
Angular momentum
The angular momentum of a spinning object is represented 
by L. 

1. 

2. Angular momentum is a vector, pointing in the direction of 
the angular velocity. 

3. If there is no net torque acting on a system, the system's 
angular momentum is conserved. 

4. A net torque produces a change in angular momentum that 
is equal to the torque multiplied by the time interval during 
which the torque was applied. 
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A figure skater
A spinning figure skater is an excellent example of angular 
momentum conservation. The skater starts spinning with her 
arms outstretched, and has a rotational inertia of Ii and an 
initial angular velocity of ωi. When she moves her arms close 
to her body, she spins faster. Her moment of inertia 
decreases, so her angular velocity must increase to keep the 
angular momentum constant. 

Conserving angular momentum: 

In this process, what happens to the skater's kinetic energy? 
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A bicycle wheel
A person standing on a turntable while holding a bicycle 
wheel is an excellent place to observe angular momentum 
conservation in action. Initially, the bicycle wheel is rotating
about a horizontal axis, and the person is at rest. 

The initial angular momentum about a vertical axis is zero.
If the person re-positions the bicycle wheel so its rotation axis 
is vertical, the wheel exerts a torque on the person during the 
re-positioning that makes the person spin in the opposite 
direction. The angular momenta cancel, so L = 0 at all times 
about a vertical axis.

Flipping the bike wheel over makes the person spin in the 
opposite direction. 



Jumping on a merry-go-round
Let’s analyze a rotational collision.
Sarah, with mass m and velocity v, runs toward a playground 
merry-go-round, which is initially at rest, and jumps on at its 
edge. Sarah and the merry-go-round (mass M, radius R, and 
I = cMR2) then spin together with a constant angular velocity 
ωf. If Sarah's initial velocity is tangent to the circular merry-
go-round, what is ωf? 

Simulation

What concept should we use to attack this problem?
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Jumping on a merry-go-round
The system clearly has angular momentum after the 
completely inelastic collision, but where is the angular 
momentum beforehand?

It’s with Sarah. Much like a force gives rise to a torque, 
Sarah’s linear momentum can be converted to an angular 
momentum relative to an axis through the center of the 
merry-go-round.

In this case,                                              .
The angular momentum is directed clockwise.
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Jumping on a merry-go-round
Conserving angular momentum:

Let’s define counterclockwise to be positive.

We can treat Sarah as a point, a distance R from the center.

Solving for the final angular speed: 
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Rotational Kinetic Energy
Energy associated with rotation is given by an equation 
analogous to that for straight-line motion.

For an object that is moving but not rotating: 

For an object that is rotating only:

For an object that is translating and rotating simultaneously, 
such as a rolling object:
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A figure skater

When the figure skater moves her arms in closer to her 
body while she is spinning, what happens to the 
skater’s rotational kinetic energy?

1. It increases
2. It decreases
3. It must stay the same, because of conservation of 

energy



Kinetic energy

The terms in brackets are the same, so the final kinetic 
energy is larger than the initial kinetic energy, because

.

Where does the extra kinetic energy come from?
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Kinetic energy

The terms in brackets are the same, so the final kinetic 
energy is larger than the initial kinetic energy, because

.

Where does the extra kinetic energy come from?
The skater does work on her arms in bringing them closer to 
her body, and that work shows up as an increase in kinetic 
energy.
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A race

We have three objects, a solid disk, a ring, and a solid 
sphere. If we release them from rest at the top of an 
incline, which object will win the race? Assume the 
objects roll down the ramp without slipping. 

1. The sphere
2. The ring 
3. The disk 
4. It’s a three-way tie 
5. Can't tell - it depends on mass and/or radius. 



Racing shapes
Let’s use conservation of energy to analyze the race between 
two objects that roll without slipping down the ramp.
Let’s analyze a generic object with a mass M, radius R, and a 
rotational inertia of:

Start with the usual five-term energy conservation equation.

Eliminate the terms that are zero:

Insert the expressions for the various terms.
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Racing shapes, continued
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Because the object rolls without slipping, we can use
We can also substitute the 
expression for rotational inertia.

Both the mass and the radius cancel out!

Solving for the speed at the bottom:
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What does this tell us?
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Mass and radius do not matter. All that matters is c. The 
larger the value of c, the slower the object is, because a 
larger fraction of the potential energy is directed toward the 
rotational kinetic energy, with less available for the 
translational kinetic energy.
Simulation



A race

If we take the winner of the rolling race (the sphere) and 
race it against a frictionless block, which object wins 
the race? Assume the sphere rolls without slipping.

1. The sphere
2. The block 
3. It’s a tie 
4. Can't tell
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