Equilibrium

For an object to remain in equilibrium, two conditions must be met.

The object must have no net force: $\quad \sum \vec{F}=0$
and no net torque: $\quad \sum \vec{\tau}=0$

Worksheet

A uniform rod with a length L and a mass m is attached to a wall by a hinge at the left end. A string will hold the rod in a horizontal position; the string can be tied to one of three points, lettered A-C, on the rod. The other end of the string can be tied to one of three hooks, numbered 1-3, above the rod. This system could be a simple model of a broken arm you want to immobilize with a sling.

Sling, part 1

How would you attach a string so the rod is held in a horizontal position but the hinge exerts no force at all on the rod?

1. $\mathrm{A} \rightarrow 1$.
2. $A \rightarrow 2$.
3. $A \rightarrow 3$.
4. $B \rightarrow 1$ or $B \rightarrow 3$.
5. $\mathrm{B} \rightarrow 2$.
6. $C \rightarrow 1$.
7. $C \rightarrow 2$.
8. $C \rightarrow 3$.
9. It can't be done.

Sling, part 2

How would you attach a string so the rod is held in a horizontal position while the force exerted on the rod by the hinge has no horizontal component, but has a non-zero vertical component directed straight up?

```
1. A }->1
2. A }->2\mathrm{ .
3. A }->3\mathrm{ .
4. B }->1\mathrm{ or B }->3\mathrm{ .
5. B }->2\mathrm{ .
6. C }->1
7. C }->2\mathrm{ .
8. C }->3
9. It can't be done.
```


Sling, part 3

How would you attach a string so the rod is held in a horizontal position while the force exerted on the rod by the hinge has no vertical component, but has a non-zero horizontal component?

1. $\mathrm{A} \rightarrow 1$.
2. $A \rightarrow 2$.
3. $A \rightarrow 3$.
4. $\mathrm{B} \rightarrow 1$ or $\mathrm{B} \rightarrow 3$.
5. $\mathrm{B} \rightarrow 2$.
6. $\mathrm{C} \rightarrow 1$.
7. $\mathrm{C} \rightarrow 2$.
8. $\mathrm{C} \rightarrow 3$.
9. It can't be done.

A balanced beam

A uniform beam sits on two identical scales. Scale A is farther from the center than scale B, but the beam remains in equilibrium.

Which scale shows a higher reading?

How far to the left could scale B be moved without the beam tipping over?

A balanced beam

A uniform beam sits on two identical scales. Scale A is farther from the center than scale B, but the beam remains in equilibrium.

Which scale shows a higher reading? Scale B - it is closer to the center of gravity.

How far to the left could scale B be moved without the beam tipping over?

A balanced beam

A uniform beam sits on two identical scales. Scale A is farther from the center than scale B, but the beam remains in equilibrium.

Which scale shows a higher reading? Scale B - it is closer to the center of gravity.

How far to the left could scale B be moved without the beam tipping over?
To the center of the beam, but no farther. The beam's center of gravity must be between the supports to be stable.

A balanced beam

Could you place a weight on the beam without the reading on scale A changing?

Could you place a weight on the beam and cause the reading on scale A to decrease?

A balanced beam

Could you place a weight on the beam without the reading on scale A changing?
Yes - place it directly over scale B.

Could you place a weight on the beam and cause the reading on scale A to decrease?

A balanced beam

Could you place a weight on the beam without the reading on scale A changing?
Yes - place it directly over scale B.

Could you place a weight on the beam and cause the reading on scale A to decrease?
Yes - put it on the beam to the right of scale B.

A balanced beam

What happens to the scale readings when scale B is moved to the right?

1. A is unchanged, B goes up.
2. A is unchanged, B goes down.
3. Both readings decrease.
4. Both readings increase.
5. A goes up, B goes down.
6. A goes down, B goes up.
7. None of the above.

The human spine

Equilibrium ideas can be applied to the human body, including the spine. If you bend your upper body so it is horizontal, you put a lot of stress on the lumbrosacral disk, the disk separating the lowest vertebra from the tailbone (the sacrum). Picking something up when bending this way is even worse.

The human spine

Simulation Treat the spine as a pivoted bar. There are essentially three forces acting on this bar:
The force of gravity, mg, acting on the upper body (this is about 65% of the body weight).
The tension in the back muscles. This can be considered as one force T that acts at an angle of about 12° to the horizontal when the upper body is horizontal.
The support force F from the tailbone, which also acts at a small angle measured from the horizontal.

The human spine

Treat the spine as a pivoted bar. There are essentially three forces acting on this bar:
The force of gravity, mg, acting on the upper body (this is about 65% of the body weight).
The tension in the back muscles. This can be considered as one force T that acts at an angle of about 12° to the horizontal when the upper body is horizontal.
The support force F from the tailbone, which also acts at a small angle measured from the horizontal.

The human spine

For a person with a weight of 600 N , the upper body weighs almost 400 N . What are T and F?

The human spine

For a person with a weight of 600 N , the upper body weighs almost 400 N . What are T and F?
How far do forces get us? $\sum \vec{F}=0$
X-direction: $+F_{x}-T_{x}=0$
Y-direction: $+F_{y}+T_{y}-m g=0$
Now what?

The human spine

Let's try summing torques: $\sum \vec{\tau}=0$

Choose a point where one of the unknown forces passes through to sum torques.

The human spine

Let's try summing torques: $\sum \vec{\tau}=0$

Choose a point where one of the unknown forces passes through to sum torques.
In this case, choose the tailbone (the left end, below) as our axis for torques - this eliminates F.

The human spine

Take torques about the tailbone - I'm choosing counterclockwise to be positive for torque. Effectively, T is applied about 10% farther from the tailbone than the force of gravity.

$$
\begin{gathered}
+(1.1 d)(T)\left(\sin 12^{\circ}\right)-d(m g)=0 \\
T=\frac{m g}{1.1\left(\sin 12^{\circ}\right)}
\end{gathered}
$$

If $\mathrm{mg}=400 \mathrm{~N}, \mathrm{~T}$ comes out to about 1700 N !
The components of the support force F can be found from our force equations. F is also about 1700 N .

The human spine

Picking up something, which has a weight of 100 N, with your arms increases both T and F by about 600 N !

The moral of the story: bend your legs instead of your back. Picking up a 100 N bag of groceries by bending at the knee produces a force of about 500 N on the bottom disk in the spine. The force is $4-5$ times larger if you bend your back!

Newton's Second Law for Rotation

The equation $\sum \vec{\tau}=l \vec{\alpha}$ is the rotational equivalent of $\sum \vec{F}=m \vec{a}$.
Torque plays the role of force.
Rotational inertia plays the role of mass.
Angular acceleration plays the role of the acceleration.

Applying Newton's Second Law

A constant force of $F=8 \mathrm{~N}$ is applied to a string wrapped around the outside of the pulley. The pulley is a solid disk of mass $M=2.0 \mathrm{~kg}$ and radius $R=0.50 \mathrm{~m}$, and is mounted on a horizontal frictionless axle. What is the pulley's angular acceleration?

Simulation

What should we do first?

Why are we told that the pulley is a solid disk?

Applying Newton's Second Law

A constant force of $F=8 \mathrm{~N}$ is applied to a string wrapped around the outside of the pulley. The pulley is a solid disk of mass $M=2.0 \mathrm{~kg}$ and radius $R=0.50 \mathrm{~m}$, and is mounted on a horizontal frictionless axle. What is the pulley's angular acceleration?

Simulation

What should we do first?
Draw a free-body diagram of the pulley.
Why are we told that the pulley is a solid disk?

Applying Newton's Second Law

A constant force of $F=8 \mathrm{~N}$ is applied to a string wrapped around the outside of the pulley. The pulley is a solid disk of mass $M=2.0 \mathrm{~kg}$ and radius $R=0.50 \mathrm{~m}$, and is mounted on a horizontal frictionless axle. What is the pulley's angular acceleration?

Simulation

What should we do first?
Draw a free-body diagram of the pulley.
Why are we told that the pulley is a solid disk?
So we know what to use for the rotational inertia. $I=\frac{1}{2} M R^{2}$

Applying Newton's Second Law

$$
\sum \stackrel{\rightharpoonup}{\tau}=I \vec{\alpha}
$$

$$
R F=\frac{1}{2} M R^{2} \alpha
$$

$$
F=\frac{1}{2} M R \alpha
$$

$$
\alpha=\frac{2 F}{M R}=\frac{2 \times(8.0 \mathrm{~N})}{(2.0 \mathrm{~kg}) \times(0.5 \mathrm{~m})}=16 \mathrm{rad} / \mathrm{s}^{2}
$$

Two pulleys

Simulation

We take two identical pulleys, both with string wrapped around them. On the one on the left we apply an 8 N force to the string. On the one on the right we hang an object with a weight of 8 N . Which pulley has the larger angular acceleration?

Two pulleys

We take two identical pulleys, both with string wrapped around them. On the one on the left we apply an 8 N force to the string. On the one on the right we hang an object with a weight of 8 N . Which pulley has the larger angular acceleration?

1. The one on the left
2. The one on the right
3. Neither, they're equal

Two pulleys

For the pulley on the left, the tension in the string is 8 N .
Simulation
For the system on the right, let's draw the free-body diagram of the weight.

What does the free-body diagram tell us about the tension in the string?

Two pulleys

For the pulley on the left, the tension in the string is 8 N .

For the system on the right, let's draw the free-body diagram of the weight.

What does the free-body diagram tell us about the tension in the string? For the weight to have a net force directed down, the tension must be less than the force of gravity. So, the tension is less than 8 N .

