
Chapter 11 – Rotation II: Rotational Dynamics Page 1 

 
 
 
 
 
 
 
 
 

  11-2 A General Method, and Rolling without Slipping 
Let’s begin by summarizing a general method for analyzing situations involving 

Newton’s Second Law for Rotation, such as the situation in Exploration 1.1. We will then explore 
rolling. We will tie together the two themes of this section in sections 11-3 and 11-4. 

 
A General Method for Solving a Newton’s Second Law for Rotation Problem 
 These problems generally involve both forces and torques. 

1. Draw a diagram of the situation. 
2. Draw a free-body diagram showing all the forces acting on the object. 
3. Choose a rotational coordinate system. Pick an appropriate axis to take torques about, and 

then apply Newton’s Second Law for Rotation ( Iτ α∑ = vv ) to obtain a torque equation. 
4. Choose an appropriate x-y coordinate system for forces. Apply Newton’s Second Law 

( F ma∑ =
v v ) to obtain one or more force equations. The positive directions for the 

rotational and x-y coordinate systems should be consistent with one another. 
5. Combine the resulting equations to solve the problem. 

 
 

Rolling without Slipping 
Let’s now examine a rolling wheel, which could be a bicycle wheel or a wheel on a car, 

truck, or bus. We will focus on a special kind of rolling, called rolling without slipping, in which 
the object rolls across a surface without slipping on that surface. This is actually what most 
rolling situations are, although our analysis would not apply to situations such as you spinning 
your car wheels on an icy road. Let’s consider various aspects of rolling without slipping. 

 
When we dealt with projectile motion in Chapter 4, we generally split the motion into 

two components, which were usually horizontal and vertical. To help understand rolling, we will 
follow a similar process. Rolling can be viewed as a combination, or superposition, of purely 
translational motion (moving a wheel from one place to another with no rotation) and purely 
rotational motion (only rotation with no movement of the center of the wheel). In the special case 
of rolling without slipping, there is a special connection between the translational component of 
the motion and the rotational component. Let’s explore that connection. 

 
EXPLORATION 11.2 – Rolling, rolling, rolling 

We have a wheel of radius R that we will roll across a horizontal floor so that the wheel 
makes exactly one revolution. The wheel rolls without slipping on the floor. 

 
Step 1 – Consider the rotational part of the motion only (focus on the fact that the wheel spins 
around exactly once). What distance does a point on the outer edge of the wheel travel because 
of this spinning motion?  
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Because we’re ignoring the rotational motion, the distance traveled by a point on the outer edge 
of the wheel because of the spin is 
equal to the circumference of the 
wheel itself. This is a distance of 
2 Rπ . See the top diagram in Figure 
11.4. 
 
Figure 11.4: A pictorial 
representation of how the rotational 
component and the translational 
component of the motion combine 
to produce the interesting shape of 
the path traced out by a point on the 
outer edge of the wheel that is 
rolling without slipping. This shape 
is known as a cycloid. 

 
Step 2 – Now consider the 
translational part of the motion 
only (i.e., ignore the fact that the 
wheel is spinning, and imagine 
that we simply drag the wheel a 
particular distance without 
allowing the wheel to rotate). What 
is the distance that any point on the wheel moves if we drag the wheel a distance equal to that it 
would move if we rolled it so it rolled through exactly one revolution? To determine what this 
distance is, imagine that we placed some double-sided tape around the wheel before we rolled it, 
and that the tape sticks to the floor. This is shown in the middle diagram in Figure 11.4. Rolling 
the wheel through one revolution lays down all the tape on the floor, covering a distance that is 
again equal to the circumference of the wheel. Thus, focusing on the translational distance only, 
the translational distance moved by every point on the wheel as the wheel rolls through one 
revolution is 2 Rπ . 
 
Step 3 – Assuming the rolling is done at constant speed, compare the speed of a point on the 
outer rim, associated only with the wheel’s rotation, to the translational speed of the wheel’s 
center of mass.  We can find these speeds by dividing the appropriate distances by the time 
during which the motion takes place. Because the distances associated with the two components 
of the motion are equal, and the time of the motion is the same for the two components, these two 
speeds are equal. 

 
Key ideas for rolling: Rolling can be considered to be a superposition of a pure translational 
motion and a pure rotational motion. In the special case of rolling without slipping, the distance 
moved by a point on the outer edge of a wheel associated with the rotational component is equal 
to the translational distance of the wheel. The speed of a point on the outer edge because of the 
rotational component is also equal to the translational speed of the wheel.                                  
Related End-of-Chapter Exercises: 4, 17. 
 
Essential Question 11.2: Different points on a wheel that is rolling without slipping have 
different speeds. Considering one particular instant, which point on the wheel is moving slowest? 
Which point is moving the fastest? 
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Answer to Essential Question 11.2: As we will investigate in more detail in section 11-3, when 
a wheel rolls without slipping, the point at the bottom of the wheel has the smallest speed (the 
speed there is zero, in fact), while the point at the top of the wheel is moving fastest. 
 

  11-3 Further Investigations of Rolling 
Let’s continue our analysis of rolling, starting by thinking about the velocity of various 

points on a wheel that rolls without slipping. We will then go on to investigate rolling spools. 
 

EXPLORATION 11.3 – Determining velocity 
Let’s turn now from thinking about speeds to thinking about velocities. Consider a wheel 

rolling without slipping with a constant translational velocity vv  across a level surface. For each 
point below, determine the point’s net velocity by combining, as vectors, the point’s translational 
velocity (the velocity associated with the translational component of the motion) 
with its velocity because of the rotational component of the motion. 

 
Step 1 – Find the net velocity of the center of the wheel. 

Considering the rotational motion to take place about an axis through the 
center of the wheel, the center of the wheel therefore has no rotational velocity 
(because rotv rω= , and r = 0). Thus the net velocity of the center of the wheel is its 
translational velocity, vv , as shown in Figure 11.5. 

 
Figure 11.5: The translational (red), rotational (blue), and net velocities (purple) of 
various points on the wheel. The net velocity at a point is a vector sum of the 
translational and rotational velocities. 

 
Step 2 – Find the net velocity of the point at the very top of the wheel. 

Here we use the fact that the rotational speed is equal to the translational speed, so we are 
adding two velocities of equal magnitude. At the top of the wheel the velocities also point in the 
same direction, so the net velocity is 2vv , as shown in Figure 11.5. 

 
Step 3 – Find the net velocity of the point at the very bottom of the wheel.  

As shown in Figure 11.5, the rotational velocity exactly cancels the translational velocity, 
since the vectors point in opposite directions and have equal magnitudes. The net velocity of that 
point is zero – the point is instantaneously at rest! This is a special condition that is characteristic 
of rolling without slipping. No slipping implies no relative motion between the surfaces in 
contact, which means the point at the bottom of the wheel that is in contact with the road surface 
is at rest. 

 
Key ideas for rolling: The net velocity of a point on a rolling wheel can be found by adding, as 
vectors, the point’s translational velocity and its rotational velocity. In the special case of a wheel 
rolling without slipping with a translational velocity vv , the net velocity of the center of the wheel 
is vv ; while that of the point at the top of the wheel is 2vv . A point on the outer edge of the wheel 
actually comes instantaneously to rest when it reaches the bottom of the wheel. 
Related End-of-Chapter Exercises: 5, 6. 

 
EXAMPLE 11.3 – Unrolling a ribbon from a spool 

A long ribbon is wrapped around the outer edge of a spool. You pull horizontally on the 
end of the ribbon so the ribbon starts to unwind from the spool as the spool rolls without slipping 
across a level surface. 



Chapter 11 – Rotation II: Rotational Dynamics Page 4 

(a) When you have moved the end of the ribbon through a horizontal distance L, how far 
has the spool moved? 
(b) Does your answer change if the ribbon is instead wrapped around the spool’s axle, 
which has a radius equal to half the radius of the spool? If so, how does the answer 
change? 
 

SOLUTION 
(a) A diagram of the situation is shown in Figure 11.6. Once again, we can think of the 

spool’s rolling motion as a combination of its translational motion and its rotational motion. We 
can thus say that the end of the ribbon moves because (a) the spool has a translational motion, and 
(b) the spool is rotating. The speed of the ribbon matches the speed of the top of 
the spool, because there is no slipping between the ribbon and the spool. 
Recalling the result from Exploration 11.3, the top of the spool has a velocity 
twice that of the center of the spool. Putting these facts together means that the 
center of the spool has a velocity half that of the end of the ribbon at any instant, 
and so the spool covers a distance of / 2L , half the distance covered by the end 
of the ribbon. 

 
Figure 11.6: A spool is rolling without slipping to the right because you are 
pulling, to the right, on the red ribbon that is wrapped around the spool. 
 

(b) What if the ribbon is wrapped around the spool’s axle and you move the end of the 
ribbon through a distance L? The answer changes because the rotational contribution to the net 
velocity changes. As shown in Figure 11.7, the ribbon now comes off the axle at the top of the 
axle, at a point halfway between the edge and the center of the spool. The net velocity at that 
point on the spool is 1.5 times the velocity of the center of the spool: the 
translational velocity is equal to the velocity of the center, while the 
rotational velocity is half that of the center, because at a radius of R/2 we 
have:  

 1 1
2 2 2rot trans
Rv R vω ω= = = . 

 
Figure 11.7: The ribbon is wrapped around the axle of the spool, which 
has a radius half that of the spool. The ribbon comes off the axle at the top. 
 

Putting it another way, the velocity of the center of the spool is now two-thirds of the 
velocity of the end of the ribbon. If the end of the ribbon travels a distance L, the spool translates 
through a distance of 2L/3. 

 
Related End-of-Chapter Exercises: 18, 19. 

 
Essential Question 11.3: In a situation similar to that in Figure 11.7, you pull to the right on a 
ribbon wrapped around the axle of a spool. This time, however, the ribbon is wound so it comes 
away from the spool underneath the axle, as shown in Figure 11.8. When 
you pull to the right on the ribbon, the spool rolls without slipping. In 
which direction does it roll? Sketch a free-body diagram of the spool to 
help you think about this. 

 
Figure 11.8: A ribbon is wrapped around the axle of the spool so the 
ribbon comes off the axle below the axle. 
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Answer to Essential Question 11.3: Many people focus on the counterclockwise torque, relative 
to an axis perpendicular to the page that passes through the center of the spool, 
exerted by the force of tension and conclude that the spool rolls to the left. 
Before jumping to conclusions, however, draw the free-body diagram (after 
drawing your own, see Figure 11.9). As usual there is a downward force of 
gravity and an upward normal force. Horizontally there is a force of tension, 
directed right, exerted by the ribbon. With no friction, the force of tension 
would cause the spool to move right and spin counterclockwise, so the bottom 
of the spool would move right with respect to the horizontal surface. Friction 
must therefore be directed left to oppose this, and, because we know the spool 
rolls without slipping, the force of friction must be static friction. 

 
Figure 11.9: The free-body diagram of the spool. 
 

Now we have the complete free-body diagram, we can see that the answer to the question 
is not obvious. There is one force left and one force right – which is larger? Relative to an axis 
through the center, there is one torque clockwise and one counterclockwise – which is larger? A 
quick way to get the answer is to consider an axis perpendicular to the page, passing through the 
point where the spool makes contact with the horizontal surface. Relative to this axis, three of the 
four forces give no torque, and the torque from the tension in the string is in a clockwise 
direction. Clockwise rotation of the spool, relative to the point where the spool touches the 
surface, is consistent with the spool rolling without slipping to the right. This is opposite to what 
you would conclude by focusing only on the torque about the center from the force of tension. 
The spool rolls to the right. 

 

11-4 Combining Rolling and Newton’s Second Law for Rotation 
Let’s now look at how we can combine torque ideas with rolling-

without-slipping concepts. 
 

EXPLORATION 11.4 – A vertical force but a horizontal motion 
A spool of mass M has a string wrapped around its axle. The radius of 

the axle is half that of the spool. An upward force of magnitude FT is exerted 
on the end of the string, as shown in Figure 11.10. This causes the spool, which 
is initially at rest, to roll without slipping as it accelerates across the level 
surface. 

 
Figure 11.10: An upward force is exerted on the string wrapped around the 
axle of the spool. 
 

In which direction does the spool roll? Which horizontal force is responsible for the 
spool’s horizontal acceleration? Let’s begin by drawing a free-body diagram of the spool. Figure 
11.11 shows a partial free-body diagram, showing only the vertical forces acting on the spool. 
There is a downward force of gravity acting on the spool, and an upward force of tension applied 
by the string (note that FT  must be less than or equal to Mg, so the spool has no vertical 
acceleration). There is also an upward normal force, required to balance the vertical forces. 
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Figure 11.11: A partial free-body diagram of the spool, showing the 
vertical forces acting on it. 

 
Is there a horizontal force? If there is, what could it be? Let’s go 

back and think about what is interacting with the spool. The force of 
gravity accounts for the interaction between the Earth and the spool, and 
the force of tension accounts for the interaction between the string and the 
spool. The only interaction left is the interaction between the surface and 
the spool. The surface exerts a contact force on the spool. Remember that 
we generally split the contact force into components, the normal force 
(which we have accounted for) and the force of friction (which we have 
not). 

 
If there is a horizontal force acting, it can only be a force of friction. Do we need friction 

in this situation? Consider what would happen if the free-body diagram shown in Figure 11.11 
was complete, and there was no friction. Taking an axis perpendicular to the page through the 
center of the spool, the tension force would give rise to a counterclockwise torque. Because the 
net force acting on the spool would be zero, however, the spool would simply spin 
counterclockwise without moving. This is inconsistent with the rolling-without-slipping motion 
we are told is occurring. There must be a force of friction acting on the spool to cause the 
horizontal motion. 

 
Note that, without friction, the bottom of the spool rotates to the right relative to the 

surface. The force of friction must therefore be directed to the left, acting to oppose the relative 
motion that would occur without friction. Because the force of friction is the only horizontal force 
acting on the spool, the spool accelerates to the left.  

 
Is the force of friction kinetic friction or static friction? Because the spool 

is rolling without slipping, and the bottom of the spool is instantaneously at rest 
relative to the surface it is in contact with, the force of friction is the static force 
of friction. This may sound counter-intuitive, since there is relative motion 
between the spool as a whole and the surface, but it is very similar to the walking 
(without slipping) situation that we thought about in Chapter 5. The complete 
free-body diagram for the rolling-without-slipping situation is shown in Figure 
11.12. 

 
Figure 11.12: The complete free-body diagram of the spool. 

 
Key ideas for rolling without slipping: Rolling without slipping often involves a force of 
friction, which must be a static force of friction. The static force of friction is often (although not 
always) in the direction of motion.   Related End-of-Chapter Exercises: 3, 50. 

 
 

Essential Question 11.4: In the situation shown in Figure 11.13, you pull 
on the end of a ribbon wrapped around the axle of a spool. Your force is 
exerted in the direction shown. If the spool rolls without slipping, in 
which direction does the spool roll?  

 
Figure 11.13: A ribbon is wrapped around the axle of the spool so the 
ribbon comes off the axle in the direction shown. 
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Answer to Essential Question 11.4: Once again, it is simplest to take torques about an axis 
perpendicular to the page, passing through the point at which the spool touches the ground. The 
only force giving rise to a torque about this point is the tension in the ribbon, which gives a 
clockwise torque. If the spool rotates clockwise with respect to its bottom point, the motion of the 
spool is to the right. 

 

11-5 Analyzing the Motion of a Spool 
 

EXPLORATION 11.5 – Continuing the analysis of the rolling spool 
Let’s return to the situation described in Exploration 11.4, and focus in 

particular on the free-body diagram in Figure 11.12. Our goal is to determine the 
magnitude of the spool’s acceleration in terms of FT and M. The spool consists of 
two disks, each of mass M/3  and radius R, connected by an axle of mass M/3 
and radius R/2. 

 
Figure 11.12: The complete free-body diagram of the spool. 

 
Step 1 – Apply Newton’s Second Law for the horizontal forces. 

Because the spool accelerates left, take left to be the positive direction. 
x xF M a∑ =
v v . 

 
Because the acceleration is entirely in the x-direction, we can replace xav  

by av . Evaluating the left-hand side of this expression with the aid of Figure 11.13 gives: 
sF M a+ = + . 

 
Step 2 – Find the expression for the spool’s rotational inertia about an axis perpendicular to 
the page passing through the center of the spool. 

Why are we doing this? Well, we’ll need to apply Newton’s Second Law for Rotation to 
solve this problem, and that involves the spool’s rotational inertia. To find the spool’s rotational 
inertia, we can use the expression for the rotational inertia of a solid disk or cylinder (I = ½ mr2) 
about the center . Let’s apply this equation to the three pieces of the spool and add them together 
to find the net rotational inertia.  

Each of the two disks contributes 2 21 1
2 3 6

M R MR⎛ ⎞ =⎜ ⎟
⎝ ⎠

 to the rotational inertia. 

The axle contributes 
2

21 1
2 3 2 24

M R MR⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.  

The total rotational inertia is 2 2 2 2 21 1 1 9 3
6 6 24 24 8

I MR MR MR MR MR= + + = = . 

 
Step 3 – Apply Newton’s Second Law for Rotation to obtain a connection between the force of 
friction and the upward force TF

v
 applied to the string.  

Taking torques about an axis perpendicular to the page and passing through the center of 
the spool is a good way to do this, since the force of gravity and the normal force pass through 
this axis and therefore give no torque about that axis. Since the spool has a counterclockwise 
angular acceleration let’s take counterclockwise to be positive for torques. Applying Newton’s 
Second Law for Rotation gives: 
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Iτ α∑ = vv . 
Referring to Figure 11.13, and using the equation sinr Fτ θ=v , we have: 

( ) ( )sin 90 sin 90
2 T S
R F R F Iα+ ° − ° = + . 

Recognizing that ( )sin 90 1° = , and substituting the expression for the spool’s rotational 
inertia we found above, gives: 

23
2 8T S
R F R F MR α+ − = + . 

Canceling a factor of R gives: 1 3
2 8T SF F MRα+ − = + . 

 
Step 4 – What is the connection between the spool’s acceleration and its angular acceleration? 

For rolling without slipping, the connection between the acceleration and the angular 
acceleration is a Rα= , although it is always a good idea to check whether the positive direction 
for the straight-line motion is consistent with the positive direction for rotation. In our case they 
are consistent, since we chose them based on the motion. If we had reversed one of the positive 
directions, however, we would have had a negative sign in the equation. 

 
Step 5 – Combine the results above to determine the spool’s acceleration in terms of FT and M. 
Let’s first substitute a Rα= into our final expression from step 3, to get: 

1 3
2 8T SF F Ma+ − = + . 

In step 1, we determined that sF M a= , so we get: 
1 3
2 8TF Ma Ma+ − = + ; 

1 11
2 8TF Ma+ = + ; 

4
11

TFa
M

=v  ,directed to the left. 

 
Key idea: Solving a rolling-without-slipping problem often involves analyzing the rotational 
motion, analyzing the one-dimensional motion, and combining the analyses.                      
Related End-of-Chapter Exercises: 51, 53. 

 
Essential Question 11.5: Consider a hard ball that is rolling without slipping across a smooth 
level surface. If the ball maintains a constant velocity, in what direction is the static force of 
friction acting on the ball? Consider the three-possible free-body diagrams for the ball in Figure 
11.14 below, and state which free-body diagram is appropriate for this situation. 

 
 

Figure 11.14: Possible free-body 
diagrams for a ball rolling, without 
slipping, at constant velocity to the right 
across a horizontal surface. 
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