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11-6 Angular Momentum 
By now, we have looked at enough analogies between straight-line motion and rotational 

motion that we can simply take a straight-line motion equation, replace the straight-line motion 
variables by their rotational counterparts, and write down the equivalent rotational equation. We 
could also derive the rotational equations following a derivation parallel to the one we used for 
the straight-line motion equation, but the end result would be the same. 

 
Let’s try this for angular momentum. In Chapter 6, we used the following expression for 

the linear momentum, pv , of an object of mass m moving with velocity vv : p mv=v v . 
 
Using the symbol L

v
 to represent angular momentum, we can come up with the 

equivalent expression for angular momentum by replacing mass m by its rotational equivalent, 
rotational inertia I, and velocity vv  by its rotational equivalent ωv : 

L Iω=
v v .   (Equation 11.1: Angular momentum) 

 
We made a number of statements about momentum in Chapter 6. Equivalent statements 

apply to angular momentum, including: 
• Angular momentum is a vector, pointing in the direction of angular velocity. 
• The angular momentum of a system can be changed by applying a net torque.  
• If no net torque acts on a system, its angular momentum is conserved. 

Let’s explore this idea of angular momentum conservation. 
 

EXPLORATION 11.6 – Jumping on the merry-go-round 
A little red-haired girl named Sarah, with mass m, runs toward a playground merry-go-

round, which is initially at rest, and jumps on at its edge. Sarah's velocity vv  is tangent to the 
circular merry-go-round. Sarah and the merry-go-round then spin together with a constant angular 
velocity fωv . The merry-go-round has a mass M, a radius R, has the form of a uniform solid disk. 
Assume that Sarah’s “radius” is small compared to R. The goal of this Exploration is to determine 
an expression for fωv . We can treat this as a collision. 

 
Step 1 – Sketch two diagrams, one showing Sarah running toward the merry-go-round and the 
other showing Sarah and the merry-go-round rotating together after Sarah has jumped on. 
Imagine that you’re looking down on the situation from above. These two diagrams are shown 
in Figure 11.15.  
 
Figure 11.15: On the left is the situation before the 
collision, as Sarah runs toward the merry-go-round, 
while on the right is the situation after the collision, 
with Sarah and the merry-go-round rotating together 
with a constant angular velocity. 
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Step 2 – What kind of momentum does the Sarah/merry-go-round system have, if any, before 
Sarah jumps on the merry-go-round? What about after Sarah jumps on?  After the collision, 
when the system is rotating, the system clearly has a non-zero angular momentum. Before the 
collision, however, it is not obvious that the system has any angular momentum, because nothing 
is rotating. Sarah certainly has a linear momentum, however, because she has a non-zero velocity. 

 
Step 3 – Convert Sarah’s linear momentum before the collision to an angular momentum, 
using a method modeled on the way we convert a force to a torque. Although there is no rotation 
before the collision, we can say that the system has an angular momentum with respect to an axis 
perpendicular to the page that passes through the center of the merry-go-round. Consider how we 
get torque from force, where the magnitude of the torque is given by sinr Fτ φ= . Angular 
momentum is found from linear momentum in a similar fashion, with its magnitude given by: 

sin ( )sinL r p r mvφ φ= = ,     (Eq. 11.2: Connecting angular momentum to linear momentum) 
where φ  is the angle between the line we measure distance along and the 

line of the linear momentum. 
 

Figure 11.16: The lever-arm method to determine Sarah’s angular momentum, 
with respect to an axis passing through the center of the system. merry-go-round. 

 
Relative to the axis through the center of the merry-go-round, the angular 

momentum is: sin(90 )iL R mv R mv= ° =
v

, in a counterclockwise direction. 
 

Step 4 – Apply angular momentum conservation to express fωv , the angular velocity of the 
system after the collision, in terms of the variables above. Angular momentum is conserved 
because there are no external torques acting on the Sarah/merry-go-round system, relative to a 
vertical axis passing through the center of the turntable. We will justify this further in section 11-
7. Thus, we can say: Angular momentum before the collision = angular momentum afterwards. 

 
The angular momentum afterwards is f fL Iω=

v v . The system’s rotational inertia after the 
collision is the sum of the rotational inertias of Sarah, and the ½ MR2 of the merry-go-round. 
Sarah’s “radius” is small compared to R, so we treat Sarah as a point, assuming that all her mass 
is the same distance, R , from the center of the turntable. Sarah’s rotational inertia is thus 2mR . 

Thus, the rotational inertia of the system after the collision is 2 21
2

I MR mR= + . 

Taking counterclockwise to be positive, angular momentum conservation gives: i fL L=
v v

. 

2 21
2f fR mv I MR mRω ω⎛ ⎞+ = = +⎜ ⎟

⎝ ⎠
v v . 

Solving for the final angular velocity of the system gives: 

1
2

f
mv

MR mR
ω = +

+

v         or, 1
2

f
mv

MR mR
ω =

+

v  directed counterclockwise. 

Key ideas: Linear momentum converts to angular momentum in the same way force converts to 
torque. Also, we apply momentum conservation ideas to rotational collisions in the same way we 
analyze collisions in one and two dimensions.    Related End-of-Chapter Exercises: 32, 34, 59. 
 
Essential Question 11.6: Is it possible for Sarah, with the same initial speed, to jump onto the 
merry-go-round at the same point, but not make it spin? If so, how could she do this? 
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Answer to Essential Question 11.6: One way for Sarah to jump onto the merry-go-round, 
without causing the merry-go-round to spin, is for Sarah to direct her velocity at the center of the 
merry-go-round, instead of tangent to it. If Sarah ran directly toward the center of the merry-go-
round she would have no angular momentum before the collision and there would be no reason 
for the system to spin after the collision.  
 

11-7 Considering Conservation, and Rotational Kinetic Energy 
 
In step 4 of Exploration 11.6, we stated that the angular momentum of the system 

consisting of Sarah and the merry-go-round was conserved, because no external torques were 
acting on the system. Let’s justify that statement. We do not have to concern ourselves with 
vertical forces, such as the force of gravity or the normal force applied to the merry-go-round by 
the ground, because vertical forces give no torque about a vertical axis of rotation. We also do not  
have to concern ourselves with the force that Sarah exerts on the merry-go-round, or the equal-
and-opposite force the merry-go-round exerts on Sarah, because the system we’re considering 
consists of the combination of Sarah and the merry-go-round, so those are internal forces and 
cancel one another. Still, let’s examine those forces a little. 

  
Individual free-body diagrams for Sarah and the merry-go-round when Sarah first jumps 

on the merry-go-round are shown in Figure 11.17. Through some combination of friction between 
her shoes and the merry-go-round, and a contact force between her hands and any handholds on 
the merry-go-round, there is a force component that acts to the left on Sarah from the merry-go-
round (this reduces her speed), and an equal-and-opposite force component that acts to the right 
on the turntable by Sarah (providing the torque that gives the merry-go-round an angular 
acceleration). However, the turntable does not accelerate to the right. This is because there is a 
horizontal force applied on the turntable by whatever the turntable’s axis is connected to, which 
we can consider to be the Earth. As shown in Figure 11.17, the Sarah/merry-go-round system has 
a net external force acting on it at this point, which is why the linear momentum of the system is 
not conserved. However, this net external force gives rise to no torque about an axis through the 
center of the merry-go-round, because the force passes through that axis. Because there is no net 
external torque acting on the system, the system’s angular momentum is conserved. 

 

 
Figure 11.17: Free-body diagrams for Sarah, the merry-go-round, and the system consisting of 
Sarah and the merry-go-round together, when Sarah initially makes contact with the merry-go-
round. Vertical forces are ignored in this overhead view. 
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Rotational Kinetic Energy 
Let’s now move from the rotational equivalent of linear momentum to the rotational 

equivalent of translational kinetic energy. The equation we used previously for kinetic energy is 
K = ½ mv2. We can find the equivalent expression for kinetic energy in a rotational setting by 
replacing mass m by rotational inertia I, and speed v by angular speed ω . The kinetic energy of a 
purely rotating object is thus given by: 

21
2

K Iω= .   (Equation 11.3: Rotational kinetic energy) 

 
Let’s make sure our substituting-the-equivalent-rotational-variables method of arriving at 

rotational equations makes sense. Consider, for instance, a uniform rod that can rotate about an 
axis through one end. If we hold the rod horizontal and then release it from rest, the rod swings 
down. What is the rod’s kinetic energy at a particular instant, say at the instant shown in Figure 
11.18 (a)? One thing we could do is, as shown in Figure 11.18 (b), break the rod into small pieces 

of mass im , determine the speed iv  of each piece, find the kinetic energy 21
2 i im v of each piece, 

and then add up all these kinetic energies to find the total kinetic energy:  
21

2 i iK m v=∑ .  

 
Because the speed of each piece is different, while the angular speed of each piece is the 

same, let’s write the sum in terms of the rod’s angular speed instead:  

( )21
2 i iK m r ω=∑ . 

 
 If we bring the constants of ½ and 2ω  out in front of the sum, our expression becomes 
2 21

2 i iK m rω= ∑ , which we can write as 21
2

K Iω=  , because the definition of rotational inertia 

is 2
i iI m r=∑ . This expression for the kinetic energy agrees with what we came up with above 

(and it works for any rotating object, not just a rod!). 
 

 
Figure 11.18: (a) A rod that has been released from rest when it was horizontal is now moving. 
We can find its kinetic energy by breaking the rod into small pieces, as shown in (b), finding the 
kinetic energy of each piece, and adding these kinetic energies together to find the net kinetic 
energy. 

 
Essential Question 11.7: In Chapter 7 we used names such as “elastic collision” and “inelastic 
collision” to classify various collisions. Under what category would the Sarah/merry-go-round 
collision described in the previous Exploration fall? 
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Answer to Essential Question 11.7: Because Sarah and the merry-go-round stick together and 
move as one after the collision, the collision is completely inelastic. 
 

11-8 Racing Shapes 
Let’s make use of the expression for rotational kinetic energy we derived in section 11-7, 

and apply it to analyze the motion of an object that rolls without slipping down a slope. The 
analysis can be done in terms of energy conservation (as we will do), or in terms of thinking 
about forces and torques and applying Newton’s Second Law and Newton’s Second Law for 
Rotation. The analysis in those terms can be found on the accompanying web site. 

 
EXPLORATION 11.8 – Racing shapes 

You have various shapes, including a few different solid spheres, a few rings, and a few 
uniform disks and cylinders. The objects have various masses and radii. When you race the 
objects by releasing them from rest two at a time, they roll without slipping down an incline of 
constant angle. Our goal is to determine which object reaches the bottom of the incline in the 
shortest time. Let’s analyze this for a generic object of mass M, radius R, and rotational inertia, 
about an axis through the center of mass, of 2cMR . 

 
Step 1 – Sketch a free-body diagram for the object as it rolls without slipping down the ramp. 
A diagram and a free-body diagram is shown in Figure 11.19. The Earth applies a downward 
force of gravity to the object, while the incline applies a contact force. We split the contact force 
into two forces, a normal force perpendicular to the incline and a force of friction directed up the 
slope. This is a static force of friction, because the object does not slip as it rolls. The force of 
static friction is directed up the slope, not because the motion of the object is down the slope, but 
because the object has a clockwise angular acceleration (its angular velocity is clockwise and 
increasing as it rolls down). Taking an axis through the center of the object, the static force of 
friction is the only force that can provide the torque associated with this angular acceleration – the 
other two forces pass through the center of the object and thus give no torque about that axis. 

 
Figure 11.19: The diagram and free-body diagram of an object 
as it rolls without slipping down a ramp. A force of friction 
directed up the ramp provides the clockwise torque associated 
with the object’s clockwise angular acceleration. The force of 
friction is static because the object does not slip as it rolls. 

 
Step 2 – Let’s analyze this in terms of energy conservation, 
using the same conservation of energy equation we used in previous chapters. Start by 
eliminating the terms that are zero in the equation. Recall that the energy conservation equation 
is: i i nc f fK U W K U+ + = + .The object is released from rest, so the initial kinetic energy iK  is 
zero. We can also define the bottom of the incline to be the zero level for gravitational potential 
energy, so the final potential energy is 0fU = . We also have no work being done by non-
conservative forces. This may seem somewhat counter-intuitive at first, because static friction 
acts on each object as it rolls down the hill, but it is kinetic friction that is associated with a loss 
of mechanical energy. Static friction, because it involves no relative motion (and therefore no 
displacement to use in the work equation), does not produce a loss of mechanical energy. 
 

The conservation of energy equation can thus be written: i fU K= . 
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Let’s say that each object starts from a height h above the bottom of the incline. Because 
the zero for potential energy is at the bottom, the initial gravitational potential energy can be 
written as: iU Mgh= . Our energy conservation term can thus be written fMgh K= . 

 
Step 3 – Split the kinetic energy term into two pieces, one representing the translational kinetic 
energy and one representing the rotational kinetic energy. Express the rotational kinetic 
energy in terms of M and fv (the speed at the bottom of the incline) and solve for fv . First, let’s 
think about why considering two types of kinetic energy is appropriate. When an object’s center-

of-mass is moving, the object has translational kinetic energy 21
2transKE Mv= . When an object is 

only rotating, it has a rotational kinetic energy 21
2rotKE Iω= . A rolling object, however, is both 

translating as well as rotating, and thus it has both these forms of kinetic energy.  

Our energy equation now becomes: 2 21 1
2 2f fMgh Mv Iω= + . 

 
Let’s make two substitutions to rewrite the rotational kinetic energy term. First, we can 

use our expression for rotational inertia, 2I c MR= . Then, we use the relationship between speed 
and angular speed that applies to rolling without slipping,: /v Rω = . Our energy equation is now: 

2
2 2

2
1 1
2 2

f
f

v
Mgh Mv c MR

R
= + . 

Note that all factors of mass M and radius R cancel, leaving: 2 21 1
2 2f fgh v cv= + . 

 

Solving for fv , the object’s speed at the bottom of the incline, gives: 2
1f

ghv
c

=
+

. 

This result is consistent with the 2fv gh=  result we obtained in previous chapters (for 
the speed of a ball dropped from rest through a height h, for instance), giving us some confidence 
that the answer is correct. 

 
So, which object wins the race? The winner is the object with the highest speed at the 

bottom, which requires the smallest value of c. Recall that c is the numerical factor in the moment 
of inertia, 2I c MR= . For the various shapes we were racing we have c = 2/5 for solid spheres; 
c = 1/2 for uniform disks and cylinders; and 1c =  for rings. Thus, in the rolling races, a solid 
sphere beats any disk (or cylinder) and any ring, while any disk or cylinder beats any ring. 

 
Key ideas: We can apply energy conservation in an analysis of rotating, or rolling, objects, just as 
we did in previous situations. Our energy conservation equation from Chapter 7 needs no 
modification. All we have to do is to use the expression for the kinetic energy of rotating objects: 

21
2rotKE Iω= .    Related End-of-Chapter Exercises: 7, 8, 10. 

 
Essential Question 11.8: In Exploration 11.8, we determined that, in the races of rolling objects, 
a solid sphere would beat a disk or cylinder, which would beat a ring. What if we raced two of the 
same kind of object against one another (such as a sphere versus a sphere)? Which object would 
win? The object with the larger mass, smaller mass, larger radius, or smaller radius? 



Chapter 11 – Rotation II: Rotational Dynamics Page 7 

Answer to Essential Question 11.8: Review the analysis in step 3 of Exploration 11.8. Both the 
mass and radius cancel out of the energy conservation equation. This tells us, surprisingly, that 
the mass and radius are irrelevant. In other words, all uniform solid spheres roll the same, all 
uniform solid disks (or cylinders) roll the same, and all rings roll the same – all the races 
involving two of the same kind of object end in a tie. 

 

11-9  Rotational Impulse and Rotational Work 
Let’s continue our method of determining rotational equations from their straight-line 

motion counterparts by writing down expressions for rotational impulse and rotational work. In 
Chapter 6, the impulse relationship we came up with was:  netp F t∆ = ∆

vv . In words, this equation 
tells us that the change in momentum an object experiences is equal to the product of the net force 
applied to the object multiplied by the time interval over which it is applied. Transforming this to 
a rotational setting, an object’s change in angular momentum is equal to the net torque it 
experiences multiplied by the time interval over which that net torque is applied: 

netL tτ∆ = ∆
v v .    (Equation 11.4: Rotational impulse) 

 
Similarly, we can consider the concept of work in a rotational setting. For straight-line 

motion, if we meld the work equation with the work-energy theorem we get:  
cosnet net netK W F r F r φ∆ = = •∆ = ∆

r r .   (Equation 6.8: Work-kinetic energy theorem) 
 
In chapter 6, we used the variable θ to represent the angle between the net force netF

v
 and 

the displacement r∆v . We’ll use φ  here instead because in this chapter we’re using θ to represent 
the angular position of a rotating object. 

 
To find the expression for work in a rotational setting, start with equation 6.8. Replace 

force F
v

by its rotational equivalent, τv , and replace displacement r∆v by its rotational equivalent 
θ∆
v

. This gives: 
cosnet net netK W τ θ τ θ φ∆ = = •∆ = ∆

vv .  (Equation 11.5: Rotational work) 
 
If the dot product notation confuses you, feel free to ignore it! Because we’ll deal only 

with rotation about one axis (rotation in one dimension), we can make Equation 11.5 simpler: 
net netK W τ θ∆ = = ± ∆ . (Eq. 11.6: Work-kinetic energy theorem, for rotation) 

We use the plus sign when the torque is in the same direction as the angular 
displacement, and the minus sign when the torque is opposite to the direction of the angular 
displacement. 

 
EXAMPLE 11.9 – Comparing the motions 

Note – compare this example to Example 6.3. The methods of analysis in that example 
and this one are virtually identical. Two objects, A and B, are initially at rest. The objects have 
the same mass and radius. Object A is a uniform solid disk, while object B is a bicycle wheel that 
can, for this purpose, be considered to be a ring. Each object rotates with no friction about an axis 
through its center, perpendicular to the plane of the disk/wheel. Identical net torques are then 
applied to the objects by pulling on strings wrapped around their outer rims. Each net torque is 
removed once the object it is applied to has accelerated through one complete rotation.   

(a) After the net torques are removed which object has more kinetic energy?  
(b) After the net torques are removed which object has more speed? 
(c) After the net torques are removed, which object has more momentum? 
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SOLUTION 
(a) A diagram of this situation is shown in Figure 11.20. Because the objects start from 

rest, the angular displacement of each is in the same direction as the net torque 
(counterclockwise, in the case shown in Figure 11.20). Because the objects experience equal 
torques and equal angular displacements the work done on the objects is the same, by Equation 
11.6. This means the change in kinetic energy is the same for each, and since they both start with 
no kinetic energy their final kinetic energies are equal. 

 
Figure 11.20: Diagrams of the disk and wheel. Each object starts from 
rest and rotates about an axis perpendicular to the page passing through 
the center of the object. The force exerted on the string wrapped 
around the object is removed once the object has accelerated through 
exactly one revolution. 

 
(b) Unlike Example 6.3, in which the objects had different masses, these objects have the 

same mass M and the same radius R. This is a rotational situation, however, so what matters is 
how their rotational inertias compare. Object A, a uniform solid disk rotating about an axis 

through its center, has a rotational inertia of 21
2AI MR= . Object B, which we are treating as a 

ring, has a rotational inertia of 2
BI MR= . Thus the relationship between the rotational inertias is 

1
2A BI I= . If the objects have the same kinetic energy but B has a larger rotational inertia then A 

must have a larger angular speed. Setting the final kinetic energies equal, A BK K= , gives: 
2 21 1

2 2A A B BI Iω ω= . 

Canceling factors of 1
2

 gives: 2 2
A A B BI Iω ω=  

Bringing in the relationship between the rotational inertias gives: 2 21
2 B A B BI Iω ω= . 

This gives 2A Bω ω= , so object A has a larger angular speed than object B. 
 
(c) One way to find the angular momenta is as follows: 

( )1 1 1 12
2 2 2 2A A A B A B B B B BL I I I I Lω ω ω ω= = = = =

v vv v v v . 

Thus, object B, the wheel, has a larger angular momentum than object A, the disk. As in 
Example 6.3, we can understand this result conceptually. The change in angular momentum is the 
net torque multiplied by the time over which the net torque acts. Both objects experience identical 
torques, but because B has a larger rotational inertia, B takes more time to spin through one 
revolution than A does. Because the torque is applied to B for a longer time, B’s change in angular 
momentum, and final angular momentum, has a larger magnitude than A’s. 

 
Related End-of-Chapter Exercises: 22, 23. 

 
Essential Question 11.9: Return to the situation described in Example 11.9, but now object B is 
replaced by object C, a bicycle wheel of the same mass as object A but with a different radius. 
Once again, we can treat the bicycle wheel as a ring. The situation described in Example 11.9 is 
repeated, but this time objects A and C end up with the same rotational kinetic energy and the 
same angular momentum. How is this possible? Be as quantitative about your answer as you can. 
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