reason we, and most things, don’t collapse under atmospheric pressure is that in almost all 
situations there is pressure on both sides of an interface, so the forces balance. If you can create a 
pressure difference, however, you can get some interesting things to happen. This is how suction 
cups work, for instance – by removing air from one side the air pressure on the outside of the 
suction cup gives rise to a force that keeps the suction cup attached to a surface. It’s also fairly 
easy to use atmospheric pressure to crush a soda can (see end-of-chapter Exercise 6).

In many situations what matters is the gauge pressure, which is the difference between 
the total pressure and atmospheric pressure. The total pressure is generally referred to as the 
absolute pressure. For instance, the absolute pressure at the surface of a lake near sea level is 1 
atmosphere (1 atm), so the gauge pressure there would be 0. The gauge pressure 10 meters below 
the surface of a lake is about 1 atmosphere (1 atm), taking the density of water to be 1000 kg/m3, 
because:

.

The absolute pressure 10 m below the surface is about 2 atm. This is particularly relevant 
for divers, who must keep in mind that every 10 m of depth in water is associated with an 
additional 1 atmosphere worth of pressure. 

EXAMPLE 9.7 – Under pressure
A plastic box is in the shape of a cube measuring 20 cm on each side. The box is 

completely filled with water and remains at rest on a flat surface. The box is open to the 
atmosphere at the top. Assume atmospheric pressure is Pa and use g = 10 m/s2.

(a) What is the gauge pressure at the bottom of the box?
(b) What is the absolute pressure at the bottom of the box?
(c) What is the force associated with this absolute pressure?
(d) What is the force associated with the absolute pressure acting on the inside surface of 

one side of the box?
(e) What is the net force associated with pressure acting on one side of the box?
(f) What is the net force acting on one side of the box?

SOLUTION
As usual let’s begin with a diagram of the situation, 

shown in Figure 9.21.
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Figure 9.21: A box in the shape of a cube 
that is open at the top and filled with water.



(a) Because the pressure at the top surface is atmospheric pressure, the gauge pressure at 
the bottom is simply the pressure difference between the top of the box and the bottom. Applying 
Equation 9.7, regarding the pressure difference between two points in a static fluid, we get the 
gauge pressure at the bottom:

.

(b) The absolute pressure at the bottom is the gauge pressure plus atmospheric pressure. 
This gives: . Stating this to three 

significant figures would violate the rules about significant figures when adding, so we should 
really round this off to .

(c) To find the force from the pressure we use Equation 9.6, re-arranged to read 
. This gives a force of , directed 

down at the bottom of the box.

(d) Finding the force associated with the side of the box is a little harder than finding it at 
the bottom, because the pressure increases with depth in the fluid. In other words, the pressure is 
different at points on the side that are at different depths. Because the pressure increases linearly 
with depth, however, we can take the average pressure to be the pressure halfway down the side 
of the box. The gauge pressure at a point inside the box that is halfway down the side is: 

 

To find the force associated with the pressure we use absolute pressure, so we get: 
, which we should 

round off to 4000 N directed out from the center of the box.

(e) In part (d) we were concerned with the fluid pressure applying an outward force on 
one side of the box. Now we need to account for the air outside the box exerting an inward force 
on the same side of the box. This force is simply atmospheric pressure multiplied by the area, and 
is thus 4000 N directed inward. The net force associated with pressure is thus the combination of 
the 4040 N force directed out and the 4000 N force directed in, and is thus 40 N directed out. The 
same result can be obtained from .

(f) Because the box and all its sides remain at rest, the net force on any one side must be 
zero, so this 40 N outward force associated with the gauge pressure of the water must be balanced 
by forces applied to one side by the rest of the box.

Related End-of-Chapter Exercises: 27, 28.

Essential Question 9.7: In Example 9.7, we accounted for the change in water pressure with 
depth, but we did not account for the increase in air pressure with depth, which could affect our 
calculation of the inward force exerted by the air on a side of the box. Explain why we can 
neglect this change in air pressure.
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